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Nucleotide exchange factor Rab3GEP requires DENN and
non-DENN elements for activation and targeting of Rab27a
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ABSTRACT

Rab GTPases are compartment-specific molecular switches that
regulate intracellular vesicular transport in eukaryotes. GDP/GTP
exchange factors (GEFs) control Rab activation, and current models
propose that localised and regulated GEF activity is important in
targeting Rabs to specific membranes. Here, we investigated the
mechanism of GEF function using the Rab27a GEF, Rab3GEP
(also known as MADD), in melanocytes as a model. We show
that Rab3GEP-deficient melanocytes (melan-R3G*®) manifest
partial disruption of melanosome dispersion, a read-out of Rab27a
activation and targeting. Using rescue of melanosome dispersion in
melan-R3GK® cells and effector pull-down approaches we show
that the DENN domain of Rab3GEP (conserved among RabGEFs)
is necessary, but insufficient, for its cellular function and GEF
activity. Finally, using a mitochondrial re-targeting strategy, we show
that Rab3GEP can target Rab27a to specific membranes in a
GEF-dependent manner. We conclude that Rab3GEP facilitates the
activation and targeting of Rab27a to specific membranes, but that it
differs from other DENN-containing RabGEFs in requiring DENN and
non-DENN elements for both of these activities and by lacking
compartment-specific localisation.

KEY WORDS: Organelle transport, Guanine nucleotide exchange
factor, Rab27a, Rab3GEP, MADD, Melanocyte

INTRODUCTION

Rab proteins are a family (>60 in humans) of small GTPases that
regulate vesicle trafficking in eukaryotic cells (Stenmark, 2009;
Hutagalung and Novick, 2011). Compartment-specific localisation is
vital for Rab function, but the mechanism(s) regulating this remain
debatable (Barr, 2013; Pfeffer, 2017). Recent studies indicate that
localised GDP/GTP exchange factors (GEFs) contribute to activation
and targeting of Rabs (Allaire et al., 2010; Yoshimura et al., 2010;
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Ingmundson et al., 2007; Machner and Isberg, 2006; Murata et al.,
2006; Tarafder et al., 2011; Zhang et al., 2006). Two studies have
directly investigated this by showing that substrate Rabs follow
artificially targeting GEFs to the outer mitochondrial membrane
(Bliimer et al., 2013; Gerondopoulos et al., 2012). Thus, current Rab-
targeting models suggest that cytosolic complexes between Rab—
GDP and Rab GDP dissociation inhibitor (Rab GDI) continuously
and reversibly deliver Rab—-GDP to membranes where Rabs are
activated by specifically localised GEFs. This blocks their re-
extraction by Rab GDI, and promoting accumulation of Rab—GTP in
the GEF-associated membrane (Barr, 2013). Related to this, the ‘GEF
cascade’ model suggests that the activity of different Rabs in
trafficking pathways are linked by sequential recruitment of GEFs.
According to this model, active upstream Rabs recruit GEFs of
downstream Rabs to membranes as their effectors, thereby regulating
the recruitment and activation of downstream Rabs (Ortiz et al., 2002;
Rink et al., 2005; Poteryaev et al., 2010; Wang and Ferro-Novick,
2002; Knodler et al., 2010; Novick, 2016).

Rab27 regulates the transport and exocytosis of dense-cored
secretory granules and lysosomal-related organelles in many cell
types, e.g. pancreatic B cell, cytotoxic T cells and platelets (Fukuda,
2013). In melanocytes, Rab27a targets to the membrane of pigmented
melanosomes where active Rab27a—GTP recruits the motor protein
myosin-Va via direct interaction with effector melanophilin (Mlph)
(Hammer and Sellers, 2012; Hume and Seabra, 2011). This
allows actin-dependent dispersion of melanosomes into peripheral
dendrites and pigment transfer to neighbouring keratinocytes, thus
providing pigmentation and photo-protection in mammals (Wu and
Hammer, 2014).

