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The D-type cyclins and their role in tumorigenesis

Gordon Peters
Imperial Cancer Research Fund Laboratories, PO Box 123, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK

SUMMARY

The D-type cyclins are expressed during the progression 
from Go/Gi to S phase in the mammalian cell cycle. There 
is considerable evidence that they contribute to the devel­
opment of specific cancers, both in humans and in mouse 
models. For example, cyclin D1 can be activated by chro­
mosomal translocation, DNA amplification and retroviral 
integration. Cyclins Dl, D2 and D3 preferentially associate 
with two closely related members of the cyclin-dependent 
kinase family, Cdk4 and Cdk6 and the various complexes 
are each capable of phosphorylating the retinoblastoma

gene product (pRb), at least in vitro. This suggests that the 
growth promoting effects of the D-cyclins may be manifest 
via their interactions with tumour suppressor genes.
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D3, Cdk4 and Cdk6, DNA amplification, chromosome 1 lql3, 
chromosome translocation, retroviral integration, breast cancer, 
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INTRODUCTION

The discovery of cyclin D l, first reported in 1991, is a striking 
example of convergent research where several groups, working 
independently on quite different aspects of biology, found 
themelves studying the same gene. Some were investigating 
the regulation of the cell cycle (Lew et al., 1991; Xiong et al.,
1991), some were looking for genes induced by specific 
cytokines (Matsushime et al., 1991), while others were trying 
to identify oncogenes associated with specific cancers 
(Motokura et al., 1991; Withers et al., 1991; Schuuring et al.,
1992). It is hardly surprising therefore that the D-cyclins have 
generated enormous interest over the last few years but such is 
the pace of these activities that the recorded information does 
not always concur. As well as summarizing the general 
features of the D-cyclins and the evidence linking them to 
cancer, this short review will try to distil some order from the 
recent literature and advance some speculative views as to the 
possible functions of these proteins.

REGULATION OF THE CELL CYCLE BY CYCLIN- 
DEPENDENT KINASES

In higher eukaryotes, cell division is regulated by a cyclical 
series of events in which two protein families play leading 
roles. The first are the cyclins, the classic example of which 
was discovered by its marked accumulation and destruction in 
synchrony with the cell division cycle (Evans et al., 1983). The 
second are the cyclin-dependent kinases (Cdks), for which the 
prototype is the 34 kDa serine/threonine kinase encoded by the 
cdc2 gene in Schizosaccharomyces pombe and the related 
CDC28 gene in Saccharomyces cerevisiae (reviewed by 
Norbury and Nurse, 1992; Reed, 1992). As the recently

adopted Cdk nomenclature implies (see for example Meyerson 
et al., 1992), the active enzyme complexes are formed by a 
partnership between a regulatory cyclin and a catalytic kinase 
subunit.

Historically, much of this information was gleaned from 
genetic analyses of the cell division cycle in yeast and studies 
on oocyte maturation in marine invertebrates and amphibia. 
These pioneering studies led to a model for the regulation of 
mitosis by the cyclin B/cdc2 complex in which kinase activity 
is ‘switched on’ by specific dephosphorylation of the catalytic 
subunit and ‘switched o ff  by the rapid destruction of the cyclin 
(Norbury and Nurse, 1992; Reed, 1992; Solomon, 1993). This 
paradigm appears to be conserved in all eukaryotes and 
although the players may be different the same principles are 
probably relevant to other critical phases of the cell cycle. For 
example, the Gi/S transition in Saccharomyces cerevisiae is 
regulated by a group of Gi cyclins, termed CLN1, 2 and 3, 
acting in conjunction with the CDC28 kinase (reviewed by 
Reed, 1992). Not surprisingly, the picture appears more 
complex in mammalian cells, where the numbers of potential 
Cdks and cyclins have expanded dramatically, and the details 
are just beginning to be unravelled.

