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SUMMARY

Studies on the attachment and spreading of cells in culture
have provided valuable insights into the mechanisms by
which cells transmit information from the outside to the
inside of the cell. This brief review considers recent infor-
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mation on the role of focal adhesion-associated protein
tyrosine Kkinases in integrin-regulated cell signalling.
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INTRODUCTION

Cell adhesion and motility play a central role in a diverse array
of cellular events, including cellular differentiation, dgvelop-
ment and cancer (Albelda and Buck, 1990; Hynes, ]ﬂ) An
experimental entry into the study of the molecular events trig-
gering cell adhesion comes from the analysis of cell aftach-
ment a&reading, a process that is driven by the foy/ \jon
of molecular structures called focal adhesions. Focal
adhesions (also referred to as focal contacts) are points of
close apposition between the cell membrane and the extracel-
lular matrix (ECM), which is comprised of proteiny’ \ch as
collagen, fibronectin or vitronectin (Burridge et al., 1988;
Luna and Hitt, 1992). The structural organization of focal
adhesions is complex. Integrins, heterodimeric txansmem-
brane receptors comprised of gnand Pasubunits (ﬂlda and
Buck, 1990; Hynes, 1992) e cell membrane, the
extracellular ligand-binding domains engaging the ECM on
the outside of the cell and the short cytoplasmic tails ipter-
acting with the cytoplasmic cytoskeleton. Thus, intﬂls
physically link the ECM to the cytoplasmic actin cytoskeletal
network and may function to transmit signals from the extra-
cellular matrix to the cytoplasm (Turner and Burridge, ﬂl;
Schwartz, 1992). The actual linkage between integrin cyto-
plasmic tails and actin bundles or stress fibers appears&e
mediated by an intricate structure comprised of focal
adhesion-associated proteins. Considerable evidence suggests
that at least two of these focal adhesion-associated proteins,
talin and o-actinin, interact directly with the cytoplasmic
domain of Baintegrin subunits (Tapley et al., 1989a; Otey et
al., 1990). ﬂ'l talin and gxactinin have also been shown to
bind to the actin-binding in vinculin, supporting the idea
that protein-protein interactions are responsible in large part
for the ordered structure of the focal adhesion (Burridge et al.,
1988).

Several lines of evidence point to the importance of tyrosine
phosphorylation in the formation and organization of focal

adhesions. In cells transformed by the tyrosine kinase
oncogene pp60%c, two focal adhesion-associated proteins,
tensin an xillin, are highly phosphorylated on tyrosine
(Turner et al., 1990; Davis et al., 1991). In addition, in Src-
transformed cells, other focal adhesion proteins, talin, vinculin
and [y integrin subunits have been reported to be tyrosine
phoy’ \rylated, albeit at low stoichiometry (Sefton and
Hunter, 1981; DeClue and Martin, 1987; Tapley et al., 1989b).
Thus the dramatic alterations in cytoskeletal structure induced
by Src transformation may be due in part to the tyrosine pRos-
phorylation of focal adhesion-associated proteins. In n/ \al
cells, immunofluorescence analysis with antibodies to phos-
photyrosine reveals prominent staining of focal adhe&s,
indicating the presence of significant levels of tyrosine phos-
phorylated proteins (Maher et al., 1985; Burridge et al., ﬁ).
The attachment and spreading of rodent fibroblasts in culture
leads to the increased tyrosine phosphorylation of both paxillin
and tensin (Burridge et al., 1992; Bockholt and Burridge,
1993), while treatment of cells with inhibitors of protein
tyrosine kinases blocks spreading of fibroblasts in culture
(Burridge et al., 1992).

Studies from our own laboratory have led to the igentifica-
tion of a major ppr60°™ substrate, of My 125,000 (ppl 7 \which
localizes to f adhesions of normal adh chicken
embryo cells (Schaller et al., 1992). The isolation and charac-
terization of cDNA clones encoding pr125 revealed th \125
was a novel protein tyrosine kinase, Y \ch we designate al
adhesion kinase, or ppl25¥4K, Clues to the function of
ppl25FAK come frop’ Numerous studies showing that the A
tyrosine phosphorylation of pr125FAK is increased as a canse-
quence of either the engag t of integrins with the/ AXra-
cellular matrix, for example the attachment and spread/ \of
embryo fibroblasts onto a fibronectin matrix (Guan et al., 1991;
Burridge et al., 1992; Schaller et al., 1993) or the cross-linking
of surface integrins with integrin-specific antibodies (Kornberg
A., 1991, 1992). In addition, activation of fibrinogen-

