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SUMMARY

The D-type cyclins are expressed during the progression
from Go/Gnto S phase in the mammalian cell cycle. There
is conside/ \e evidence that they contribute to the dgvel-
opment of specific cancers, both in humans and in ﬂse
models. For example, cyclin DI can be activated by chro-
mosomal translocation, DN plification and retry’ \al
integration. Cyclins D4, D2 and D3 preferentially associate
with two closely relﬂ members of the cyclin-dependent
kinase family, Cdk4 and Cdk6 and the various complexes
are each capable of phosphorylating the retinoblastoma

gene product (pRb), at least in vitro. This suggests that the
growth promoting effects of the D-cyclins may be manifest
via their interactions with tumour suppressor genes.
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INTRODUCTION

The discovery of cyclin D1, first reported in 1991, is a striking
example of convergent resear here several groups, working
independently on quite different aspects of biology, found
themelves studying the same gene. Some were investigating

adopted Cdk nomenclature implies (see for example Meyerson
et al., 1992), the active enzyme complexes are formed by a
partnership between a regulatory cyclin and a catalytic kinase
subunit.

Historically, much of this information was gleaned from
genetic analyses of the cell division cycle in yeast and studies

the regulation of the cell cycle (Lew et al., 1991; Xiong et al., i on oocyte maturation in marine invertebrates and amphibia.

1991), some were looking for genes induced by specific
cytokines (Matsushime et al., 1991), while others were trying
to identify oncogenes associated with specific cancers
(Motokura et al., 1991; Withers et al., 1991; Schuuring et al.,
1992). It is hardly surprising therefore that the D-cyclins have
generated enormous interest over the last few years but such is
the pace of these activities that the recorded information does
not always concur. As well as summarizing the general
features of the D-cyclins and the evidence linking them to
cancer, this short review will try to distil some order from the
recent literature and advance some speculative views as to the
possible functions of these proteins. A

REGULATION OF THE CELL CYCLE BY CYCLIN-
DEPENDENT KINASES

In higher eukaryotes, cell division is regulated by a cyclical
series of events in which two protein families play leading
roles. The first are the cyclins, the classic example of which
was discovered by its marked accumulation and destruction in
synchrony with the cell division cycle (Evans et al., 1983). The
second are the cyclin-dependent kinases (Cdks), for which the
prototype is the 34 kDa serine/threonine kinase encoded by the
cdc2 gene in Schizosaccharomyces pombe and the related
CDC28 gene in Saccharomyces cerevisiae (reviewed by
Norbury and Nurse, 1992; Reed, 1992). As the recently

These pioneering studies led to a model for the regulation of
mitosis by the cyclin B/cdc2 complex in which kinase activity
is ‘switched on’ by specific dephosphorylation of the catalytic
subunit and ‘switched off” byxthe rapid destruction of the cyclin
(Norbury and Nurse, 1992; d, 1992; Solomon, 1993). This
paradigm appears to be conserved in all eukaryotes and
although the players may be different the same principles are
probably relevant to other critical phases of the cell cycle. For
example, the (/S transition in Saccharomyces cerevisiae is
regulated by Aoup of Gy cyclins, termed CLNI, 2 and 3,
acting in conjunction wj/ the CDC28 kinase (reviewed by
Reed, 1992). Not surprisingly, the picture appears more
complex in mammalian cells, where the numbers of potential
Cdks and cyclins have expanded dramatically, and the details
are just beginning to be unravelled.

The identification of new members of the cyclin family was
largely stimulated by the search for mammalian equivalents of
the yeast CLN genes in complementation assays (Koff et al.,
1991; Lew et al., 1991; Xiong et al., 1991). Cyclins C, DI and
E were all identified in this way but in hindsight it seeAthat
the assay may have been scoring the presence of a so-called
‘cyclin box’, a region of sequence homology that is conserved
in all cyclins (Fig. 1) and is probably critical in the interaction
between cyclins and their respective kinase partners (Kobayashi
et al., 1992; Lees and Harlow, 1993). The other notable char-
acteristic ofcyclins is their rapid turnover. In cyclins A and B,
this is me d by a motif near the amino terminus that appears
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THE D-TYPE CYCLINS

he classical periodic fluctuations that
. Significantly, the levels of these
ed kinase activities peak in a distinct
ted in Fig. 2. A relatively cohesive
ited in which specific cell cycle tran-

the consecutive action of these
Fig. 2). In this scheme, the cyclin
events at the Gy/S transition (Dulic
92; Ohtsubo a oberts, 1993; Tsai
2 operates in S and G2 (Gjgard et al.,