The identification of new members of the cyclin family was 
largely stimulated by the search for mammalian equivalents of 
the yeast CLN genes in complementation assays (Koff et al., 
1991; Lew et al., 1991; Xiong et al., 1991). Cyclins C, D l and 
E were all identified in this way but in hindsight it seems that 
the assay may have been scoring the presence of a so-called 
‘cyclin box’, a region of sequence homology that is conserved 
in all cyclins (Fig. 1) and is probably critical in the interaction 
between cyclins and their respective kinase partners (Kobayashi 
et al., 1992; Lees and Harlow, 1993). The other notable char­
acteristic of cyclins is their rapid turnover. In cyclins A and B, 
this is mediated by a motif near the amino terminus that appears
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Fig. 1. The mammalian cyclin family. The figure depicts 8 of the 
known cyciin-related polypeptides identified in human cells, 
designated A through E as indicated. The number of amino acid 
residues in each protein is shown on the right. The open box locates 
the region of homology termed the cyclin box. Other symbols show 
the presence of protein destabilization elements.

to target the protein for destruction via the ubiquitin pathway 
(Glotzer et al., 1991) whereas cyclins C, D and E have so-called 
PEST sequences near their carboxy termini (Fig. 1). Although 
such concentrations of proline, glutamic acid, serine and 
threonine residues are thought to contribute to protein instabil­
ity (Rogers et al., 1986), their significance to cyclin turnover 
has yet to be confirmed experimentally.

Protein stability is clearly important for controlling the 
levels of the different cyclins throughout the cell cycle but only 
cyclins A, B and E show the classical periodic fluctuations that 
gave the family its name. Significantly, the levels of these 
proteins and their associated kinase activities peak in a distinct 
temporal order as illustrated in Fig. 2. A relatively cohesive 
model can thus be formulated in which specific cell cycle tran­
sitions are regulated by the consecutive action of these 
cyclin/kinase complexes (Fig. 2). In this scheme, the cyclin 
E/Cdk2 complex regulates events at the Gi/S transition (Dulic 
et al., 1992; Koff et al., 1992; Ohtsubo and Roberts, 1993; Tsai 
et al., 1993), cyclinA/Cdk2 operates in S and G2 (Girard et al., 
1991; Walker and Mailer, 1991; Pagano et al., 1992; Tsai et 
al., 1993), and cyclin B/cdc2 orchestrates mitosis (Norbury and 
Nurse, 1992; Reed, 1992). However, this is clearly an over­
simplification since the partnerships between cyclins and Cdks 
are not monogamous. For example cyclin A can form active 
complexes with either Cdkl (i.e. cdc2) or Cdk2 and, as 
discussed in more detail below, the latter can be found associ­
ated with cyclins A, E or D.

THE D-TYPE CYCLINS

The D-cyclins form a distinct subset within the cyclin family 
based on structural and functional criteria. Although the genes

Cyclin E Cyclin A Cyclin B

Fig. 2. The mammalian cell cycle. The phases of the cell cycle are 
shown in a linear form for cells leaving the resting Go state and 
entering the division cycle. DNA synthesis and mitosis occur, 
respectively, in the S and M phases, separated by two gap phases, Gi 
and G2. The curves above the line are a highly schematized 
impression of the levels of various cyclin proteins at different phases 
of the cycle.

map to different chromosomes (Inaba et al., 1992; Xiong et 
al., 1992a), they encode proteins that are between 57 and 62% 
identical in pairwise comparisons and absolutely conserved at 
140 residues spread throughout the respective molecules (Fig. 
3). Similarity to other cyclins is restricted to the cyclin box 
domain, and the D-cyclins are particularly well conserved in 
the amino-terminal half of this region. It was sequence relat­
edness that pointed to the existence of cyclins D2 and D3, by 
cross-hybridization with cyclin D1 probes (Matsushime et al., 
1991), and the other members of the family were not 
uncovered by the various strategies that led to the discovery 
of cyclin D1.