Rab3GEP [also known as MAP kinase-activating death domain
protein (MADD), alternatively known as differentially expressed in
normal and neoplastic cells (DENN) and insulinoma glucagonoma
clone 20 (IG20)] is a GEF for Rab3 whose function is linked to
regulated exocytosis and protection against TNFR1 (also known as
TNFRSF1A)- and MAPK-driven apoptosis (Wada et al., 1997;
Tanaka et al., 2001; Yamaguchi et al., 2002; Imai et al., 2013; Li et al.,
2014; Del Villar and Miller, 2004; Kurada et al., 2009). In
melanocytes, Rab3GEP promotes melanosome dispersion by acting
as a Rab27a GEF and melanosome targeting factor (Figueiredo et al.,
2008; Tarafder et al., 2011). Here, we further investigated Rab3GEP
function in Rab27a activation and targeting in melanocytes. Our
findings indicate that firstly, the DENN domain alone of Rab3GEP is
insufficient to activate and target Rab27a to melanosomes; secondly,
GEF activity is essential for the Rab27a targeting activity of Rab3GEP;
thirdly, Rab3GEP is important, but not alone sufficient, for activation
and targeting of Rab27a to melanosomes; and finally, that Rab3GEP is
unlikely to stably associate with melanosomes. Based on this we
suggest that Rab3GEP differs from other DENN-containing RabGEFs
in the mechanism by which it activates Rabs, and that other factors
work alongside Rab3GEP to activate and target Rab27a.
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RESULTS AND DISCUSSION

Melanosome dispersion is partially disrupted in

melan-R3GX° melanocytes

To investigate Rab3GEP function in Rab27a-dependent organelle
transport we generated Rab3GEP-deficient immortal melanocyte
lines, melan-R3GXO!, melan-R3GX°? and melan-R3GKO3 (Lavado
et al., 2005; Tanaka et al., 2001) (see Materials and Methods).
Immunoblotting confirmed that all three melan-R3GX© lines cells
lacked detectable levels of Rab3GEP compared with wild-type
melanocytes (melan-a) (Fig. 1A). However, in contrast to previous
Rab3GEP siRNA knockdown experiments, we found that the three
melan-R3GXC cultures contained a mixture of cells in which
melanosomes were either dispersed throughout the cytoplasm (as
seen in melan-a; hereafter ‘dispersed-type’), or clustered in the
perinuclear cytoplasm [as seen in melan-ash (Rab27a—/—)
melanocytes; hereafter ‘clustered-type’] (percentage of clustered-
type cells 72 h after plating: melan-R3GX°!'=50.05+7.79, melan-
R3GK9%2=66.22+2.10, melan-R3G¥93=94.84+3.62, and melan-
a=7.406+6.196; meants.e.m.; Fig. 1B,C) (Figueiredo et al., 2008;
Tarafder et al., 2011). This indicates that a Rab3GEP-independent
mechanism(s) of melanosome dispersion exists in the long-term
absence of Rab3GEP. Interestingly, we observed that as melan-
R3GKO cells started to proliferate, 48-72h after plating the
proportion of clustered-type cells in cultures increased compared
with 24 h after plating (Fig. S1). This suggests that the rate of the
Rab3GEP-independent melanosome dispersion pathway(s) does
not match the cellular requirement for melanosome dispersion in
proliferating cells. Consistent with this, by titration of the essential
melanocyte proliferation factor phorbol 12-myristate 13-acetate
(PMA) in the culture medium we found that there was a positive
correlation between proliferation rate and the proportion of
clustered-type melan-R3GX® cells in cultures (Fig. S2). A similar,
although smaller, effect was seen in melan-a cells (Fig. S2).

Melanosome dispersion in melan-R3GX° cells is dependent
upon Rab27a

Next, we tested whether melanosome dispersion in melan-R3
(melan-R3GKO hereafter) cells was Rab27a-dependent. Firstly, we
examined the expression of Rab27a and Mlph (whose expression is
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Rab27a-dependent), in melan-R3GX® and melan-a cells (Hume
et al,, 2007; Wu et al., 2002). Immunoblotting indicated that
expression of both proteins was reduced in melan-R3GX©° compared
with melan-a cells (Fig. 2A). Secondly, we examined the effect of
siRNA depletion of Rab27a on melanosome distribution in melan-
R3GXO cells. Immunoblotting and bright-field imaging confirmed
that depletion of Rab27a expression in melan-R3GK® cells in
resulted in a significant increase in the proportion of clustered-type
cells [Fig. 2B-D; non-targeted (NT) siRNA =22.9+3.4%, mock=
11.2+4.7%, Rab27a siRNA=90.8+2.1%). Thirdly, expression of
GFP—Rab27a efficiently rescued melanosome transport defects in
melan-R3GXO cells (Fig. S3). Fourthly, we used confocal
microscopy to show that Mlph, a proxy for active Rab27a, was
more highly expressed and localised to melanosomes in dispersed-
type versus clustered-type melan-R3GXC cells [mean Milph
fluorescence intensity in arbitrary units (AU)/cell: melan-a=
11.93+0.96; melan-R3G*°=3.31+0.51; melan-In (Mlph—/—)=
0.55+0.41; dispersed-type=5.417+0.5 and clustered-type=2.066+
0.33; Fig. 2E-G]. These data support a role for active Rab27a in
transporting melanosomes in dispersed-type melan-R3GX© cells,
and indicate that Rab27a and Mlph levels are Rab3GEP-dependent.