dependent platelet aggregation also induces tyrosi \hospho-
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rylation of pol25FAK in vivo and an increase in ppl25FAK  Songyang et al., 1993). SH3 domains also appear to mediate
tyrosine ki&tivity in vitro (Lipfert et al., 1992 us, the protein-protein interactions, directing binding to proteins with
increased tyrosine phosphorylation of pr125FAK appears to be proline-rich peptide sequence motifs (Ren et al., 1993). The
closely coupled with binding and a&m of cell surface lack of SH2 and SH3 domains in pr125F4K suggests that FAK

integrin receptors. In this brief review, we consider recent may play a role in cell signalling \nct from previously char-
experimental data indicating that pp125FAK plays a role in rgg- acterized non-receptor protein tyrosine kinases. In additi&
ulating cellular events leading the assembly of fj we will discuss below, it is likely that the non-catalytic
adhesions. In addition, we speculate on the possible role of , domains 125FAK participate in directing the protein-
pp125FAK in cellular signalling via pathways that modulate or/ \protein / glactions that regulate and control hak
control cellular gene expression. function.

THE BASIC FAKS: FUNCTIONAL DOMAINS OF j THE ‘INS AND OUTS’ OF THE FOCAL ADHESION:

pp125FAK SEQUENCES THAT TARGET FAKTO FOCAL
ADHESIONS

To date, pr125FAK homologues have been identified in mouse,

human &mpus (Hanks et al., 1992; Andre and Becker- Little information is available as to how focal aghesion-asso-
Andre, 1993; Whitney eial., 1993; M. Hens apd D. D% ciated proteins are directed to the existing or{- §ly formed
personal communicati The structure o 125 in  focal adhesions. The first clues as to how Rpl25FAK jg
each of these species is highly conserved and is&ct from targeted to focal adhesions came from the anal of a series
all other known protein tyrosine kinases. The catalytic domain of deletion mutations within the amino- and boxyl-
exhibits most of the structural hallmarks of a typical tyrosine terminal non-catalytic domains (Hildebrand et al., 1993).
kinase, however, in the case of pr125FAK the catalytic domain ~ Deletion of sequences between residues 853 and 1012 greatly
is flanked by two non-catalyy’ \Jomains that exhibit little  diminished the translocation ¢f retrovirally expressed FAK
sequence similarity to other proteins (or gene products) present protein to the focal adhesions hicken embryo cells grown
in the existing data bases (Fig. 1). FAK is expressed in most in culture. In contrast, del of sequences within the

cell lines and tissues examined to date (Hanks et al., 1992; amino-terminal non-catalytic domain or small deletionsA
Andre and Becker-Andre, 1993; Turner et al., 1993). In some within a region of the C-terminal domain proximal to the
cells the carboxyl-terminal domain of prl125FAK is expressed kinase domain o effect on the efficient localization of
autonomously as a 41,000 M; protein/ \led FRNK - EAK-  pp125FAK o focal adhesions. These data indicate that
related non-kinase; Schaller et al., 1993). In avian ce@ residues 853 to 1012 comprise a targeting sequence (termed
tissues, FRNK is encoded by an alternatively processed 2.4 kb the ‘focal adhesion targeting’ or ‘FAT’ sequence) necessary
mRNA (Schaller et al., 1993). A similar sized mRNA has been for the efficient localization of pgl25FAK to focal adhesions
detected in human tissues, but it remains to be determined if (Fig. 2). Further evidence for importance of the FAT
this mRNA encodes p#41FRNK A notable feature of pR125FAK  sequence comes from studies analyzing hybrid proteins
structure is the abse{l Sof SH2 and SH3 domain&ains comprised&unmyristylated, cytosolic pp60S™ fused to a