As alluded to above, cyclin D1 was among a number of 
human cDNA clones that were able to complement for CLN 
activity in yeast (Lew et al., 1991; Xiong et al., 1991). It was 
also isolated as a ‘delayed-early’ gene in cytokine-stimulated 
mouse macrophages by differential screening of cDNA clones 
(Matsushime et al., 1991). In this system, the expression of 
cyclin D1 is dependent on the presence of CSF-1 and reaches 
a maximum in late Gi phase. Subsequent studies have shown 
that the expression of all three D-cyclins can be regulated by 
cytokines but the results and their interpretation are rather 
inconsistent (Matsushime et al., 1991; Cocks et al., 1992; 
Motokura et al., 1992; Surmacz et al., 1992; Won et al., 1992; 
Ajchenbaum et al., 1993; Jansen-Dürr et al., 1993; Musgrove 
et al., 1993; Sewing et al., 1993; Winston and Pledger, 1993). 
Perhaps the most contentious issue is whether the levels of the 
RNAs and/or proteins actually cycle, but some of the confusion 
undoubtedly reflects the way that cells were synchronised and 
analysed in different labs. Our own findings suggest that while 
cyclin D l, for example, accumulates significantly in Gi in 
serum-stimulated fibroblasts, it does not undergo the dramatic 
fluctuations that are characteristic of cyclins A and B. Other 
groups report similar conclusions but suggest that there are 
more subtle fluctuations and that the protein, which is normally 
found in the cell nucleus, may become redistributed during S 
phase (Baldin et al., 1993; Sewing et al., 1993; Lukas et al., 
1994).

Clearly, much remains to be learned about the regulation of 
cyclin D expression and the balance between synthesis and 
degradation of both transcripts and proteins. The interplay of 
positive and negative inputs from the signal transduction 
pathways has yet to be fully explored and there is currently no 
obvious explanation for the need for three closely related
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Protein Molecular weight
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CCND1 11 q13 4.5 kb 295 aa 33,729 Da

CCND2 12p13 ~7 kb 289 aa 33,045 Da

CCND3 6p21 2.2 kb 292 aa 32,482 Da
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Fig. 3. The human D-type 
cyclins. The chromosomal 
locations and transcript sizes 
for the human D-cyclin genes, 
CCND1, CCND2 and CCND3 
are indicated along with the 
characteristics and primary 
sequences of the encoded 
proteins, in single letter amino 
acid code. Vertical lines 
identify conserved residues and 
the square brackets delineate 
the so-called cyclin box.

genes. Many cell types express two and occasionally all three 
members of the family and few clear patterns have yet become 
apparent. Perhaps it is significant that, despite sporadic reports 
to the contrary, we have yet to identify a cell line that does not 
express at least some levels of cyclin D3 whereas cells lacking 
either D 1 or D2 are much more common (unpublished obser­
vations).

CHROMOSOMAL REARRANGEMENTS AFFECTING 
CYCLIN D1

The other line of research that led to the identification of the 
D-cyclins was the search for oncogenes associated with 
specific genetic alterations. Most of the evidence relates to 
cyclin Dl and although largely circumstantial, it is becoming 
increasingly persuasive. As indicated in Fig. 4, the gene for 
cyclin D l (CCND1) maps to the karyotypically defined band 
q 13 on the long arm of human chromosome 11, a region known 
to be the site of tumour-specific chromosomal abnormalities. 
For example, some cases of benign parathyroid adenoma show 
a clonal inversion of chromosome 11 that places the cyclin Dl 
gene on 11 q 13 adjacent to regulatory elements of the parathy­
roid hormone gene on 1 lp  15 (Arnold et al., 1989; Motokura 
et al., 1991). Although the frequency of this rearrangement in 
parathyroid adenomas is quite low, its clonality and the 
resultant increase in cyclin Dl expression are strongly sug­
gestive of a role in the disease (Rosenberg et al., 1991a). It was 
through this association that the name PRAD1 was coined, 
whereas earlier reports referred to the anonymous locus desig­
nation D l 1S287. Both names appear in the recent literature but 
are essentially synonymous for CCND1.