The DENN domain is not sufficient for the GEF activity

and cellular function of Rab3GEP

We then used the melan-R3G*© cells to dissect the role of Rab3GEP
domains in Rab27a targeting and activation. To test whether the
DENN domain of R3G is sufficient for GEF activity, as seen in
other DENN-containing RabGEFs, we generated a model of
Rab3GEP-DENN based on the structure of the DENNDIB—
Rab35 complex (Allaire et al., 2010; Wu et al., 2011; Ioannou
et al., 2015) (Fig. S4A; see Materials and Methods). Using this
model, we identified residues in Rab3GEP-DENN that could
interact with Rab27a, and generated vectors expressing mutants
expected to disrupt this interaction in melanocytes (Rab binding site
I: 1353D or L366K, and site IT: T371R/P372R) (Fig. 3A; Fig. S4B).
[To help quantify Rab3GEP function in melanosome dispersion we
standardised melanocyte shape by growing the cells on fibronectin
micro-patterns (Evans et al., 2014).] In melan-R3GX© we found that
Rab3GEP"™>3P and other mutants dispersed melanosomes to an

Fig. 1. Melanosomes are dispersed in a sub-set of
melan-R3GK° cells. (A) Western blots comparing
Rab3GEP and calnexin expression (loading control) in
lysates from melan-R3GX®", melan-R3GK°?, melan-
R3GK®3 and melan-a (wild-type) cell lines. (B) Phase-
contrastimages showing the distribution of melanosomes
in melan-a, melan-ash (Rab27a—/—) and melan-R3GX°3
cells. Scale bar: 25 um. (C) A scatter plot showing the
percentage of clustered-type melanocytes in melan-
R3GKO1 melan-R3GK°2 melan-R3GK°3 and melan-a
cultures 72 h after plating. Data are from 3—4 independent
experiments each performed in triplicate. Plotted points
represent the mean data in each experiment, data
presented as meants.e.m. ****P<0.0001, ***P<0.001.

()
Y
C
ey
()
w
ko]
Y
Y=
(®)
‘©
c
—
>
(®)
-



http://jcs.biologists.org/lookup/doi/10.1242/jcs.212035.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.212035.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.212035.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.212035.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.212035.supplemental
http://jcs.biologists.org/lookup/doi/10.1242/jcs.212035.supplemental

SHORT REPORT

Journal of Cell Science (2019) 132, jcs212035. doi:10.1242/jcs.212035

melan-a (wild-type)

Coomassie

o = Jowen

354

a-R27a
25+

Immunoblot

melan-R3GKO

MW
(kDa)

melan-In (-MIph-/-)

-
o o
>

-~ 20

=2 s
<15

>

-~

[7]

[=

[

-

=

Fluorescence

siRNA
o

Fig. 2. Rab27a and MIph disperse
melanosomes in melan-R3GK© cells.

(A) Coomassie-stained gel and western blots of cell
lysates showing protein loading and Rab27a and
Miph expression. (B-D) melan-R3GK® cells were
transfected with Rab27a-specific and non-targeted
(NT) control siRNA, and the effect on protein
expression and melanosome distribution
investigated. (B) Western blot showing Rab27a
and GAPDH (loading control) expression in lysates
of melan-R3G*® non-transfected (mock) or siRNA-
transfected cells. (C) Phase-contrast images
showing the melanosome distribution in
transfected melan-R3GX® cells. Boxes in left
panels indicate the area shown in higher
magpnification on the right. (D) Scatter plot showing
the percentage of clustered-type cells in melan-
R3GKC cultures 72 h after transfection. Data are
from four independent experiments each
performed in triplicate. Plotted points represent the
mean data from each experiment, data presented
as meants.e.m. (E-G) Melanocytes were fixed,
stained for immunofluorescence and the
distribution of Miph and melanosomes recorded
using a confocal microscope. (E) Fluorescence
(left), phase-contrast (centre) and merged images
showing the distribution of Miph, melanosomes
and their overlap. White boxes indicate the regions
shown in high magnification images below. White
arrowheads indicate co-localisation of
melanosomes and Miph. (F,G) Scatter plots
showing the mean anti-Miph fluorescence
intensity/cell for different cell types (F), and
clustered- and dispersed-type melan-R3G"° cells
(G). Results presented are representative of three
independent experiments. ****<0.0001,
**P<0.01, *P<0.05. Scale bars: 20 ym.
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intermediate level compared with GFP-only control and wild-type
Rab3GEP (Rab3GEP-WT) [pigment dispersion distance (PDD):
Rab3GEP™333P=14.47+2.156 um; Rab3GEP™3%K=1487+2.121 um;
Rab3GEP37!R/P372R—15 23+1 36 um; Rab3GEP-WT=16.89+
0.5225 um and GFP=12.63+2.648 um; Fig. 3B,C]. In contrast,
the Rab3GEPR*1#A mutant, in which the altered residue is outside
the predicted Rab binding sites (Fig. S4B), rescued melanosome
dispersion in melan-R3GK® cells with similar efficiency to
Rab3GEP-WT (PDD: 16.71+1.138 um; Fig. 3A—C). These data
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support the importance of the Rab3GEP DENN domain, and
suggest that the interaction mechanism of DENN-containing GEFs
with Rabs is conserved.

