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Nε-lysine acetylation in the endoplasmic reticulum – a novel
cellular mechanism that regulates proteostasis and autophagy
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ABSTRACT
Protein post-translational modifications (PTMs) take many shapes,
havemany effects and are necessary for cellular homeostasis. One of
these PTMs, Nε-lysine acetylation, was thought to occur only in the
mitochondria, cytosol and nucleus, but this paradigm was challenged
in the past decadewith the discovery of lysine acetylation in the lumen
of the endoplasmic reticulum (ER). This process is governed by
the ER acetylation machinery: the cytosol:ER-lumen acetyl-CoA
transporter AT-1 (also known as SLC33A1), and the ER-resident
lysine acetyltransferases ATase1 and ATase2 (also known as NAT8B
and NAT8, respectively). This Review summarizes the more recent
biochemical, cellular and mouse model studies that underscore the
importance of the ER acetylation process in maintaining protein
homeostasis and autophagy within the secretory pathway, and its
impact on developmental and age-associated diseases.
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Introduction
Proteins carry out a multitude of critical functions for an organism;
for example, they provide structural stability to cells and tissues,
give motility to individual cells, carry messages within and between
cells, and regulate gene expression and metabolism. In order for a
cell to respond to changes in internal and external environmental
factors, a broad range of protein co- and post-translational
modifications have evolved to expand upon the relatively static
properties encoded in protein side-chains. Some consequences of
these modifications are alterations in subcellular localization (Cui
et al., 2016), protein–protein interactions (Nishi et al., 2011), and
protein stability (Amm et al., 2014) and activity (Kapoor and
Lozano, 1998). These effects stem from a broad range of reversible
and irreversible chemical adornments, including ubiquitylation
(Amm et al., 2014; Yu et al., 2014), methylation (Murn and Shi,
2017; Wesche et al., 2017; Zhang et al., 2015) and SUMOylation
(Andreou and Tavernarakis, 2009) of lysine and arginine residues,
and phosphorylation of tyrosine, serine and threonine residues
(Humphrey et al., 2015), as well as Nε acetylation of lysine residues
(Choudhary et al., 2014; Menzies et al., 2016), which is the focus of
this Review.
The discovery of protein acetylation occurred over 50 years ago

with studies on lysine-rich regions of nuclear histones in somatic
and testicular cells (Gershey et al., 1968; Polgar, 1964; Vidali et al.,

1968). Since then, different groups have identified a large number of
nuclear, mitochondrial and cytosolic proteins of varied functions
that have conserved lysine acetylation sites. It is an evolutionarily
conservedmodification, identified in both prokaryotes (Ouidir et al.,
2016) and eukaryotes (Finkemeier et al., 2011; Jeffers and Sullivan,
2012; Lundby et al., 2012), which relies on a central metabolite,
acetyl-coenzyme A (CoA) (Box 1), to act as a donor of the acetyl
group (Drazic et al., 2016) (Fig. 1). This allows for a direct crosstalk
between the cellular metabolic state, through the level of acetyl-
CoA, and cellular effectors, for instance in the form of modified
histone lysine residues, which can fine-tune gene expression, or
modified peptidyl-lysine residues, which can modulate protein
function (Freiman and Tjian, 2003). The aim of this Review is to
introduce the components of the endoplasmic reticulum (ER)
acetylation machinery and provide an update on the molecular
mechanisms underlying this modification. We will also highlight
the effects of dysregulation of acetyl-CoA import into the ER in the
context of human diseases and various mouse models.

Lysine acetylation enters the ER – the components of the ER
acetylation machinery
In 2007, while studying the metabolism of the β-site amyloid
precursor protein (APP) cleaving enzyme (BACE1), a type I
membrane protein that inserts into the secretory pathway, we
discovered that both the stability and trafficking of the nascent
polypeptide depended on efficient enzymatic Nε-lysine acetylation
within the lumen of the ER (Costantini et al., 2007). From the
biochemical perspective, enzymatic Nε-lysine acetylation requires
three essential components: a molecule to act as the donor of the
acetyl group, in the form of acetyl-CoA, an acetyl acceptor, in the
form of the lysine side-chain, and an acetyl-CoA:lysine
acetyltransferase to facilitate the exchange. Acetyl-CoA is a large,
membrane-impermeable compound and, as such, requires a
membrane transporter to pass from the cytosol into organelles
such as the mitochondria (Kaplan et al., 1995). The sequential
identification and enzymatic characterization of the protein product
of the mammalian gene SLC33A1 (encoding AT-1) as an ER-
localized acetyl-CoA transporter (Jonas et al., 2010), two ER and
ER-Golgi intermediate compartment (ERGIC) acetyltransferases
(Ko and Puglielli, 2009), and Nε-acetylated lysine residues on ER-
resident and -transiting proteins (Pehar et al., 2012b) gave strong
evidence that lysine acetylation also occurs in the lumen of the ER
(Fig. 2). Below, we present the basic features of each component of
the ER acetylation machinery, and discuss the effect of genetic and
chemical disruption of the process.