A different and more frequent rearrangement of 11 q 13 has 
been observed in B-cell neoplasms, particularly centrocytic

lymphoma and multiple myeloma. In this t( 11; 14)(q 13 ;q32) 
translocation, a reciprocal exchange occurs between chromo­
some 1 lq 13 and the Ig heavy chain locus on 14q32 (Erikson 
et al., 1984; Tsujimoto et al., 1984), exactly analogous to the 
translocations that activate MYC  in Burkitt’s lymphoma and 
BCL2 in follicular lymphoma. When the translocation break­
point was cloned, and designated BCL1, it was naturally 
assumed that a nearby gene would be activated by juxtaposi­
tion to the Ig enhancer. As it turns out, the nearest gene is 
CCND1, which is located some 120 kb distal to the original 
breakpoint cluster (Withers et al., 1991; Brookes et al., 1992) 
but it is now clear that the breaks can occur at multiple sites 
within the intervening DNA (see for example Williams et al., 
1992; de Boer et al., 1993). Nevertheless, the original expec­
tations are fulfilled in that the translocation results in increased 
transcription of the cyclin Dl gene (Rosenberg et al., 1991b; 
Seto et al., 1992). Although such findings have led to refer­
ences to the ‘BCL1 gene’, this is a potential source of confusion 
since the originally defined BCL1 probe is quite distant from 
the CCND1 gene.

AMPLIFICATION OF CYCLIN D1

The distinction between BCL1 and CCND1 becomes relevant 
in considering the other chromosomal abnormality that affects 
cyclin D l , DNA amplification. It has been widely documented 
that a significant subset of human breast cancers and squamous 
cell carcinomas show amplification of markers at l lq l3 , 
whereas this amplicon is rarely observed in other tumour types 
(reviewed by Lammie and Peters, 1991; Fantl et al., 1993). The 
amplification was originally detected using probes for two 
known oncogenes in the region, FGF3 and FGF4, often in con­
junction with the BCL1 translocation breakpoint probe. We
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Fis-1
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Fig. 4. Chromosomal perturbations that affect cyclin D l. Syntenic 
regions of human chromosome 11 and mouse chromosome 7 are 
depicted in which the shaded boxes represent known CpG islands. 
The distances between these loci were established by a combination 
of cosmid walking and pulsed field gel electrophoresis. The islands 
corresponding to the cyclin Dl gene (CCND1 and Cyl-1), and to 
FGF3 and FGF4 are as indicated and the arrows refer to the 
transcriptional orientation of the gene. The originally defined 
translocation breakpoints on human chromosome 11 q 13, in 
parathyroid adenomas and B-cell lymphomas, and the MuLV 
integration locus Fis-1 on mouse chromosome 7 are as indicated.

now know that CCND1 (alias D11S287) maps between BCL1 
and FGF4 (Brookes et al., 1992) and is therefore a consistent 
component of the amplicon, a fact that was reported before the 
true nature of the gene became apparent (Lammie et al., 1991). 
More importantly, CCND1 is expressed at relatively low levels 
in normal breast epithelium and its expression is elevated upon 
DNA amplification (Lammie et al., 1991; Buckley et al., 1993; 
Gillett et al., 1994). Since this is not true for either FGF3 or 
FGF4, which remain silent in the adult mammary gland, cyclin 
D 1 is currently the best candidate for the key oncogene on the 
amplified DNA (Fantl et al., 1993).

