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SUMMARY

In Xenopus oocytes, activation of MAP Kkinase occurs
during meiotic maturation through a protein kinase
cascade (the MAP Kkinase cascade), which is utilized
commonly in various intracellular signaling pathways in
eukaryotes. Studies with a neutralizing antibody against

activator for MAP kinase, have shown that the MAP kinase
cascade plays a crucial role in both initiating oocyte matu-
ration and inducing metaphase arrest.
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Xenopus MAP kinase kinase (MAPKK), a direct upstream /\maturation

INTRODUCTION

Mitogen-activated protein (MAP) kinases are serine/threonine
kinases highly conserved throughout evolution and are
activated commonly by various extracellular stimuli inducing
mitogenesis or differentiation (reviewed by Cobb et al., 1991;
Nishida and Gotoh, 1992; Pelech and Sanghera, 1992;
Ruderman, 1993; Thomas, 1992). They are supposed to play a
central role in intracellular signal transduction pathways. Full
activation of MAP kinases requires phosphorylation of both
tyrosine and threonine residues (Anderson et al., 1990). These
phosphorylation sites have been determined to be located in
the TEY sequence between kinase subdomains VII and VIII
(Payne et al., 1991). A 45 kDa protein factor that can induce
phosphorylation and activation of inactive MAP kinases in
vitro was purified first from Xenopus unfertilized eggs
(Matsuda et al., 1992) and subsequently from mammalian cells
(Crews and Erikson, 1992; Nakielny et al., 1992b; Seger et al.,
1992a; Shirakabe et al., 1992). This MAP kinase activating
factor can undergo autophosphorylation on serine, threonine
and tyrosine residues (Kosako et al., 1992; Nakielny et al.,
1992b) and phosphorylate the kinase-deficient mutant of MAP
kinase on tyrosine and threonine residues (Crews and Erikson,
1992; Kosako et al., 1993; Nakielny et al., 1992a; Seger et al,
1992a). Therefore, this factor is a dual specificity kinase and
has been named MAP kinase kinase (MAPKK). cDNA cloning
of MAPKK (Ashworth et al., 1992; Crews et al; 1992; Kosako
et al., 1993; Seger et al., 1992b; Wu et al., 1993) revealed that
MAPKK shows high similarities to several yeast protein
kinases functioning in various signal transduction pathways
such as the mating process and osmotic regulation. This
suggests that the MAPKK/MAP kinase cascade functions uni-
versally incukaryotic systems (reviewed by Errede and Levin,
1993; Ni&a and Gotoh, 1993).

It has been shown that the activation of MAPKK and MAP
kinase occurs during Xenopus oocyte maturation (Ferrell et al.,
1991; Gotoh et al., 1991a,b; Matsuda et al., 1992; Posada et al.,

1991). Fully grown Xenopus oocytes (immature oocytes) are
arrested at the first meiotic prophase. Exposure to progesterone
induces the resumption of the meiotic process, leading to the
production of the unfertilized egg, which is arrested at the
second meiotic metaphase (metaphase II). The key event in this
oocyte maturation process is thought to be the activation of mpat-
uration promoting factor (MPF), a complex of pa4°dc? kiy %
and cyclin B, which is stored in immature oocytey’ \an inactive
complex called pre-MPF (reviewed by Lohka, 1989; Maller,
1991; Nurse, 1990). MPF activity rises before germinal vesicle
breakdown (GVBD), falls after metaphase I, and rises again and
remains high during metaphase II. A cytostatic factor (CSF) is
responsible for the metaphase IT arrest with high MPF activity,
and the product of the c-mos proto-oncogene, a 39 kDa
serine/threonine protein kinase, is thought to be a component of
CSF (Sagata et al., 1989). Translation of Mos is induced by
progesterone and is necessary for meiosis I as well as for
meiosis II and CSF arrest (Sagata et al., 1988). Moreover, bac-
terially expressed Mos protein can promote oocyte matur;
when injected into immature oocytes without any hormonal
stimulation and induce CSF arrest when injected into a two-cell
embryo (Yew et al.,, 1992). Recent studies shed light on the
roles of these four protein kinases (MPF, Mos, MAPKK and
MAP kinase) during oocyte maturation process. A