Acetyl-CoA transporter 1 – an essential membrane protein
that translocates acetyl-CoA from the cytosol to the ER
In 1997, Kanamori et al. reported the existence of a putative cytosol:
ER acetyl-CoA transporter (Kanamori et al., 1997). This 61-kDa
protein, termed acetyl-coenzyme A transporter 1 or simply AT-1
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(gene name SLC33A1), was predicted to contain six to 12
transmembrane regions as well as a leucine zipper motif, as is
observed in other transporter proteins (Eckhardt et al., 1996).
Studies using subcellular fractionation approaches showed that this
protein localized to the ER, and isolation and reconstitution of
recombinant AT-1 into artificial liposomes revealed its ability to
transport acetyl-CoA across a lipid bilayer, with free CoA-SH acting
as an inhibitor to the process (Jonas et al., 2010). Additionally, we
showed that highly purified, native and intact ER vesicles possess
the ability to uptake acetyl-CoA with a Km of ∼10–14 μM
(Costantini et al., 2007), which is approximately in line with the
available concentration of acetyl-CoA in the cytosol (Lee et al.,
2014) and the Km of other enzymes that require acetyl-CoA
(Mackall and Lane, 1977; Snoswell and Koundakjian, 1972).
Finally, overexpression of AT-1 in cellular systems increased acetyl-

CoA transport into the ER lumen (Jonas et al., 2010). Therefore, the
ER localization of AT-1, its ability to transport acetyl-CoA across
both artificial and native lipid bilayers, and the ability of purified ER
vesicles to uptake acetyl-CoA point to AT-1 as an ER-localized
acetyl-CoA transporter protein (Fig. 2).

The importance of this protein is highlighted by the identification
of SLC33A1 mutations associated with human diseases. The first
mutation to be identified was the mutation of serine 113 to arginine
(S113R) in patients with an autosomal-dominant form of spastic
paraplegia 42 (SPG42) (Lin et al., 2008). SPGs are a rather
heterogeneous group of diseases characterized by bilateral
spasticity, peripheral neuropathy, urinary dysfunction and mild
cognitive decline (Salinas et al., 2008). A progressive degeneration
of motor axons of the corticospinal tract is a hallmark of the disease,
along with defects in the central nervous system that are localized to
the memory-forming regions of the brain and disseminated lesions
of the cerebral white matter (Depienne et al., 2007). The SPG42
patients were all heterozygous for the S113R mutation and the
disease displayed incomplete penetrance with an age of onset
ranging between 4 and 42 years (Lin et al., 2008). In later studies,
children with additional mutations were also reported; they
displayed psychomotor retardation, severe developmental delay,
brain atrophy, cerebellar hypoplasia, hearing deficiencies and multi-
organ failure, with a life expectancy of 1 to 6 years (Chiplunkar
et al., 2016; Huppke et al., 2012). The SLC33A1 mutations in these
cases were homozygous and included three large deletions, two
frame shifts with premature STOP codons, and one missense
mutation (A110P).

The two missense mutations identified so far (A110P and S113R)
are both located in the first intraluminal loop of AT-1, suggesting
related mechanistic features. So far, in depth studies have only
focused on the S113R variant of AT-1. Overexpression of wild-type
AT-1 or AT-1 S113R in H4 neuroglioma cells revealed no adverse
effects on protein production or stability, but when either the wild-
type or mutant protein were separately reconstituted on artificial
liposomes, the acetyl-CoA transport ability was completely ablated
in the case of AT-1 S113R (Peng et al., 2014). Analytical
ultracentrifugation and co-immunoprecipitation experiments
showed that AT-1 functions as a homodimer within the membrane
of the ER; as the S113R mutation impedes homodimerization of the
transporter, it consequentially abolishes the transport activity (Peng
et al., 2014). AT-1S113R/S113R mouse embryos are non-viable owing
to deficiencies in neural tube closure (Liu et al., 2017; Peng et al.,
2014). A similar embryonic requirement was observed in
the zebrafish (Lin et al., 2008; Mao et al., 2015). In contrast,
AT-1S113R/+ knock-in mice are born with Mendelian ratio and are
viable (Peng et al., 2014). When housed in the presence of normal
mouse pathogens, they display a short lifespan with an increased
propensity for pathogenic infections and reactive inflammatory
diseases. Necropsy studies also showed an increased occurrence
of malignancies. Housing the mice in a pathogen-free facility
eliminates the propensity to infections, inflammation and
malignancies (Peng et al., 2014). Haploinsufficiency of AT-1 in
the mouse also presents with defects of the peripheral and central
nervous system at 10–12 months of age, with intermittent hind-leg
clasping, decreased response to pain stimulus, abnormal body
rotation and reduced grip strength observed with no concomitant loss
of muscle fiber. This is likely attributable to the noted axonal
degeneration of the proximal and distal sections of peripheral nerves.
Indeed, histology and positron emission tomography (PET) analysis
of these mice gave evidence for neuronal loss, axonal degeneration,
myelinopathy and reactive inflammation within both the central and