The only point of contention is that CCNDl is not the only 
expressed gene affected by the amplification (Schuuring et al., 
1992, 1993), leading to suggestions that there may be more 
than one focus for amplification in the 1 lq  13 region (Gaudray 
et al., 1992). Thus, in some tumours, the BCL1 probe appears 
to be more highly amplified than CCNDl, while in others the 
converse is true. As we have argued elsewhere (Fantl et al., 
1993; Gillett et al., 1994), it is difficult to interpret these obser­
vations without a better understanding of the function of cyclin 
D l, since it may have both positive and negative effects on 
proliferation depending on the cell type or level of expression 
achieved (see below). Whatever the resolution of these issues,

BCL1
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t  FGF3
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-3 5  kb
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PCTAIRE-3
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Cdk3

Cdk1

PITSLRE/GT58 

PSK-J3/ Cdk4

--------------  PLSTIRE/Cdk6

------------------------------------------------  PITAIRE/CHED

-------  KKIALRE

Fig. 5. Evolutionary tree of known CDC-2 related polypeptides. An 
evolutionary tree was constructed from the published sequences of 
12 human proteins that show homology with p34cdc2 (Hanks et al., 
1988; Bunnell et al., 1990; Lapidot-Lifson et al., 1992; Matsushime 
et al., 1992; Meyerson et al., 1992; Okuda et al., 1992). The region 
of each protein that aligns with residues 11 to 230 inclusive of 
human CDC2, were subjected to pairwise comparisons and the 
percentage divergence converted into a linear distance using the 
Intelligenetics GeneWorks software.

it is now possible to detect the amplification of the CCNDl 
gene at the protein level, by staining tumour sections with 
cyclin Dl antibodies (Jiang et al., 1993b; Gillett et al., 1994). 
This should greatly facilitate the analysis of clinical material 
and there are preliminary indications that the frequency of over 
expression of cyclin Dl may be much higher than concluded 
from DNA analyses. Thus, in our own study, approximately 
one in three breast tumours stained above normal for cyclin Dl 
(Gillett et al., 1994). As these are almost exclusively tumours 
that are positive for oestrogen receptor, staining for cyclin D l 
holds considerable promise for refining the classification of 
breast cancers and may well have prognostic significance.

VIRAL ACTIVATION OF CYCLINS D1 AND D2

The final piece of evidence connecting D-cyclins and tumori- 
genesis is their activation by tumour viruses. For example, both 
the cyclin D 1 and D2 genes are transcriptionally activated by 
the nearby integration of murine leukaemia virus in mouse T- 
lymphomas (Lammie et al., 1992; Hanna et al., 1993). For 
cyclin D l, the insertions occur at the previously defined Fis-1 
locus on mouse chromosome 7 in a region that is a direct 
parallel of l l q l 3  (see Fig. 4). Although the exact distance 
between Fis-1 and the cyclin D 1 gene has not been established, 
it seems reasonable to conclude that proviral insertions at 
Fis-1 are functionally analogous to translocations at BCL1
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(Lammie et al., 1992). With cyclin D2 on the other hand, the 
insertions occur adjacent to the gene and the genomic DNA 
was cloned independently as a common site of viral integra­
tion, termed Vin-1 (Hanna et al., 1993). To date, there are no 
obvious parallels for Vin-1 disruption in human tumours. 
However, we have noted one potential link between cyclin D2 
and lymphomagenesis in that the immortalisation of primary 
B-lymphocytes by Epstein-Barr virus is accompanied by tran­
scriptional activation of cyclin D2 (Palmero et al., 1993; 
Sinclair et al., 1994). We are currently exploring the possiblity 
that this is a direct effect of viral gene expression and a key 
step in the immortalisation process.