1991; Pagano et al., 1 \ Tsai et
c2 orchestrates mitosis (Norbury and
. However, this is clearly an oyer-
rtnerships between cyclins and&
example cyclin A can form active
"dk1 (i.e. cdc2) or Cdk2 and, as

elow, the latter can be found agsoci-

The D-cyclins form a dis

inct subset within the cyclin family

based on structural and fu

nctional criteria. Although the genes

Cyclin E Cyclin A Cyclin B
CYV %
S G2 M

Fig. 2. The mammalian cell cycle. The phases of the cell cycle are
shown in a linear form for cells leaving the resting Go state and
entering the division cycle. DNA synthesis and mitosis occur,
respectively, in the S and M phases, separated by two gap phases, G,
and Ga. The curves above the line are a highly schematized
impression of the levels of various cyclin proteins at different phases

of the cycle. j

map to different chromosomes (Inaba et al., 1992; Xiong et
al., 1992a), they encode proteins that are between 57 and 62%
identical in pairwise comparisons and absolutely conserved at
140 residues spread throughout the respective molecules (Fig.
3). Similarity to other cyclins is restricted to the cyclin box
domain, and the D-cyclins are particularly well conserved in
the amino-terminal half of this region. It was sequence rglat-
edness that pointed to the existence of cyclins D2 and y
cross-hybridization with cyclin probes (Matsushime et al.,
1991), and the other memb of the family were not
uncovered by the various strategies that led to the discovery
of cyclin D\l.

As all to above, cyclin IRl was among a number of
human cDNA clones that were&e to complement for CLN
activity in yeast (Lew et al., 1991; Xiong et al., 1991). It was
also isolated as a ‘delayed-early’ gene in cytokine-stimulated
mouse macrophages by differential screening of cDNA clones
(Matsushime et al., 1991). In this system, the expression of
cyclin D1 is dependent on the presence of CSF-1 and reaches
a maximurA]ate phase. Subsequent studies have shown
that the expression 1l three D-cyclins can be regulated by
cytokines but the results and their interpretation are rather
inconsistent (Matsushime et al., 1991; Cocks et al., 1992;
Motokura et al., 1992; Surmacz et al., 1992; Won et al., 1992;
Ajchenbaum et al., 1993; Jansen-Diirr et al., 1993; Musgrove
et al., 1993; Sewing et al., 1993; Winston and Pledger, 1993).
Perhaps the most contentious issue is whether the levels of the
RNAs and/or proteins actually cycle, but some of the confusion
undoubtedly reflects the way that cells were synchronised and
analysed in different labs. Our own findings suggest that while
cyclin IR1, for example, accumulates significantly in in
serum ulated fibroblasts, it does not undergo the dlﬂtic
fluctuations that are characteristic of cyclins A and B. Other
groups report similar conclusions but suggest that there are
more subtle fluctuations and that the protein, which is normally
found in the cell nucleus, may become redistributed during S
phase (Baldin et al., 1993; Sewing et al., 1993; Lukas et al.,
1994).

Clearly, much remains to be learned about the regulation of
cyclin D expression and the balance between synthesis and
degradation of both transcripts and proteins. The interplay of
positive and negative inputs from the signal transduction
pathways has yet to be fully explored and there is currently no
obvious explanation for the need for three closely related
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Chromosome RNA Protein Molecular weight
CCND1 1113 4.5kb 295 aa 33,729 Da
CCND2 12p13 ~7kb 289 aa. 33,045 Da
CCND3 6p21 2.2 kb 292 aa 32,482 Da
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Fig. 3. The human D-type
cyclins. The chromosomal
locations and transcript sizes

for the human D-cyclin genes,
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genes. Many cell types express two and occasionally all three
members of the family and few clear patterns have yet become
apparent. Perhaps it is significant that, despite sporadic reports
to the contrary, we have yet to identify a cell line that does not
express at least some levels of cyclin D3 whereas cells lacking
either D1 orAD2 are much more common (unpublished oRser-
vations). &

