Index

Cyclin-dependent kinase

D-type cyclin role in tumorigenesis: PETERS 89

Actin cytoskeleton D-type cyclins signal transduction through Rac and Rho: RIDLEY 127 role in tumorigenesis: PETERS 89 **Apoptosis** Development role of bcl-2 gene: HOCKENBERY 51 role of bcl-2 gene: HOCKENBERY 51 role of p53 and Rb-1 genes: HOOPER 13 role of p53 and Rb-1 genes: HOOPER 13 Disease, human Pax gene in development: MANSOURI, STOYKOVA AND bcl-1 gene **GRUSS 35** D-type cyclin role in tumorigenesis: PETERS 89 DNA amplification bcl-2 gene D-type cyclin role in tumorigenesis: PETERS 89 in cancer, development and apoptosis: HOCKENBERY 51 DNA damage repair Breast cancer coupling of DNA replication/mitosis by fission yeast rad4/cut5: D-type cyclin role in tumorigenesis: PETERS 89 SAKA, FANTES AND YANAGIDA 57 DNA replication Cancer coupling of DNA replication/mitosis by fission yeast rad4/cut5: role of bcl-2 gene: HOCKENBERY 51 SAKA, FANTES AND YANAGIDA 57 role of p53 and Rb-1 genes: HOOPER 13 DNA tumour viruses tumour suppressor genes in Drosophila: WATSON, JUSTICE D-type cyclin role in tumorigenesis: PETERS 89 AND BRYANT 19 Drosophila Cancer syndrome, inherited tumour suppressor genes: WATSON, JUSTICE and BRYANT 19 RET proto-oncogene mutations: SMITH, ENG AND PONDER E2F transcription factor CCND1 regulation by pRB and p107: DYSON 81 D-type cyclin role in tumorigenesis: PETERS 89 Feedback control role in checkpoints and feedback controls: HOFFMANN AND cdc25 role: HOFFMANN AND KARSENTI 75 KARSENTI 75 Fission yeast see Schizosaccharomyces pombe cdk (cyclin-dependent kinase) Focal adhesion kinase cdc25 role in checkpoints and feedback controls: HOFFMANN structure and signalling: PARSONS, SCHALLER, AND KARSENTI 75 HILDEBRAND, LEU, RICHARDSON AND OTEY 109 G₁ control in mammalian cells: REED, BAILLY, DULIC, HENGST, RESNITZKY AND SLINGERLAND 69 G₁ phase control in mammalian cells: REED, BAILLY, DULIC, HENGST, RESNITZKY AND SLINGERLAND 69 cdc25 role in checkpoints and feedback controls: HOFFMANN Genomic imprinting AND KARSENTI 75 developmental context for multiple genetic alterations in Wilms' D-type cyclin role in tumorigenesis: PETERS 89 tumour: FEINBERG 7 G₁ control in mammalian cells: REED, BAILLY, DULIC, **GTPase** HENGST, RESNITZKY AND SLINGERLAND 69 signal transduction through Rac and Rho: RIDLEY 127 regulation by ruml+ gene: MORENO, LABIB, CORREA AND NURSE 63 H19 Cell death see Apoptosis developmental context for multiple genetic alterations in Wilms' Centrocytic lymphoma tumour: FEINBERG 7 D-type cyclin role in tumorigenesis: PETERS 89 Hirschsprung disease Checkpoint control RET proto-oncogene mutations: SMITH, ENG AND PONDER coupling of DNA replication/mitosis by fission yeast rad4/cut5: SAKA, FANTES AND YANAGIDA 57 Human disease Checkpoints Pax gene in development: MANSOURI, STOYKOVA AND cdc25 role: HOFFMANN AND KARSENTI 75 GRUSS 35 Chromosome translocation D-type cyclin role in tumorigenesis: PETERS 89 IGF2 CSF-1 (macrophage-specific colony-stimulating factor 1) developmental context for multiple genetic alterations in Wilms' signal transduction by CSF-1R: ROUSSEL 105 tumour: FEINBERG 7 Inherited cancer syndrome G₁ control in mammalian cells: REED, BAILLY, DULIC, RET proto-oncogene mutations: SMITH, ENG AND PONDER HENGST, RESNITZKY AND SLINGERLAND 69 43

Integrin

focal adhesion kinase structure/signalling: PSHLRO 109

Kinase cascade

regulation and function in *Xenopus* oocytes: KOSAKO, GOTOH AND NISHIDA 115

Loss-of-function mutation

tumour suppressor genes in *Drosophila*: WATSON, JUSTICE and BRYANT 19

Lysophosphatidic acid

signal transduction through Rac and Rho: RIDLEY 127

MAP kinase cascade

regulation and function: KOSAKO, GOTOH AND NISHIDA 115 MEN 2 (see Multiple endocrine neoplasia type 2 syndromes)