Box 1. Acetyl-CoA localization and biosynthesis
The cornerstonemetabolite acetyl-CoA is synthesized in themitochondria
(Fujino et al., 2001), the peroxisome (Wanders et al., 2015), the nucleus
and the cytoplasm (Chypre et al., 2012) (see Fig. 1). Free CoA is
generated from pantothenic acid (vitamin B5) through the sequential
action of pantothenate kinase (PANK), phosphopantothenoylcysteine
synthetase (PPCS), phosphopantothenoylcysteine decarboxylase
(PPCDC), and coenzyme A synthase (COASY) (see Fig. 2). COASY is
a bifunctional protein with phosphopantetheine adenylyltransferase
(PPAT) and dephospho-CoA kinase (DPCK) activity, which in mammals
is encoded by one gene and in bacteria by two genes (Leonardi and
Jackowski, 2007). The precise location where CoA is synthesized within
the cell is still controversial as the different enzymes have been found in
the cytosol, nucleus and mitochondria (Leonardi and Jackowski, 2007).
Generation of acetyl-CoA can be induced by a number of different
metabolic inputs (primarily glycolysis and β-oxidation), and the final
product is used in a variety of different ways (Fig. 1). Acetate,
acetaldehyde, free fatty acids, pyruvate, β-hydroxybutyrate and amino
acids are transported into the mitochondria for enzymatic condensation
with CoAvia a high-energy thioester linkage (Pietrocola et al., 2015). This
mitochondrial pool can be used subsequently in ketone body biosynthesis
during periods of carbohydrate starvation, by the citric acid cycle for
energy purposes (Shi and Tu, 2015) or for mitochondrial protein
acetylation (Hosp et al., 2017). Mitochondrial acetyl-CoA can also be
sent to the cytosol following its condensation with oxaloacetate through
the activity of citrate synthase to yield citrate and free CoA, the former
being shuttled across themitochondrial membrane by solute carrier family
25 member A1 (SLC25A1). Extracellular citrate can also be imported by
the plasma membrane citrate/Na+ importer (SLC13A5). The peroxisome
can similarly uptake fatty acids to generate acetyl-CoA through α- and
β-oxidation, exporting it to the cytoplasm as acetyl-carnitine (Wanders
et al., 2015). Under normal conditions, cytosolic acetyl-CoA synthesis
mainly originates from the conversion of citrate through the activity of ATP-
citrate lyase (ACLY). Under certain stress events, such as hypoxia
(Metallo et al., 2011), glutamine can be shunted toward acetyl-CoA
production via the action of several enzymes. Some cell types possess
alternative cytosolic acetyl-CoA synthetic pathways, such as
dehydrogenation of ethanol to form acetaldehyde and subsequent
synthesis of acyl-CoA in hepatocytes (You et al., 2002). Acetyl-CoA can
travel freely between the cytosol and nucleus, but the nucleus also has
some capacity to generate acetyl-CoA from citrate through ACLY
(Sivanand et al., 2017), pyruvate through pyruvate dehydrogenase
complex (PDC) (Sutendra et al., 2014), and acetaldehyde through acyl-
CoA synthetase short-chain family member 2 (ACSS2) (Bulusu et al.,
2017). Acetyl-CoA synthesis in the ER has yet to be identified, with the
main identified source being cytoplasmic acetyl-CoA that is transported
into the ER lumen by AT-1/SLC33A1 (Jonas et al., 2010). Here, it is
utilized to post-translationally modify lysine via acetylation, which
regulates proteostasis and the induction of reticulophagy (see main text
and Pehar and Puglielli, 2013).
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the peripheral nervous system. Importantly, the neurodegenerative
phenotypewas observed in knock-inmice housed in either pathogen-
free or open facilities (Peng et al., 2014). Therefore, the propensity
to infections, systemic inflammation and malignancies depends
on the presence of pathogens within the colony, whereas the
neurodegenerative phenotype does not.
While insufficient levels of AT-1 present a myriad of neurological

and immunological problems as outlined above, excess of AT-1 has
its own consequences. Chromosomal duplications of the 3q25.31