To better understand how DENN mutants reduced cellular
Rab3GEP function, we tested their effect on Rab3GEP GEF activity
using an effector pulldown assay that reports Rab27a—GTP levels
(see Materials and Methods) (Figueiredo et al., 2008). In accord
with the results of the melanosome dispersion assay we saw that the
Rab27a-GTP levels in Rab3GEP™33P and Rab3GEPRS#A were
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T371R Fig. 3. Rab3GEP-DENN is necessary, but
A 1353D L366K p372R R514A Death insufficient, for melanosome dispersal in
— domain melan-R3GK° cells and Rab27a activation.
(A) A schematic representation of the domain
1-560aa Rab3GEP - | organisation of Rab3GEP (block diagram)
DENN . 1-1241 showing the position of point mutations. Line
ADD - 2 558-1512aa diagram indicates the regions included in each
ADENN — 1241-151228 of the truncations used in these experiments.
DD - (B) melan-R3GX® cells were infected with
B GFP/ adenoviruses expressing wild-type (WT) and

Phase

Rab3GEP Pigment map

R514A

L366K

T371R P372R

mutant Rab3GEP, or GFP, plated onto micro-
patterned cover-slips, fixed and processed for
immunofluorescence. Representative images
of melanosome (phase) and GFP (centre)
distribution in individual cells expressing the
indicated proteins and pigment probability
maps (right) for each population of cells (n for
each indicated in brackets). White circles
indicate the shape of the micro-pattern
(diameter=46 pm). Scale bar: 10 um.

(C) Scatter plot showing the pigment dispersion
distance (PDD) for each cell in each population
as shown in B. The significance of differences
in PDD values for each mutant compared with
the GFP and RabGEP-WT controls was
calculated and are displayed below and above
each scatter, respectively. (D) Scatter plot
showing the ability of Rab3GEP-WT and
mutant variants, and GFP alone to activate
Rab27a as reported by effector pulldown in
vitro. Activity is expressed relative to
Rab3GEP-WT and GFP controls, as indicated
in heatmap key (normalised to 1 and 0). Results
are from three independent experiments. The
significance of differences in active Rab27a
values for each mutant and GFP compared with
RabGEP-WT are above each scatter. Data
presented as meanzs.e.m. ****P<0.0001;
***P<0.001; **P<0.01; ns, not significant.
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similar to those seen in cells expressing GFP and Rab3GEP-WT,
indicating that GEF activity is essential for Rab3GEP function in
melanosome transport and that the DENN domain plays an
important role in both of these activities (Fig. 3D).

We next used a DENN alone truncation to test whether
Rab3GEP-DENN catalysed Rab27a-specific GEF activity and
Rab27a-dependent melanosome dispersion. Using both the cell
and pulldown assays we found that Rab3GEPPENN functioned with
comparable efficiency to GFP and significantly less efficiently than
Rab3GEP-WT (PDD: 11.94+1.859 um; Fig. 3B-D). Similar results
were obtained using the Rab3GEPAPP mutant that lacks the
C-terminus death domain (DD) (PDD=14.12+1.922 um; Fig. 3A-C).
These observations, with others using N-terminus Rab3GEP

truncation mutants, indicate that while the DENN is important,
other parts of the protein, including the DD and central region, are
also required for Rab3GEP function (PDD: ADENN=14.71+
1.369 um; ADD=14.13+2.257 um; Fig. 3A-C). As previously
seen, Rab3GEP and variants were distributed throughout the
melanocyte cytoplasm (even at very low expression levels) and
not enriched near melanosomes (Fig. 3B; Fig. S4C) (Figueiredo
et al., 2008). This indicates that Rab3GEP is unlikely to stably
associate with melanosomes. The exception to this was the
Rab3GEPPP mutant, which distributed in cytoplasmic punctae,
consistent with the ability of DDs to oligomerise (Feinstein et al.,
1995) (Fig. 3B; Fig. S4C). Results were similar for Rab3GEP and
mutants in non-pattern grown cells (Fig. S4C).
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Intact mitochondria-localised Rab3GEP targets Rab27a