CHROMOSOMAL REARRANGEMENTS AFFECTING
CYCLIN D1

The other line of research that led to the identification of the
D-cyclins was the search for oncogenes associated with
specific genetic alterations. Most of the evidence relates to
cyclin D1 and although largely circumstantial, it is becoming
increasingly persuasive. As indicated in Fig. 4, the gene for
cyclin D1 (CCNDI) maps to the karyotypically defined band
ql3on thm)d human chromosome 11, a region known
to be the site of tumour-specific chromosomal abnormalities.
For example, some cases of benign parathyroid adenoma show
a clonal inversion of chromosome 11 that places the cyclin D1
gene on 1Ag13 adjacent to regulatory elements of the parathy-
roid hor e gene on 11pdS (Arnold et al., 1989; m
et al., 1991). Although t quency of this rearrangement in
parathyroid adenomas is quite low, its clonality and the
resultant increase in cyclin D1 expression are strongly sng-
gestive of a role in the disease (Rosenberg et al., 1991a). [ S
through this association that the name PRADI was coined,
whereas earlier reports referred to the anonymous locus dgsig-
nation D11S287. Both names appear in the recent literatﬁﬁ

are essentially synonymous for GCND/.
A different and more freque arrangement of 1Ag13 has
been observed in B-cell neoplasms, particularly ocytic

the so-called cyclin box.

lymphoma and multiple myeloma. In this t(1ls14)(q13s
translocation, a reciprocal exchange occurs b en ¢
some 11gd3 and the Ig heavy chain locus on 14q32
etal, 1 Tsujimoto et al., 1984), exactly analogous to the
translocations that activate MYC in Burkitt’s lymphoma and
BCL2 in follicular lymphoma. When the translocation bxeak-

Z illy

point was cloned, and designated BCLI, it was n

assumed that a nearby gene would be activated by juxtaposi-
tion to the Ig enhancer. As it turns out, the nearr:zJ §ene is

CCND1, which is located some 120 kb distal to the originalA

breakpoint cluster (Withers et al., 1991; Brookes et al., 1992)
but it is now clear that the breaks can occur at multiple sites
within the intervening DNA (see for example Williams et al.,
1992; de Boer et al., 1993). Nevertheless, the original expec-
tations arg fulfilled in that the translocation results in increased
transcri& of the cyclin D1 gene (Rosenberg et al., 1991b;
Seto et al., 1992). Although such findings have led to rafer-
ences to the ‘RCLI gene’, this is a potential source of con@
since the ory Ily defined BCLI probe is quite distant from

the ?‘fND] gene. j

AMPLIFICATION OF CYCLIN D1

The distinction between BCLI and
in considering the other chromoso

cyclin DNA amplification. It has been widely documented
that a ificant subset of human breast cancers and squamous
cell carcinomas show amplification of markers at higl3

whereas this amplicon is rarely observed in other tumoﬁp_es'
(reviewed by Lammie and Peters, 1891; Fantl et al., 1993). The
amplification was originally dety’ \d using probes for two
known oncogenes in the region, F'GF3 and FGIF4, often in cqn-
junction with the BCL/ translocation breakpoint probe&

NDI becomes relevant
bnormality that affects
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Fig. 4. Chromosomal perturbations that affect cyclin D1. Syntenic
regions of human chromosome 11 and mouse chromosome 7 are
depicted in which the shaded boxes represent known CpG islands.
The distances between these loci were established by a combination
of cosmid walking and pulsed field gel electrophoresis. The islands
corresponding to the cyclin D1 gene (CCNDI and Cyl-1), and to
FGF3 and FGF4 are as indicated and the arrows refer to the
transcriptional orientation of the gene. The originally defined
translocation breakpoints on human chromosome 11ql13, in
parathyroid adenomas and B-cell lymphomas. and the MuLLV
integration locus Fis-/ on mouse chromosome 7 are as indicated.

now know that CCND1 (alias D11S287) maps between BCLI
and FGF4 (Brookes et al., 1992) and is therefore a consistent
component of the amplicon, a fact that was reported before the
true nature of the gene became apparent (Lammie et al., 1991).
More importantly, CCND] is expressed at relatively low levels
in normal breast epithelium and its expression is elevated upon
DNA amplification (Lammie et al., 1991; Buckley et al., 1993;
Gillett et al.,
FGF4, which remain silent in the adult mammary gland, cyclin
D1 is currently the best candidate for the key oncogene on the
amplified DNA (Fantl et al., 1993).