INTERACTION OF D-CYCLINS AND CDKS

Apart from one isolated case of hepatitis-B virus integration 
into the cyclin A gene (Wang et al., 1990), none of the other 
cyclins have yet been implicated in tumorigenesis. Does this 
mean that there is something fundamentally different about the 
D-cyclins? An obvious question is whether they interact with 
catalytic subunits in the same way as cyclins A, B and E, and 
several groups set out to determine the kinase partners for 
cyclins D l, D2 and D3. The strategies used were dictated by 
the availability of cDNA clones and specific antisera to 
potential candidates but the most significant outcome was the 
demonstration that a 33 kDa protein kinase designated PSK-J3 
(now renamed Cdk4) is a major partner for the D-cyclins (Mat­
sushime et al., 1992; Xiong et al., 1992b). PSK-J3 had been 
isolated previously in a general screen for new kinases and was 
recognised as a distant cousin of cdc2 (Hanks et al., 1988). 
However, its close association with the D-cyclins not only 
solved some of the mysteries surrounding this kinase but 
provided encouraging evidence that the cyclin/kinase paradigm 
might be extended to new members of the respective families. 
For example, the growing list of cdc2-related sequences in the 
literature included a 38 kDa protein, originally referred to as 
PLSTIRE, that is very closely related to Cdk4 (see Fig. 5). We 
and others have recently shown that this protein, now desig­
nated Cdk6, also associates with the D-cyclins (Bates et al., 
1994a; Meyerson and Harlow, 1994). Thus, just as the D- 
cyclins form a distinct subset of the cyclin family, so Cdk4 and 
Cdk6 form a distinct subset of the Cdk family, and appear to 
interact exclusively with the D-cyclins. All six possible 
pairings can be detected by immunoprécipitation of cell lysates 
(Bates et al., 1994b).

These are not the only interactions observed for the D-cyclins; 
Xiong et al. (1992b) reported that in primary human fibroblasts, 
cyclin D l can be associated with Cdk2 and yet another member 
of the family designated Cdk5. The significance of the latter 
remains uncertain but the association with Cdk2 clearly demands 
some explanation, since this is also a partner for cyclins A and 
E. A possible clue may be that it is the hypophosphorylated and 
hence inactive form of Cdk2 that is found associated with cyclin 
D l (Dulic et al., 1993; Bates et al., 1994a). A further clue may 
be that this complex accumulates as primary cells undergo 
senescence (Dulic et al., 1993; Lucibello et al., 1993). It is 
therefore conceivable that cyclin D l performs two contrasting 
functions, as a positive regulator of Cdk4 and Cdk6 and as a 
negative regulator that sequesters Cdk2 in an inactive form. Our 
inability to detect the cyclin Dl/Cdk2 complex in tumour cell

lines (Bates et al., 1994a) and its absence in transformed cells 
(Xiong et al., 1993) would therefore tie in with an escape from 
senescence. If the recently described p21 protein is also part of 
this complex (El-Deiry et al., 1993; Harper et al., 1993; Xiong 
et al., 1993; Noda et al., 1994), this would provide an additional 
arm to p53-mediated cell cycle arrest.

The notion that the D-cyclins may have double lives could 
of course explain why some functional experiments have 
produced paradoxical results. For example, transfection of 
cells with vectors expressing D-cyclins from constitutive or 
inducible promoters has been shown to accelerate the Gi/S 
transition, exactly as one might expect for over-expression of 
a Gi cyclin (Ando et al., 1993; Jiang et al., 1993a; Quelle et 
al., 1993; Resnitzky et al., 1994). However, at least one 
published and several anecdotal reports testify to the toxicity 
of the D-cyclins in transfection assays (Quelle et al., 1993). 
This would make some sense if cyclin D is having contrasting 
influences depending on its Cdk partner. It might also explain 
why early attempts to demonstrate the oncogenic potential of 
cyclin D l by DNA transfection were unrewarding, yet if the 
appropriate levels are achieved then it can cooperate with RAS 
in transforming primary rodent cells (Hinds et al., 1994; Lovec 
et al., 1994). Finally, such considerations might explain why 
the over-expression of cyclin D l as a result of DNA amplifi­
cation is not always as dramatic as one might expect and why 
in some tumours there appear to be rearrangements that down- 
regulate cyclin D l expression from the amplified DNA (Gillett 
et al., 1994).