to mitochondria

Finally, we investigated the role of Rab3GEP in targeting Rab27a to
organelle membranes. For this we generated a fusion protein that
targeted Rab3GEP-WT to the outer mitochondrial membrane (mito-
Rab3GEP) and tested its ability to target mCherry—Rab27a to
mitochondria in melan-R3GX© cells (Fig. 4A). Mito-Rab3GEP
localised to MitoTracker-labelled mitochondria but did not disperse
melanosomes (Fig. 4B; Fig. S3). In most cells we saw that mito-
Rab3GEP-positive mitochondria aggregated close to the nucleus, in
contrast to their normal dispersed cytoplasmic distribution,
suggesting that mito-Rab3GEP causes their aggregation. We also
saw that mCherry—Rab27a co-localised with mito-Rab3GEP to a
significantly greater extent than mCherry alone. (PCC: mito-
Rab3GEP/mCherry—Rab27a=0.424+0.016 versus mito-Rab3GEP/
mCherry=0.149+0.026; Fig. 4B,C). This indicates that Rab3GEP
influences Rab27a localisation and that tethering Rab3GEP to
mitochondria reduces its ability to activate and target Rab27a to
melanosomes.

Outer mitochondrial membrane
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We then examined the importance of the GEF activity of Rab3GEP
in Rab27a targeting. We found that GEF-deficient mito-Rab3GEP'333P
and mito-Rab3GEPAPP mutants localised to mitochondria, but
recruited mCherry—Rab27a to a significantly lower extent than wild-
type mito-Rab3GEP (PCC: mito-Rab3GEP">3P/mCherry-Rab27a=
0.358+0.020;  mito-Rab3GEP"**®/mCherry=0.312+0.029;  mito-
Rab3GEP*PP/mCherry—Rab27a=0.307+0.023; mito-Rab3GEPAPP/
mCherry=0.227+0.017; Fig. 4B,C). This indicates that the GEF
activity of Rab3GEP is required for Rab27a targeting. We observed
that mitochondria in cells expressing mito-Rab3GEP2PP, but not
other mito-Rab3GEPs, were dispersed throughout the cytoplasm,
indicating that DD promotes mitochondrial aggregation, possibly
through oligomerisation (Feinstein et al., 1995).

Here, we investigated how Rab3GEP regulates Rab27a activation
and/or targeting using melanocytes as a model and present several
novel findings. Firstly, Rab27a can undergo Rab3GEP-independent
activation and/or targeting, and that although Rab3GEP enhances
these activities it is not absolutely required. One possible
mechanism for this is that other GEFs compensate for the loss of

Fig. 4. Mito-Rab3GEP can re-target Rab27a
to mitochondria by a GEF-dependent
mechanism. (A) Schematic representation of
mito-Rab3GEP showing the arrangement of
proteins within the fusion and the topology of its
association with the outer mitochondrial
membrane. (B) melan-R3GK® cells were co-
infected with adenoviruses expressing GFP-
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(1353D and ADD), and mCherry—Rab27a or
mCherry, then fixed and protein distribution
recorded by confocal microscopy. Co-
localisation of GFP and mCherry was
determined using Pearson correlation analysis.
Confocal images show the distribution of
melanosomes (phase), mito-Rab3GEP and
mutants, mCherry—Rab27a or mCherry, and
their co-localisation. Scale bar: 20 ym.