The only point of contention is that GCND/ is not the only
expressed gene affected by the amplifi n (Schuuring et al.,
1992, 1993), leading to suggestions that there may be more
than one focus for amplification in the 11g13xegion (Gaudray
et al., 1992). Thus, in some tumours, the B probe appears
to be more highly amplified than GCND1, while in others the
converse is true. As we have arﬁlsewhere (Fantl et al.,
1993; Gillett et al., 1994), it is difficult to interpret these oRkser-
vatiogé S'thout a better understanding of the function of, in
DI, since it may have both positive and negative effects on
proliferation depending on the cell type or level of expression
achieved (see below). Whatever the resolution of these issues,

1994). Since this is not true for either FGF3 or

PCTAIRE-1
PCTAIRE-2

-] PCTAIRE-3

PSSALRE/Cdk5

—— Cdk2

—— Cdk3

@)

kK

=

PITSLRE/GT58

PSK-J3/ Cdk4

PLSTIRE/Cdk6

PITAIRE/CHED

KKIALRE

Fig. 5. Evolutionary tree of known CDC-2 related polypeptides. An
evolutionary tree was constructed from the published sequences of

12 human proteins that show homoloov with p34¢de? (Hanks et al

etal., 1992; Meyerson etal., 1992; Okuda etal., 1992). The region
of each protein that aligns with residues 11 to 230 inclusive of
human CDC2, were subjected to pairwise comparisons and the
percentage divergence converted into a linear distance using the
Intelligenetics GeneWorks software.

it is now possible to detect the amplification of the GCNDI
gene at the protein level, by staining tumour sectim
cyclin D\l antibodies (Jiang et al., 1993b; Gillett et al., 1994).
This s d greatly facilitate the analysis/ \clinical material
and there are preliminary indications that the frequency of over
expression of cyclin I\l may be much higher than concluded
from DNA analyses/ \us, in our own study, approximately
one in three breast tumours stained above normal for cyclin
(Gillett et al., 1994). As these are almost exclusively tum

t re positive for oestrogen receptor, staining for cyclin D\
holds considerable promise for refining the classiﬁcatior&
breast cancers and may well have prognostic signiﬁcance.A

VIRAL ACTIVATION OF CYCLINS D1 AND D2

The final piece of evidence connecting D-cyclins and twmori-
genesis is their activation by tumour viruses. For exam&
the cyclin D\l and D2 genes are transcriptionally activated by
the nearb)&gration of murine leukaemia virus in mouse T
lymphomas (Lammie et al., 1992; Hanna et al., 1993).
cyclin D1, thg insertions occur at the previously defined Fis-1

locus on chromosome 7 in a region that is a direct
parallel of I{ql3 (see Fig. 4). Although the exact distance
between Fi nd the cyclin D\ gene has not been established,

it seems reasonable to cony/ Ne that proviral insertions at
Fis-1 are functionally analogous to translocations at BCLI
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(Lammie et al., 1992). With cyclin D2 on the other hand, the
insertions occur adjacent to the gene and the genomic DNA
was cloned independently as a common site of viral integra-
tion, termed Vin-1 (Hanna et al., 1993). To date, theﬂe no
obvious parallels for Vin-I disruption in human tumours.
However, we have noted one potential link between cyclin D2
and lymphomagenesis in that the immortalisation of primary
B-lymphocytes by Epstein-Barr virus is accompanied by tran-
scriptional activation of cyclin D2 (Palmero et al, }J/ %;
Sinclair et al., 1994). We are currently exploring the possiblity
that this is a direct effect of viral gene expression and a key
step in the immortalisation process. A