/ %2

present in the Src family of kinases and other cytoplasmic  polypeptid/ gntaining residues 853 to - ppl125FAK,
protein tyrosine kinases, a&ll as many protein components Immunofluorescence staining of chicken / &lryo cells
of receptor-directed signalling pathways (reviewed by Pawson infected with a retrovirus e ing the Src-FAT fusion
ang’ Nsh, 1992). In most SH2-containing proteins, the SH2 protein showed efficient localization of Src-FAT protein to
do appear to direct protein-protein interactions, focal contacts, providing additional evidence that FAT

promoting stable interactions with unique phosphotyrosine- sequences direct the translocation of ppl25F4K to focal
containing peptide sequence motifs (Pawso d %’sh, 1992; j adhesions. j

FAK (P125) integrin binding focal adhesion targefing
Focal Adhesion Kinase — , "1
l Ak [T RE T
FRNK - ) |
Fak Related Non-Kinase paxillin binding

...DDYAEI...

Fig. 2. Functional domains ofthe focal adhesion kinase, pp125FAK,
Genetic and biochemical st@ described in the text hWe
v identification ofkdomains within prl125AK, Integrin binding 1s

® localized to lﬁnino terminal in, whereas interactions with
the focal adhesion-associated protein, paxillin, and targeting to the
Fig. 1. A comparison of the structure of pp125FAK and the Src family focal adhesion is mediated by sequences present in the carboxyl-
kinase. pp60%. See text for detail. terminal domain. A 2 S
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MORE THAN FAT: THE CARBOXYL-TERMINAL
NON-CATALYTIC DOMAIN DIRECTS THE BIND
OF&Z@TO THE FOCAL ADHESION PROTEIN
PA IN

Recent evidence indicates that within the cell there is a direct

interaction between pp125FAK and the focal aghesion-associ-
ated protein paxilli munoprecipitation of N125FAK from
extracts of cells expr; g wild-type pR125 emonstrates

the efficient co-immunoprecipitation 1257AK and paxillin
(M. Schaller, J. Hildebrand and J. sons, unpublished
observations). The stable association of these two proteins was
not observed when cells expressing FAK mutants lacking the
FAT sequence or mutants lacking the C-terminal 11 residues
of pRl125FAK were subjected to a similar analysis. Parallel in
vi&eriments using glutathione S-transferase fused to FAK
peptides containing sequences present in residues 687 to 1052
confirmed that paxillin could efficiently bind to sequences
present in the carboxyl-terminal non-catalytic domain of
pp125KA4K (J. Hildebrand, M. Schaller and J. T. Parsons,
unp hed observations). Furthermore, the binding to

paxillin appears to be direct, since isotopically labelled GST-
FAK bound to paxillin immobilized on a filter matrix (a ‘ h-
% % n

western” blot). A careful analysis of a serie GST

proteins containing deletions of residues with e carboxyl-
terminal domains shows that paxillin binding was fu nally
distinct from sequences necessary for focal adhesion targeting,
although sequences required for paxillin binding appear to
overlap, in part, the sequences required for focal adhesion
targeting (Fig. 2). These results provide evidence for a role for
the carboxyl-terminal non-catalytic domain of ppl25FAK in

both the localization of pp123FAK to focal adhesi/ \as well as
directing the bindi f 25FAK o a potential cellular
substrate. i ‘
HOW DO INTEGRINS SIGNAL FAK: THE INO-

- DOMAIN DY’ CTS THE
BINDING OF FAKTO THE CYTOPLASMIC
DOMAINS O NTEGRINS
The cell adhesion-dependent activation of pR125FAK tyrosine
phosphorylation suggests that integrins mai S’Eectly regulate,

in some fashion, the activation of ppl25 kinase activity.
1990) showed that the

Previous experiments by Otey et

111

interactions of focal adhesion proteins and integrin cytoplas-
mic domains can be analyzed in vitro. The focal adhez- S—as 0-