(C) Scatter plot showing the extent of
colocalisation of (1) mito-Rab3GEP and mutant
variants and (2) mCherry—Rab27a (+, solid
circles) or mCherry (—, open circles). The
significance of differences between Pearson
correlation co-efficient values for populations
expressing mCherry versus mCherry—Rab27a
for each mito-Rab3GEP protein were calculated
using an unpaired Student’s t-test.
****P<0.0001; *P<0.05; ns, not significant.
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Rab3GEP, e.g. DENND4B and GRAB (also known as Rab3IL1)
(Figueiredo et al., 2008; Yoshimura et al., 2010). However, siRNA
depletion of these targets did not augment the proportion of
clustered-type cells seen in melan-R3GK© cells, indicating that these
GEFs do not contribute to Rab27a activation (Fig. S4A,B). Another
possible mechanism is that the intrinsic nucleotide exchange
activity of Rab27a disperses melanosomes in slow-growing cells.
Supporting this, in vitro studies of GTP loading of purified Rabs
indicate that Rab27a has a higher intrinsic nucleotide exchange
activity compared with Rabl and Rab5a that reaches ~35% of the
level achieved in the presence of purified Rab3GEP (Fig. S4C).
This, coupled with the low rate of intrinsic Rab27a GTPase activity
(one thirtieth that of Rab5a), could explain the existence of a pool of
active Rab27a in melan-R3GX? cells (Larijani et al., 2003).
Interestingly a yeast Rab7 mutant (Ypt7X!27E), that has been
shown to enhance nucleotide exchange and reduce nucleotide
affinity, targeted to vacuolar membranes in the absence of its GEF,
the Mon1—Cczl complex (Cabrera and Ungermann, 2013). These
data underline that RabGEFs are enhancers rather than absolute
determinants of Rab activation and/or targeting. Thus, it is likely
that the severe phenotypic alterations seen in Rab3GEP-deficient
mice and worms result from reduced function of their multiple Rab
substrates (Iwasaki et al., 1997; Tanaka et al., 2001). Secondly,
Rab3GEP-DENN is necessary, but insufficient, to catalyse Rab27a
activation and/or targeting. This contradicts studies showing that
DENN-only truncations of connecdenn (also known as DENND1B)
and DENND2B maintained GEF activities comparable with their
intact counterparts (Allaire et al., 2010; Wu et al., 2011; Ioannou
et al., 2015). In contrast, our data indicate that elements throughout
Rab3GEP make significant contributions to its activity. Studies
using Rab3a as a Rab3GEP substrate reached similar conclusions
(Oishi et al., 1998; Coppola et al., 2002). Meanwhile, sequence
comparison indicates that there is significant conservation of DENN
and non-DENN elements of Rab3GEP throughout evolution
(Twasaki et al., 1997; Mahoney et al., 2006). Thus, Rab3GEP
likely activates and/or targets Rab27a and Rab3a via a similar
mechanism, but this may differ from that of other DENN-containing
RabGEFs e.g. connecdenn, DENND1A and DENND2B. Thirdly,
the GEF activity of Rab3GEP is absolutely required for its function
in targeting Rab27a to membranes. These observations are
consistent with previous work showing that the membrane-
targeting activity of Rabex-5 (also known as RABGEF1), DrrA
and Rabin8 (also known as RAB3IP) was dependent upon their
GEF activity (Blimer et al., 2013). Fourthly, we show that the
cytoplasmic localisation of Rab3GEP is important for its function in
Rab27a targeting and/or activation.

In conclusion, our data are broadly consistent with models
suggesting that RabGEFs serve as important targeting factors by
locally activating Rabs and stabilising their association with
membranes by preventing their extraction by Rab GDI. Nevertheless,
our findings here and previously indicate that Rab3GEP is unlikely to
be the sole Rab27a targeting factor (Tarafder et al., 2011). Future work
should aim to identify and characterise these factors.

MATERIALS AND METHODS

Derivation and maintenance of immortal melanocytes

Cultures of immortal Rab3GEP-deficient melanocytes (melan-RG3X©)
were derived essentially as described previously (Lavado et al., 2005). In
brief, mice heterozygous for a previously generated Rab3GEP loss-of-
function allele were crossed with Ink4a-Arf mutant mice in order to generate
embryos homozygous for the Rab3GEP mutant allele and heterozygous for
Ink4a-Arf mutant allele. Genotyping of the embryos was as previously

described (Lavado et al., 2005; Tanaka et al., 2001). Melanocytes were then
derived from the dorsal skin of mutant embryos as previously described
(Bennett et al., 1989). melan-R3GX°!, melan-R3GX°2 and melan-R3GX3
melanocytes were derived from three different embryos from the same litter.
Cultures of immortal melan-RG3%°, melan-ash, melan-a and melan-In
melanocytes were maintained, infected with adenovirus expression vectors,
transfected with siRNA oligonucleotides and tested for contamination as
described previously (Hume et al., 2006, 2007). The melanocyte cell lines
described here are available from the Wellcome Trust Functional Genomics
Cell Bank (http:/www.sgul.ac.uk/depts/anatomy/pages/WTFGCB.htm).

Immunoblotting

Immunoblotting was performed as described previously (Hume et al., 2007)
using rabbit anti-Rab3GEP (gift from Dr Yoshimi Takai, Osaka University
Graduate School of Medicine, Japan; 1:1000) goat anti-melanophilin
(Everest Biotech, EB05444; 1:1000), goat anti-GAPDH (Sicgen, Ab0049-
200; 1:5000), goat anti-calnexin (Sicgen, Ab3741-200; 1:1000) and goat
anti-Rab27 (Sicgen, Ab1023-200; 1:1000) primary antibodies, and IRDye
800CW-conjugated secondary antibodies (Odyssey 926-32214; 1:10,000).
Signal was detected using a Li-Cor infrared scanner (Odyssey).