INTERACTION OF D-CYCLINS AND CDKS

Apart from one isolated case of hepatitis-B virus integration
into the cyclin A gene (Wang et al., 1990), none of the other
cyclins have yet been implicated in tumorigenesis. Does this
mean that there is something fundamentally different about the
D-cyclins? An obvious question is whether they interact with
catalytic subunits in the same way as cyclins A, B and E, and
several groups set out to determine the kinase partners for
cyclins D, D2 and D3. The strategies used were dictated by
the av ility of cDNA clones and specific antisera to
potential candidates but the most significant outcome was the
demonstration that a 33 kDa protein kinase designated PSK-J3
(now renamed Cdk4) is a major partner for the D-cyclins (Mat-
sushime etaal., 1992; Xiong et al., 1992b). PSK-J3 had been
isolated py’ “ously in a general screen for new kinases and was
recognised as a distant cousin of cdc2 (Hanks et al., 1988).
However, its close association with the D-cyclins not only
solved some of the mysteries surrounding this kinase but
provided encouraging evidence that the cyclin/kinase paradigm
might be extended to new members of the respective families.
For example, the growing list of cdc2-related sequences in the
literature included a 38 kDa protein, originally referred to as
PLSTIRE, that is very closely related to Cdk4 (see Fig. 5). We
and others have recently shown that this protein, now dgsig-
nated Cdk6, also associates with the D-cyclins (Bates&l.,
1994a; Meyerson and Harlow, 1994). Thus, just as the I-

cyclins form a distinct subset of the cyclin family, so Cdk4 7/ \

Cdk6 form a distinct subset of the Cdk family, and appear to
interact exclusively with the D-cyclins. All six possible
pairings can be detected by ilmmunoprecipitation of cell lysates
(Bates et al., 1994b).

These are not the o teractions observed for the Dxcyclins;
Xiong et al. (1992b) reported that in primary human ﬂblasts,
cyclin DA can be associated with Cdk2 and yet another member
of the/ \ily designated Cdk5. The significance of the latter
remains uncertain but the association with Cdk2 clearly demands
some explanation, since this is also a partner for cyclins A and
E. A possible clue may be that it is the hypophosphorylated and
hence inactive form of Cdk?2 that is found associated with cyclin
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lines (Bates et al., 1994a) and its absence in transformed cells
(Xiong et al., 1993) would therefore tie in with an escape from
senescence. If the recently described p21 protein is also part of
this complex (El-Deiry et al., 1993; Harper et al., 1993; Xiong
et al., 1993; Noda et al., 1994), this would provide an additional
arm to p53-mediated cell cycle arrest.

The notion that the D-cyclins may have double lives could
of course explain why some functional experiments have
produced paradoxical results. For example, transfection of
cells with vectors expressing D-cyclins from constitutive or
inducible promoters has been shown to accelerate the Gi/S
transition, exactly as one might expect for over-expression OA
a Gy cyclin (Ando et al., 1993; Jiang et al., 1993a; Quelle et
aﬂ993; Resnitzky et al.,, 1994). However, at least one
published and several anecdotal reports testify to the toxicity
of the D-cyclins in transfection assays (Quelle et al., 1993).
This would make some sense if cyclin D is having contrasting
influences depending on its Cdk partner. It might also explain
why early attempts to demonstrate the oncogenic potential of
cyclin I\ by DNA transfection were unrewarding, yet if the
approp/ ¢ levels are achieved then it can cooperate with RAS
in transforming primary rodent cells (Hinds et al., 1994; Lovec
et al., 1994). Finally, such considerations might explain why
the over-expression of cyclin D\ as a result of DNA axoplifi-
cation is not always as dramaﬁs one might expect Qwhy
in some tumours there appear to be rearrangements that dgwn-
regulate cyclin DJ expression from the amplified DNA Aett
et al., 1994).