ciated protein, ot-actinin, binds in vitro to synthetic pep,
mimicking the 47 amino acid cytoplasmic domain ¢f the
integrins. A similar experimental approach re t
ppl125FAK also binds efficiently to peptides mimicking the
complete cytoplasmic domain of P; and integrins (M.
Schaller, C. Otey and J. T. Parsons, unpubliﬁobservations).
Further, analysis of ppl25FAK binding to a set of four oyer-
lapping peptides cgl i‘ising the total cytoply/ ¢ d¢ \in
sequence of Bi shows that ppl25FAK interacts preferentially
with a peptide sequence rep&aﬁve of the first 13 residues
adjacent to the transmembrane domain of A (Fig. 3). Binding
of prl125FAK (o peptide-containing beads& be blocked by
pr@ation with excess soluble peptide and pr125FAK does
not bind to beads containing a ‘scrambled’ s eptide. To
determine where in ppl125FAK the integrin peptide-binding
sequences resides, &ua] domains of ppl25FAK were
expressed in Escherichia coli and used in th vitro binding
assay. Significant binding activity was observed with peptides
derived from the amino-terminal non-catalytic domain,
whereas no binding activity was observed with peptides
derived from the carboxyl-terminal region of pp125FAK, These
data argue convincingly that ppl125FAK is C%E Sle of directly
binding to integrin cytoplas&)main sequences in vitro.

Interestingly a comparison of the sequences of individual
cytoplasmic domains shows a a high degree of sequence co

servation within sequences corresponding to the 125FAK.
binding reAs (Fig. 3). Whether such seququ[ idirect the
binding of pp125FAK and integrins in vivo, whether pr125FAK
interactﬁﬁﬁerem integrins via a conserveiﬁence
motif, and how such i&ctions regulate pp12STAK activity
are issues under current investigation.A

WHERE’S THE PHOSPHOTYROSINE? THE MAJOR
AUTOPHOSPHORYLATION SITE OF FAK IS
TYR3%7, A HIGH AFFINITY BINDING Ql é FOR A
BRGD=™ AND o /X

In Src-transformed cells the tyrosine phosphorylation of
pp123FAK is increased several fold, an observation that lead to
its inal identification as a Src-substrate (Kanner et al.,
1990). In these cells the majority (>80%) of pp125FAK is stably
associated with pp60s (Kb et al., 1994). ﬁtic eri-

ppl25FAX binding

KLLMIIHDRREFA
FAKFEKEKMNAKW
KWDTGENPIYKSA

AVTT----VV-NPKYEGK =
+

KLLMIIHDRREFAKFEKEKMNAKWDTGENPIYKSAVTT-—--VV-NPKYEGK .y
KALIHLSDLREYRRFEKEKLKSQWNN-DNPIFKSATTT-~--VM-NPKFAES NT
KLLITIHDRKEFAKFEEERARAKWDTANNPIYKEATST-——-FT-NITYRGT ot
KLLVT IHDRREFAKFQSERSRARYEMASNPIYRKPISTHTVDFTFNKSYNGTVD NT
KLLVSFHDRKEVAKFEAERSKAKWQTGTNPLYRGSTST——~~-FK-NVTYKHREKQKVDLSTDC NT
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77777 NPRFQEADSPTL NT

Fig. 3. Comparison of the sequences of the cytoplasmic domains of (3 integrins. SP1-4 denote the sequences of four short peptides that together

comprise the complete sequence of B cytoplasmic domain. (+++) denotes significant binding of pp125FAK, (—) denotes little detectable

binding; NT, not tested.
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Fig. 4. Model for the integrin-dependent activation of

pp125FAK and Src family kinases. See text for focal adhesion
discussion. proteins

ments using retroviruses expressing mutants of Src, as well as sumably important for the biological activities of integrins. On
in vitro analysis of pp60sc-pp125FAK complex formation, the basis of the data summarized above we are led to speculate

clearly indicate that th/ \sembly ofstable FAK-Src complexes that integrin engagement with the extracellular matrix may
requires both the SH2 domain 6057 Nd the anytophos- result in either the direct clustering of ppl25FAK, allosteric
phorylation site of ppl25FAK, Pep/ \ mapping ex/ \ments,  changes in rpl25FAK or the stimulq{l E of a regulator
coupled with site—dZI' Sted mutagenesis of potential phospho-  protein(s) t/ Xriggers ppl25FAK activation. A direct conse-
rylation sites have identified the major site of SFAK guence of such an acti\&tep is the autophosphoryl of
autophosphorylation as Tyr37 (Fig. 2) (Schaller et/ \1994).  pp125FAK and generation of a high affinity binding site for SrcA
Mutation of T¥r397 to Py’ \fficiently blocks ??60“0-92125”]( and Src-family kinases. Iy’ \rmal cells the enzymatic activity