Plasmid and virus constructs

Generation of virus vectors allowing expression of full-length human
Rab3GEP as a fusion to the C-terminus of EGFP was previously described
(Figueiredo et al., 2008). Adenoviruses expressing Rab3GEP?33D,
Rab3GEPR14A Rab3GEPL6K,  Rab3GEPT37IRP37ZR - Rab3GEPAPD,
Rab3GEPAPENN Rab3GEPPENN and Rab3GEPPP were all generated using
quick-change site-directed mutagenesis, using pENTR-GFP-Rab3GEP as
template (the sequences of primers used for this are available on request). To
generate adenoviruses expressing mito-Rab3GEP we PCR-amplified a 240 bp
fragment of DNA corresponding to the N-terminus mitochondrial targeting
sequence of murine TOMM70a (GenBank accession number AAI39422.1).
This was then ligated into an engineered HindIII site located upstream of the 5
end of the EGFP coding sequence of pENTR-GFP-Rab3GEP. Mutants
variants of this were generated by site-directed mutagenesis as described above.

Microscopy and image analysis

Cells for immunofluorescence were cultured on 13 mm coverslips (1.5
thickness;  Scientific =~ Laboratory  Supplies UK, 6422-307164),
paraformaldehyde fixed, stained, and fluorescence and transmitted light
images of melanocytes were then collected using a Zeiss LSM710 confocal
microscope fitted with a 63x1.4 NA oil immersion Apochromat lens or a
Zeiss Axiovert 100S inverted microscope fitted with a 10x objective and an
Axiocam MR3 CCD camera. All images presented are single sections in the
z-plane. Antibodies and stains were used as indicated; mouse monoclonal
anti-GFP (Roche, 11814460001; 1:200) rabbit anti-MIph [antigen mouse
Mlph 150-400 aa (Strom et al., 2002); 1:100] goat anti-rabbit and goat anti-
mouse IgG secondary antibodies both Alexa Fluor 568 labelled (Invitrogen,
A-11001 and A-11011; both 1:500). For live-cell experiments confirming
the targeting of mito-Rab3GEP to mitochondria, cells were plated in 35 mm
diameter glass-bottomed petri dishes (Matek, P35G-1.5-20-C) (1x104 cells/
dish). 24 h later cells were infected with adenoviruses expressing mito-
Rab3GEP or GFP alone, and after a further 48 h the mitochondria were
labelled by incubation for 30 min in 200 nM MitoTracker Red FM (Thermo
Fisher, M7512). After washing twice in medium (L-15 supplemented with
10% fetal calf serum, 100 U/ml penicillin G, and 100 mg/ml streptomycin)
without MitoTracker, cells were transferred to the environmental chamber
(37°C) surrounding the stage of the Zeiss LSM710 confocal microscope and
images of the distribution of GFP, MitoTracker-labelled mitochondria and
melanosomes were acquired using the 488 nm Ar and 568 nm HeNe laser
lines, respectively. Analysis of melanosome clustering in sSiRNA-transfected
cells and melanosome distribution in micro-pattern grown cells was as
previously described (Evans et al., 2014; Robinson et al., 2017).

Effector pulldown assay for detection of Rab27a-GTP

HEK293a cells were plated in 10 cm dishes (~5x10° cells/dish) and 24 h
later co-infected with adenoviruses expressing mCherry—Rab27a and either
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GFP, Rab3GEP-WT or mutant variants of Rab3GEP. After expression for
24 h cells were washed twice with ice-cold PBS and lysed using buffer A
[50 mM Tris pH 7.5, 150 mM NaCl, 5 mM MgCl,, 1 mM dithiothreitol, 1%
CHAPS, and protease inhibitor cocktail (Complete ULTRA Tablets,
Roche)] for 30 min on ice. Cell contents were harvested using a scraper
and lysates were clarified by centrifugation at 13,400 g for 15 min at 4°C
using Eppendorf centrifuge 5415R. Supernatant was collected and protein
quantification was performed using a Bradford protein assay (Bio-Rad).
2 mg of the total protein was pre-cleared by incubation with 20 ul of
glutathione-sepharose 4B Fast Flow beads (GE Healthcare, 17-5132-01) for
2 h. After pelleting the beads by centrifugation at 3220 g at 4°C the
supernatant was incubated with 200 pmol of GST or 200 pmol of GST-SIp1
(1-200 aa fragment) and 25 pl of glutathione-sepharose 4B beads for 16 h at
4°C. Beads were pelleted as above and washed three times in buffer A
10 min. Bound proteins were released from the beads by incubation in
Laemmli buffer [100 mM Tris-Cl pH 6.8, 4% (w/v) SDS, 0.2% (w/v)
Bromophenol Blue, 20% (v/v) glycerol and 200 mM B-mercaptoethanol]
for 5 min at 95°C. Bound proteins were then resolved by SDS-PAGE and
mCherry—Rab27a was detected by immunoblotting and signal intensity
quantified using Imagel.