REGULATORY MECHANISM OF THE MAP KINASE
CASCADE IN OOCYTE MATURATION

Activities of MAPKK and MAP kinase are elevated at about the
same time as MPF during the course of oocyte maturation, remain
high in unfertilized eggs and decrease to a basal level after fer-
tilization (Frrrell et al., 1991; Gotoh et al., 1991a,b; Matsuda et
al., 1992; daet al., 1991). Activation of MAPKK during this
process is accompanied by its phosphorylation on threonine and
serine residues (Kosako et al., 1992). Since MAPKK is dgracti-
vated by protein phosphatase 2A treatment in vitro (Gony and
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Cohen, 1991; Matsuda et als, 1992), MAPKK itself is thought to
be activated by phosp! tion catalyzed by an upstream
serine/threonine kinase(s), MAPKK kinase. Recent work has
shown that MAPKK is phosphorylated on serine residues by
MAPKK kinase and on threonine residues by its target kinase,
MAP kinase (Matsuda et al., 1993; see Fig. 1). In the Xenopus
MAPKK sequence there are two serine residues, S22 and SZ!8,
located 9 and 13 amino acid residues upstream 7/ e S(
kinase motif, respectively. These two serine residues are
conserved as serine or threonine residues among all the MAPKK
homologs in vertebrates, Drosophila and yeasts. Site-directed
mutagenesis studies have revealed that both or either of these
serine residues may be important for activation of MAPKK by a
variety of MAPKK kinases including Raf-1 (Gotoh et al., 1994).
Xenopus MAPKK contains a single consensus sequence for
phosphorylation by MAP kinase (PST388P), and this sequence is
conserved in mammalian and Droy/ “ila MAPKK (Tsuda et al.,
1993). A mutant MAPKK having threonine3%® changed to
alanine was not phosphorylated by kinase purified from
unfertilized eggs (Gotoh et al., 1994). This phosphorylation might
have some regulatory role.

Recently, it has been revealed that Mos can work as a MAPKK
ki (Nebreda et al., 1993; Posada et al. 1993). Posada et al.
(1993) showed that bacterially expressed Mos protein rapidly
activates MAPKK and MAP kinase when injected into immature
oocytes, and Nebreda and Hunt (1993) showed the activation of
MAPKK and MAP kinase by adding recombinant Mos to cgll-
free extracts prepared from Xenopus immature oocytes.
groups reported further that the recombinant Mos when
expressed in Escherichia coli has no MAPKK kinase activity but
it acquires the kinase activity after incubation with rabbit reticu-
locyte lygate (Posada et al., 1993) or with Xenopus egg extracts
(Nebre& al., 1993). Synthesis of Mos in response to proges-
terone may be responsible, at least in part, for activatioy’ X the
MAPKK/MAP kinase cascade in oocyte maturation (Fig. 1).

On the other hand, it has been reported that the product of the
c-raf-1 proto-oncogene, a 74-76 kDa serine/threonine protein
kinase, lies upstream of the MAPKK/MAP kinase cascade and
functions as a MAPKK kinase in various signal transduction
systems of mammals and Drosophila (Dent et al., 1992; Kyriakis
et al., 1992; Howe et al., 1992; Tsuda et al., 1993). Since
expression of dominant-negative Raf-1 inhibits progesterone-
induced activation of MAP kinase in Xenopus oy’ “es (Fabian
et al., 1993; Muslin et al., 1993), Raf-1 has been suggested to
lie upstream of the MAP kinase cascade in the oocyte matura-
tion process. However, activation of Raf-1 kinase as IQKK
kinase has not been demonstrated during oocyte maturation, and
Ras, a putative direct upstream factor of Raf-1 (Moodie et al.,
1993; Van Aelst et al., 1993; Vojiek et al., 1993; Zhang et al,,
1993), is not supposed to be involved in progesterone-induced
oocyte maturation (Deshpande and Kung, 1987). Thus, partici-
pation of Raf-1 in activation of the MAP kinase cascad¢/ Xing
this process remains unclear (Fig. 1).

In yeasts, STE11l, BCK1 and Byr2 are homologous
serine/threonine protein kinases functioning upstream of each
MAPKK homolog (STE7, MKK1/MKK?2 and Byrl, trspec-
tively; reviewed by Errede and Levin, 1993; Nish/ \and
Gotoh, 1993). A mammalian homolog of these putative yeast
MAPKK kinases, termed MEKK, was shown to phosphorylate
and activate MAPKK independently of Raf-1 (Lange-Carter et
al., 1993). Xenopus MEKK has not been isolated yet, but bac-
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Fig. 1. Kinase cascade pathways resulting in MAP kinase activation
during progesterone-induced oocyte maturation. Progesterone
treatment induces synthesis of Mos protein, one of the MAPKK
kinases. Whether other MAPKK kinases (Raf-1 and putative
Xenopus MEKK) are activated by progesterone is unknown. These
MAPKK kinases activate 45 kDa MAPKK by its serine
phosphorylation (Gotoh et al., 1994). Then MAPKXK (a dual
specificity kinase) activates MAP kinase by phosphorylation on
threonine and tyrosine residues. Activated MAP kinase
phosphorylates several proteins, including MAPKX (an upstream
kinase; Matsuda et al., 1993), p90rk (a downstream kinase; Sturgill
et al., 1988) and p220 (a microtubule-associated protein; Shiina et
al., 1992). It is likely that MAP kinase has other physiological
substrates in maturing oocytes.