Mitosis

coupling of DNA replication/mitosis by fission yeast *rad4/cut5*: SAKA, FANTES AND YANAGIDA 57

MPF (maturation promoting factor)

regulation and function of MAP kinase cascade: KOSAKO, GOTOH AND NISHIDA 115

Multiple endocrine neoplasia type 2 syndromes

RET proto-oncogene mutations: SMITH, ENG AND PONDER 43

Mutant

Pax gene in development: MANSOURI, STOYKOVA AND GRUSS 35

Oncogene

bcl-2 in cancer, development and apoptosis: HOCKENBERY 51 coupling of DNA replication/mitosis by fission yeast rad4/cut5: SAKA, FANTES AND YANAGIDA 57

Oncosuppressor genes

role of p53 and Rb-1 genes in cancer, development and apoptosis: HOOPER 13

Oocyte maturation

regulation and function of MAP kinase cascade: KOSAKO, GOTOH AND NISHIDA 115

Oxidative stress

bcl-2 in cancer, development and apoptosis: HOCKENBERY 51

p107

regulation of E2F transcription factor: DYSON 81

in cancer, development and apoptosis: HOOPER 13

Pax gene

in development: MANSOURI, STOYKOVA AND GRUSS 35 Paxillin

focal adhesion kinase structure/signalling: PSHLRO 109

Phosphopeptides

recognition by src-homology 2 domains: CANTLEY AND SONGYANG 121

Phosphorylation

cdc25 role in checkpoints and feedback controls: HK 75 pRB see Retinoblastoma tumour suppression

Protein tyrosine kinase

structure and function of SH2 domains: MARENGERE AND PAWSON 97

PSD-95/SAP90

tumour suppressor genes in *Drosophila*: WATSON, JUSTICE AND BRYANT 19

Rac protein

signal transduction through: RIDLEY 127

Rb-1 gene

in cancer, development and apoptosis: HOOPER 13

Receptor tyrosine kinase

RET proto-oncogene mutations: SMITH, ENG AND PONDER
43

Regulation

E2F transcription factor: DYSON 81

RET proto-oncogene

mutations: SMITH, ENG AND PONDER 43

Retinoblastoma tumour suppression

D-type cyclin role in tumorigenesis: PETERS 89

Rb-1 gene, HOOPER 13

regulation of E2F transcription factor: DYSON 81

Retroviral integration

D-type cyclin role in tumorigenesis: PETERS 89

rho protein

signal transduction through: RIDLEY 127

rum1+ gene

regulation of Start in fission yeast: MORENO, LABIB, CORREA AND NURSE 63

Schizosaccharomyces pombe

coupling of DNA replication and mitosis: SAKA, FANTES AND YANAGIDA 57

regulation of Start by rum1+ gene: MORENO, LABIB, CORREA AND NURSE 63

SH2 domain

phosphopeptide recognition: CANTLEY AND SONGYANG 121

structure and function: MARENGERE AND PAWSON 97

SH3 domain

phosphopeptide recognition: CANTLEY AND SONGYANG 121

Signal transduction

by CSF-1R: ROUSSEL 105

structure and function of SH2 domains: MARENGERE AND PAWSON 97

Start

cell cycle timing by rum1* gene: MORENO, LABIB, CORREA AND NURSE 63

Tumorigenesis

role of D-type cyclins: PETERS 89

Tumour suppression

disrupted development in Wilm's tumour: MIYAGAWA, KENT, SCHEDI, VAN HEYNINGEN AND HASTIE 1

Tumour suppressor gene 11p15

developmental context for multiple genetic alterations in Wilms' tumour: FEINBERG 7

Drosophila: WATSON, JUSTICE AND BRYANT 19

Tyrosine kinase

SH2 domain recognition of phosphopeptides: CANTLEY AND SONGYANG 121

Wilms' tumour

developmental context for multiple genetic alterations:

FEINBERG 7

disrupted development: MIYAGAWA, KENT, SCHEDI, VAN HEYNINGEN AND HASTIE 1

WT1 gene

developmental context for multiple genetic alterations in Wilms' tumour: FEINBERG 7

disrupted development in Wilm's tumour: MIYAGAWA, KENT, SCHEDI, VAN HEYNINGEN AND HASTIE $\,1\,$

Xenopus oocytes

MAP kinase cascade: KOSAKO, GOTOH AND NISHIDA 115

Yeast, fission see Schizosaccharomyces pombe

Zinc finger

disrupted development in Wilm's tumour: MIYAGAWA, KENT, SCHEDI, VAN HEYNINGEN AND HASTIE 1 ZO-1/ZO-2

tumour suppressor genes in *Drosophila*: WATSON, JUSTICE AND BRYANT 19