INTERACTION BETWEEN THE D:CYCLINS AND pRB

The evidence that D-cyclins can interact with Cdks and can
accelerate cell cycle progression raises an obvious question -
what are the substrates for the multiple kinase combinations?
Perhaps the most attractive candidates and certainly the current
favourites are the product of the retinoblastoma gene, pRb and
its close relative pAO7. As discussed elsewhere in this volume,
pRb is known to/ \as a negative regulator of Gy progression,
leading to a relatively robust model in which inactivation
of pRb by phosphorylation is a critical step in permitting entry
into S phase. A number of studies have shown that pRb can be
phosphorylated by various cyclin/Cdk combinations (Lees et
al., 1991; Lin et al., 1991; Hinds et al., 1992; Hu et al., 1992)
but the timing of the initial phosphorylation events have
encouraged the idea that the D-cyclins may be involved.
Certainly, the phosphorylation of pRb can monstrated in
vitro using mixtures of the Drcyclins and Cdk2, Cdk4 or Cdk6
expressed in insect cells/ Nng baculovirus vectors (Mat-
sushime et al., 1992; Ewen et al., 1993; Kato et al., 1&
Meyerson and Harlow, 1994). However, it has proved much
more difficult to detect such activities in immunoprecipitates
from cycling cells (Matsushime et al., 1994; Meyerson and
Harlow, 1994) and there are still some puzzling features about

D1 (Dulic et al., 1993; Bates et al., 1994a). A further clue may the specificities of the different complexes. It would seem

be that this complex accumulates as primary cells undergo
senescence (Dulic et al., 1993; Lucibello et al., 1993). It is
therefore conceivable that cyclin D\l performs two contrasting
functions, as a positive regulator/ \Cdk4 and Cdk6 and as a
negative regulator that sequesters Cdk?2 in an inactive form. Our

inability to detect the cyclin D1/Cdk2 complex in tumour cell

strange that all six complexes involving D-cyclins, Cdk4 and
Cdk6 are doing exactly the same thing.

Despite these reservations, it does seem very likely that the
function of the D-cyclins is somehow connected to pRb, if for
no other reason than the presence of a sequence feature near
their amino termini that suggests they may interact directly
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with pRb (Dowdy et al., 1993). This is the LxCxE motif that
is common to the SV40 T-antigen, adenovirus E1A, and human
papilioma virus E7 proteins, each of which iAught to bind
to and functionally inactivate pRb. For the respective DNA
tumour viruses this would have the advantage of promoting
entry into S-phase, a prerequisite for viral DNA replication.
For the D-cyclins, it raises the possibility, albeit unlikely, that
they can inactivate pRb by direct binding and displacement of
associated transcription factors. Supportive evidence for this
idea has been reported, based on the reversal of pRb-induced
cell cycle arrest in SAOS-2 cells (Hinds et al., 1992), but it
remains curious that cyclin Q1 can apparently achieve this
effect without concomitant horylation of pRb, whereas
cyclins D2 and D3 are thought to inactivate pRb by phospho-
rylation (Dowdy et al., 1993; Ewen et al., 1993). Either way,
one can alise how the elevated expression of a D-cyclin
in a tumour cell could accelerate (x progression.

However, there are a number o omfortable facets to such
ideas, not least of which is the potential for functional radun-
dancy implicit in the findings. Why should elevated expﬂon
of a D-cyclin be so critical to a cell that already expresses one
of its close relatives? Moreover, tumour cells do not cycle more
rapidly than normal cells and it would be much more aptrac-
tive to postulate that the D-cyclins are in some way re, ing
exit from Go or the cell’s ability to return to a Go state after
completing mitosis. Finally, it seems clear that pRb is not the
master regulator of all cell cycles so that it is premature to settle
for pRb as the substrate for D-cyclin/kinases. As if matters
were not already confusing gh, we have recently noted
that, in cells in which pRb has been inactivated, either by DNA
tumour virus infection or as a result of naturally occurring
mutations, it is very difficult to detect associations between the
D-cyclins and any of their kinase partners (Bates et al., 1994b).
Taken at face value, the data suggest that the substrate for Dk
cyclin/Cdk complexes must be present for the active enzy,
to be formed.

As in all rapidly advancing fields, it is almost impossible to
draw all the published and soon to be published data into a
cohesive picture. Models are being formulated, modified and
discarded at an alarming rate as each new component appears
on the scene. Within the last few months, two more players
have entered the arena, the p21 protein that links p53 to the
cyclin/Cdk framework (El-Deiry et al., 1993; Harper et al.,
1993; Xiong et al., 1993; Noda et al., 1994) and p16, a specific
inhibitor of Cdk4 (Serrano et al.,, 1993). Exciting times lie
ahead.
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