INTERACTION BETWEEN THE D-CYCLINS AND pRB

The evidence that D-cyclins can interact with Cdks and can 
accelerate cell cycle progression raises an obvious question - 
what are the substrates for the multiple kinase combinations? 
Perhaps the most attractive candidates and certainly the current 
favourites are the product of the retinoblastoma gene, pRb and 
its close relative p i07. As discussed elsewhere in this volume, 
pRb is known to act as a negative regulator of Gi progression, 
leading to a relatively robust model in which the inactivation 
of pRb by phosphorylation is a critical step in permitting entry 
into S phase. A number of studies have shown that pRb can be 
phosphorylated by various cyclin/Cdk combinations (Lees et 
al., 1991; Lin et al., 1991; Hinds et al., 1992; Hu et al., 1992) 
but the timing of the initial phosphorylation events have 
encouraged the idea that the D-cyclins may be involved. 
Certainly, the phosphorylation of pRb can be demonstrated in 
vitro using mixtures of the D-cyclins and Cdk2, Cdk4 or Cdk6 
expressed in insect cells using baculovirus vectors (Mat­
sushime et al., 1992; Ewen et al., 1993; Kato et al., 1993; 
Meyerson and Harlow, 1994). However, it has proved much 
more difficult to detect such activities in immunoprecipitates 
from cycling cells (Matsushime et al., 1994; Meyerson and 
Harlow, 1994) and there are still some puzzling features about 
the specificities of the different complexes. It would seem 
strange that all six complexes involving D-cyclins, Cdk4 and 
Cdk6 are doing exactly the same thing.

Despite these reservations, it does seem very likely that the 
function of the D-cyclins is somehow connected to pRb, if for 
no other reason than the presence of a sequence feature near 
their amino termini that suggests they may interact directly
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with pRb (Dowdy et al., 1993). This is the LxCxE motif that 
is common to the SV40 T-antigen, adenovirus E l A, and human 
papilloma virus E7 proteins, each of which is thought to bind 
to and functionally inactivate pRb. For the respective DNA 
tumour viruses this would have the advantage of promoting 
entry into S-phase, a prerequisite for viral DNA replication. 
For the D-cyclins, it raises the possibility, albeit unlikely, that 
they can inactivate pRb by direct binding and displacement of 
associated transcription factors. Supportive evidence for this 
idea has been reported, based on the reversal of pRb-induced 
cell cycle arrest in SAOS-2 cells (Hinds et al., 1992), but it 
remains curious that cyclin D l can apparently achieve this 
effect without concomitant phosphorylation of pRb, whereas 
cyclins D2 and D3 are thought to inactivate pRb by phospho­
rylation (Dowdy et al., 1993; Ewen et al., 1993). Either way, 
one can rationalise how the elevated expression of a D-cyclin 
in a tumour cell could accelerate Gi progression.

However, there are a number of uncomfortable facets to such 
ideas, not least of which is the potential for functional redun­
dancy implicit in the findings. Why should elevated expression 
o f a D-cyclin be so critical to a cell that already expresses one 
of its close relatives? Moreover, tumour cells do not cycle more 
rapidly than normal cells and it would be much more attrac­
tive to postulate that the D-cyclins are in some way regulating 
exit from Go or the cell’s ability to return to a Go state after 
completing mitosis. Finally, it seems clear that pRb is not the 
master regulator of all cell cycles so that it is premature to settle 
for pRb as the substrate for D-cyclin/kinases. As if matters 
were not already confusing enough, we have recently noted 
that, in cells in which pRb has been inactivated, either by DNA 
tumour virus infection or as a result of naturally occurring 
mutations, it is very difficult to detect associations between the 
D-cyclins and any of their kinase partners (Bates et al., 1994b). 
Taken at face value, the data suggest that the substrate for D- 
cyclin/Cdk complexes must be present for the active enzyme 
to be formed.

As in all rapidly advancing fields, it is almost impossible to 
draw all the published and soon to be published data into a 
cohesive picture. Models are being formulated, modified and 
discarded at an alarming rate as each new component appears 
on the scene. Within the last few months, two more players 
have entered the arena, the p21 protein that links p53 to the 
cyclin/Cdk framework (El-Deiry et al., 1993; Harper et al., 
1993; Xiong et al., 1993; Noda et al., 1994) and p l6 , a specific 
inhibitor of Cdk4 (Serrano et al., 1993). Exciting times lie 
ahead.
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