Modelling of the structure of the DENN domain of Rab3GEP

The structural model of Rab3GEP was produced using the HHpred server in
conjunction with MODELLER (Alva et al., 2016). In brief, the amino acid
sequence of the GEF domain of Rab3GEP was submitted to HHpred first.
The server identified the GEF domain of DENND1A as the closest structural
homologue. Subsequently, the generated amino acid sequence alignment
between Rab3GEP and DENNDI1A was used as a basis for producing a
structural model of Rab3GEP using MODELLER by directly forwarding
the result produced through HHpred.

Quantitative real-time PCR

Primers and probes for qRT-PCR targets (from Sigma Genosys, Cambridge,
UK) were designed using Primer Express software (Life Technologies). Probes
were labelled at the 5" and 3’ ends with fluorophore 6-carboxyfluorescein
(6-FAM) and quencher tetramethylrhodamine (TAMRA), respectively. For
GRAB and DENND4B the primers were 5'-CAGCCTGTTTGAGGAAGC-
TC-3" (sense strand) and 5'-TGGTGTGGATG-TGATGACCA-3’ (reverse
strand), and 5-TGCGCCACGTCGGACTCAAC-3’ (sense strand) and 5'-T-
CCTTGCCCATGCTGCTGGC-3’ (reverse strand) and the probes were 5'-
CGCCTGCTTCATGTTGGCTTCCCG-3" and 5'-GAGACGCTAGGGCC-
CCCTCC-3'. For GAPDH the primers were 5-GTGTCCGTCGTGGATC-
TGA-3’ (sense strand) and 5'-CCTGCTTCACCACCTTCTTGA-3" (reverse
strand) and the probe was 5'-CCGCCTGGAGAAACCTGCCAAGTATG-3'.
To generate mRNA, sample pools of melan-R3GX© cells grown in 6-well
plates (1x10° cells/well) were transfected with siRNA in triplicate as described
previously (Hume et al., 2007). 72 h later cells were harvested and mRNA
extracted using the RNeasy Mini RNA extraction kit (Qiagen). cDNA was
generated using Moloney murine leukemia virus M-MLYV reverse transcriptase
(Promega) using random primers. To generate a standard curve of
signal:template concentration for each qRT-PCR assay, a pool containing
5% of each of the cDNA samples analysed was generated. This pool was
serially diluted in DEPC water (1:4, 1:16, 1:64, 1:256) and these were used as
template in Rabla and GAPDH qRT-PCR assays. The shape of the standard
curve indicates the relationship between signal and template concentration. For
both assays standard curves gave straight lines with R*>0.99 indicating that
there is a linear relationship between signal and template. To measure the
expression of targets in siRNA-transfected cells, each neat cDNA was diluted
1:32 in DEPC water and the following reagents were added per well of a 96-
well plate: 6.5 pl TagMan Fast 2x PCR Master Mix (Life Technologies); 0.4 pl
forward primer (10 uM); 0.4 pl reverse primer (10 uM); 0.25 ul probe
(10 uM); 3 ul cDNA; 2.45 ul DEPC water. For each sample, three technical
repeats were performed. Reaction plates were sealed with optically clear
adhesive film, centrifuged, and qRT-PCR performed using a StepOnePlus
Real-Time PCR system (Applied Biosystems) using the ‘fast’ mode. CT values
for each reaction were determined by StepOne software. The slope (S),
intercept (I) and R? values were calculated for the standard curve of each qRT-
PCR assay. CT values from siRNA-transfected samples were then processed to

generate a ‘quantity value’ for each CT value as follows; (1) (CT-1)/S=LQ
(LQ, log quantity), (2) 10LQ=Q, (3) Qx(I/MNT)=GOIP (MNT, mean
non-targeted quantity value; GOIP, gene of interest product) and
(4) GOIP/GP=normalised expression of target relative to GAPDH (GP,
normalised quantity value for the GAPDH primer).

Statistical analysis of data

Unless otherwise indicated, statistical analysis of data was carried out
with GraphPad Prism 7 software using the one-way ANOVA test and
Bonferroni’s multiple comparisons post-test facility within the software and
assuming nonparametric distribution of data. ****P<0.0001, ***P<0.001,
**P<0.01, *P<0.05 and ns, not significant (P>0.05).
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