interactions /' \jvo and in vitro. Several feaf’ \s of the Tyr3’ of pp60¥ and ppS9H" is repressed through the action of a
autophosphorylation site are of interest. The position of / AX%%7 neﬂe regul phosphorylation site at the C terminy’ \f
within pg125FAK distinguishes it from other receptor a n- these kinases (Fig. 4). Phosphorylation of a highly conserved
mﬂ&)sine kinases. In most instances tyrosine kj tyrosine within this region by a regulatory protein tyrosine
autophosphorylation occurs at a highly conserved tyrosine kinase (Csk) is critical for down-regulation of catalytic activity
within the catalytic domain (equivalent to Tyr37® in pr125FAK;  (reviewed by Cooper and Howell, 1993). ent models for

Tyr*16 in pp60s™), within a kinase insert ain,/ Nch is a  Src regulation suggest that the tyrosine phosphorylated G-

nonconsey’ \ insert found within the catalytic domains of  terminal sequence binds in an intramolecular interaction t

some receptor protein tyrosine kinases (but not in ??125]:“() own SH2 domain (Cantley et al., 1991; Cooper and Howell,
inus (a

or distal to the catalytic domain at sites near the C 1993). The amino acid sequence flanking this C-terminal
region found in many growth factor protein tyrosine kinases). tyrosine does not resemble the consensus high affinity binding
Tyr3?7 resides immediately amino-terminal to the catalyticAsite and while a tyrosine phosphorylated C-terminal peptide
domain, in relative proximity to the ATP-binding site. In can bind to the SH2 domain of pp60sc, it does so poorly
addition Ryr397 is embedded in the sequence DDYAEI, a (Songyang et al., 1993). In vitro, o' can be enzymatically
sequenc&similar to the consensus of a high-affinity Src activated by incubation with a s tic phosphopeptide can-
SH2-binding peptide, YEEI (Songyang et al., 1993). These taining the consensus, high affinity, Src SH2-binding site -
observations pose the possibility that in normal cells, integrin sumably by binding more efficiently to the SH2 domain
engagement may trigger autophosphorylation of ppl25FAK the regulatory C-terminal peptide (Liu et al., 1993). It is
which may, in turn, direct the translocation and CZ §mitant intriguing to speculate that hosphorylation of Tyr®®7 of
activation of Src or other Src-like tyrosine kinases. eri- pp125FAK may create a high affinity binding site f; A
mental support for such a model comes from the iden% and %59@;1 and that these kinases may bind to

of pp125FAK_p59Hn complexes in extracts of normal adherent ~ resy/ \g in the displacement of their C-termini fro ir SH2
culturz §f chicken embryo cells (Cobb et/ \1994). domains. Thus, binding to pr125FAK may be a mechanism by
which pp60s¢ and ppS9YY re enzymatically activated in
additi a mech for the recruitment of these kinases

SRECULATIONS, SPECULATIONS: A MODEL FOR to a highly localized site within the cell.
¢ \25FAK SIGNALLING A What might be the consequences Ahe activation of
pp125FAK or the translocation-dependent activation of Src orA

One important function of the integrins is to translate extra- Fyn? The adhesion-dependent increase in tyrosine phosphory-
cellular cues into cytoplasmic signals, a function that % lation of paxillin and tensin suggests that either or of these
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focal adhesion proteins may be direct substrates for pp125FAK

or the ppl25FAK _Src/Fyn complex. The assog” ‘on of
A oncogene-encoded tyrosine
3332,

nanSF&nd paxillin is interesting in this context and is can-
sistent with the idea that pR125FAK may play a direct ro) 1
bringing paxillin into the sine kinase complex. It is ipter-
esting to speculate that activation of both ppl25FA¥ \id
Src/Fyn may be necessary for catalyzing the fogtlon of focal
adhesion assembly and for initiating signals that may direct the
activation of other cellular signalling pathways. For example
it is well established that cell adhesion and spreading can
trigger the expression of cellular genes (Damsky and Werb,
1992). The association of pp125FAK wikh either Src or Fyn may
be sufficient to activate cellular signa& pathways that in turn
lead to the activation of cellular genes. What these pathways
are and how they function to regulate adhesion-dependent
phenomena remain to be elucidated.

The studies from the author’s laboratory were supported by NAH-
NCI grants, POl CA 40042, R37 CA 29243.
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