Thr phosphorylation A

terially exgressed STE11 protein can activate the MAP kinase
cascade /' “ell-free extracts prepared from Xenopus immature
oocytes (K. Takenaka et al., unpublished). Thus, MAPKK
kinases other than Mos and Raf-1 could also function during
oocyte maturation (Fig. 1).

Several groups have identified a family of mammalian dual
specificity phosphatases that can specifically dephosphorylate
and inactivate MAP kinase in vitro (reviewed by Nebreda,
1994). One of these phosphatases (3CH134 or CL100) is an
immediate early gene product and is shown to be a physiolog-
ical MAP kinase phosphatase by transient transfect/ \studies
(thus named MKP-1), suggesting a shut-off mechanism for the
transient activation of MAP kinase in mitogenic stimulation
(Sun et al., 1993). In Xenopus oocytes, the MAP kinase activity
which is fully active during metaphase II arrest drops upon fex-
tilization, but no gene expression occurs during early emby’
genesis. Therefore, inactivation of MAP kinase after /A \liza-
tion may occur by a different mechanism. Interestin a 47
kDa phosphatase purified from Xenopus eggs showed absolute
specificity toward phosphotyrosine but not phosphothreonine
of MAP kinase in vitro (Sarcevic et al., 1993). Regulation of
this tyrosine phosphatase may provide an alternative
mechanism for inactivation of MAP kinase. A

FUNCTION OF THE MAP KINASE CASCADE IN
XENOPUS OOCYTE

S
Requirement of the N@kinase cascade for
initiation of oocyte maturation

Recently, we prepared many polyclonal and monoclonal anti-
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[  JOCES_ 1994_ S18_ 0115F1. tif] Fig. 1. Kinase cascade pathways resulting in MAP kinase activation during progesterone- induced oocyte maturation. Progesterone treatment induces synthesis of Mos protein, one of the MAPKK kinases. Whether other MAPKK kinases ( Raf- 1 and putative Xenopus MEKK) are activated by progesterone is unknown. These MAPKK kinases activate 45 kDa MAPKK by its serine phosphorylation ( Gotoh et al., 1994). Then MAPKK ( a dual specificity kinase) activates MAP kinase by phosphorylation on threonine and tyrosine residues. Activated MAP kinase phosphorylates several proteins, including MAPKK ( an upstream kinase; Matsuda et al., 1993), p90 rsk ( a downstream kinase; Sturgill et al., 1988) and p220 ( a microtubule- associated protein; Shiina et al., 1992). It is likely that MAP kinase has other physiological substrates in maturing oocytes.
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Fig. 2. A model for signal transduction pathways in oocyte
maturation. This model proposes that progesterone-induced Mos, an
essential protein for oocyte maturation, exerts its function through
the MAPKK/MAP kinase cascade, resulting in MPF activation and
GVBD. It is quite possible that other signaling pathways are required
for progesterone-induced MPF activation.

bodies against bacterially expressed Xenopus 45 kDa MAPKK,

f which was found to be a neutralizing antibody that can
specifically and efficiently inhibit Xenopus MAPKK activity
in vitro (Kosako et al.,, 1994). This neutralizing antibody
inhibited Mos- or okadaic acid-induced activation of MAP
kinase when added to cell-free extracts prepared from Xenopus
immature oocytes, suggesting that these agents activate MAP
kinase through the 45 kDa MAPKK in a cell-free system. Fur-
thermore, microinjection of this antibody into imm.
oocytes prevented progesterone- or Mos-induced activation of
MAP kinase (Kosako et al., 1994). Our previous report showed
that microinjection of the purified Xenopus MAPKK into
immature oocytes resulted in rapid activation of endogenous
MAP kinase (Matsuda et al., 1992). Thus, it is suggested that
MAPKK, originally identified by its ability to activate MAP
kinase in vitro, is the only direct activator of MAP kinase in
Xenopus oocytes in vivo. Since there exist several putative
MAPKK kinases (Raf-1, Mos and MEKK), MAPKK may
function at a convergent point in various signaling pathways
resulting in activation of MAP kinase (see Fig. 1).

The inhibition of activation of the MAP kinase cascade by
microinjecting immature oocytes with the neutralizing
antibody against MAPKK blocked the progesterone- or Mos-
induced activation of MPF, as judged by inhibition of both
GVBD and histone Hi kinase activation (Kosako et al., 1994).
This suggests that thP kinase cascade plays a critical role
in MPF activation during oocyte maturation and that there
exists a signal transduction pathway consisting of Mos,
MAPKK, MAP kinase and MPF (Fig. 2). The activated MAP
kinase in this pathway may directly or indirectly regulate some
proteins controlling MPF activity, such as cdc25, weel and
CAK (reviewed by Solomon, 1993). However, whether MAP
kinase activation is sufficient for MPF activation is unknown.
It is possible that the MAP kinase cascade-independent
pathways are also required for progesterone-induced MPF

ation. It has been reported th/ NZ0%k, which is shown to
be activated by mitogenic stimula independently of the
MAP kinase cascade in mammalian cultured cells (Ballou et
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al.,, 1991), is

rapidly activated by progesterone treatment in
Xenopus oocytes (Lane et al., 1992). Other signaling pathways,
such as inactivation of cAMP-dependent protein kinase, may
also be necessary for progesterone-induced MPF activation
(Daar et al., 1993).

We showed pre&sly that purified MPF can activate
MAPKK and MAP kinase when microinjected into immature
oocytes or added to cell-free extracts prepared from interphase
eggs (Gotoh et al., 1991b; Matsuda et al., 1992). Therefore, it
is supposed that the MAPKK/MAP kinase cascade and MPF
form a positive feedback loop (Fig. 2). This might explain the
synchronous activation of MAP kinase and MPF during prog-
esterone~induced oocyte maturation (Nebreda and Hunt, 1993).

F?nction of the MAP kinase cascade in CSF arrest

one of the MAPKK kinases, functions not only as an
initiator of oocyte maturation but also as a component of cyto-
static factor (CSF) that causes the natural arrest of unfertﬁd
eggs in second meiotic metaphase (metaphase II arrest; Sagata
et al., 1988, 1989). Recently, Haccard et al. (1993) reported
that microinjection of thiophosphorylated MAP kinase (thio-
phosphorylated proteins are generally resistant to dgphospho-
rylation by protein phosphatases) into one blastom f a two-
cell embryo induced metaphase arrest similar to that ind
by Mos. This assay is the only index of CSF activity, and their
result reveals that active MAP kinase is sufficient for
metaphase arrest in Xenopus fertilized eggs. It is suggested that
active MAP kinase in mature oocytes (unfertilized eggs)
functions, downstream of Mos, to induce metaphase II arrest
(Fig. 3). Interestingly, MAP kinase is deactivated before
GVBD in clam oocytes that are not arrested at metaphase II
(Shibuya et al., 1992a). We have shown by using the nrutral-
izing antibody against MAPKK that the CSF activity/ Mos
is mediated by the MAP kinase cascade (H. Kosako, Y. Gotoh
and E. Nishida, unpublished). Microinjection of bacterially
expressed Mos protein into one blastomere of a two-cell
embryo induced metaphase arrest as had been reported by Yew
et al. (1992), but coinjection of Mos and the neutralizing
antibody prevented the Mos-induced metaphase arrest. The
previous report that Ras has CSF activity (Daar et al., 1991)
may also be explained by Ras-induced activation of the MAP
kinase cascade (Hattori et al., 1992; Itoh et al., 1993; Leevers
and Marshall, 1992; Shibuya et al., 1992b; Fig. 3). Thus, the
MAP kinase cascade is thought to play a pivotal role in both
initiating oocyte maturation by hormonal stimulation and
maintaining metaphase arrest in mature oocytes (Figs 2 and 3).
The mechanism by which the same kinase cascade induces
apparently different cellular responses is unclear, but MAP
kinase may regulate, directly or indirectly, a factor(s) involved
in both activation and stabilization of MPF.

PROSPECTS

In vertebrates, the MAP kinase cascade is activated down-
stream of several proto-oncogene products in various il \el-
lular signal transduction pathways, but its significy E for
cellular function was unclear. The study utilizing the ngutral-
izing antibody against Xenopus MAPKK has shown \ays-
iological significance of the MAP kinase cascade in Xe s
oocyte maturation. However, target proteins of MAP kinase
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Ras

\

Mos Rat-17?
MAPKK

MAP kinase
metaphase arrest

(CSF arrest)
Fig. 3. A model for signal transduction pathways inducing
metaphase arrest. This model proposes that the CSF activity of Mos
is mediated by the MAP kinase cascade. The CSF activity of Ras

may also be mediated by this kinase cascade probably through Raf-1,
another MAPKK kinase.

during the oocyte maturation process have not been identified
fully. It has been reported that MAP kinase phosphorylates a
downstream kinase (p90™k or S6 kinase II; Sturgill et al., 1988)
and a microtubule-asy’ “ated protein (p220; Shiina et al., 1992)
present in Xenopus oocytes. Elucidation of a catalog of MAP
kinase substrates and their function will increase our under-
standing of the function of the MAP kinase cascade ng’ \nly
in oocyte maturation but also in other cellular processes.

This work was supported by grants-in-aid from the Ministry of
Education, Science and Culture of Japan, the Asahi Glass Foundation
and the Toray Science Foundation.
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