locus, which harbors SLC33A1, are associated with autism spectrum
disorder (ASD), intellectual disability, propensity to seizures and
facial dysmorphism (Prasad et al., 2012; Sanders et al., 2011; see also
SFARI Autism Database, URL: https://gene.sfari.org/database/cnv/
3q25.31). To determine the pathogenic role of increased SLC33A1
gene dosage, we generated two different mouse models: one
overexpressing AT-1 in forebrain neurons (referred to as AT-1 Tg)
and one overexpressing AT-1 systemically (referred to as AT-1 sTg).
AT-1 Tg mice displayed reduced cognitive function and modified
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social behavior (Hullinger et al., 2016). This was observed in-tandem
with an increased number of spines and dendritic branches in both
cultured neurons and hippocampal tissue, andwith defects in synaptic
plasticity. Further assessment revealed changes in the acetylation
status of ER cargo proteins as well as widespread proteomic
changes. By contrast, AT-1 sTg mice displayed a segmental
progeria phenotype with a maximum lifespan of only ∼5 months
that mimicked an accelerated form of pathogenic aging (Peng et al.,
2018). The accelerated aging phenotype was accompanied by tissue
inflammation and accumulation of senescent cells.
At the mechanistic level, the reduced AT-1 activity in

AT-1S113R/+ mice resulted in a reduced efficiency of the secretory
pathway and hyperactivation of ER autophagy (also referred to as
reticulophagy) (Peng et al., 2014). In contrast, overexpression of
AT-1 in AT-1 Tg and AT-1 sTg mice resulted in increased
efficiency of the secretory pathway and reduced activation of
reticulophagy (discussed later) (Hullinger et al., 2016; Peng et al.,
2018). The fact that homozygous inactivation of AT-1 is lethal and
that hemizygous inactivation reduced the import of acetyl-CoA into
the ER by ∼50% suggests that AT-1 is the only ER membrane
acetyl-CoA transporter (Peng et al., 2014).

The ER acetyltransferases ATase1 and ATase2 acetylate
proteins that insert within the secretory pathway
Knowledge that ER-transiting and -resident proteins are acetylated
on specific lysine residues in the lumen of the ER spurred efforts
to identify potential ER-resident lysine acetyltransferases. These
efforts bore fruit in 2009 with the identification and characterization
of two ER/ERGIC acetyltransferases (Fig. 2), termed ATase1 (gene
name NAT8B) and ATase2 (gene name NAT8) (Ko and Puglielli,
2009). Subcellular fractionation and confocal microscopy studies
confirmed that both proteins are localized at the ER and ERGIC
(Ding et al., 2012; Veiga-da-Cunha et al., 2010). ATase1 and
ATase2 show a molecular mass of ∼25 kDa in reducing gel
electrophoresis, share 88% identity between each other, and
are members of the camello-like family of proteins under the
GCN5-related N-acetyltransferase (GNAT) superfamily of N-
acetyltransferases (Dyda et al., 2000; Neuwald and Landsman,
1997), with both retaining the highly conserved R/Q-x-x-G-x-G/A
acetyl-CoA-binding motif (Roth et al., 2001). ATase1 appears to be

the result of a gene duplication event; however, the promoter region
of the two ATases display several differences, suggesting different
modes of transcriptional regulation (Hahn and Lee, 2006). Initial
analysis of the proteins determined that they both have a short
cytosol-exposed N-terminus, a single helical transmembrane anchor
spanning residues 43–63, and a large globular, ER-facing catalytic
domain (Ko and Puglielli, 2009). ER vesicles from Chinese hamster
ovary (CHO) cells overexpressing either ATase1 or ATase2 showed
increased acetyltransferase activity compared to non-transfected
cells in the presence of detergent, highlighting enzymatic activity
within the ER, which was eliminated with increased temperature.
Finally, both enzymes also display acetyltransferase activity in vitro
(Ko and Puglielli, 2009).

More recent studies have provided additional information
regarding their mechanism of action and role within the ER.
Specifically, in vitro and ex vivo approaches have revealed that both
ATases act as dimers of ∼50-kDa and that the dimerization requires
a short stretch of amino acids (amino acids 195–205) near the C-
terminus (Ding et al., 2014). Accordingly, deletion of the
dimerization domain abolishes the enzymatic activity of the
enzymes (Ding et al., 2014). Co-immunoprecipitation (IP) studies
of full-length ATase1 and ATase2 showed that they co-elute with
components of the oligosaccharyltransferase (OST) complex (see
below), a multi-protein complex involved in the N-glycosylation of
nascent glycoproteins (Dempski and Imperiali, 2002; Gavel and
von Heijne, 1990). This interaction is partially lost when the C-
terminus of either ATase is truncated (Ding et al., 2014).

Analysis of the human single nucleotide polymorphism (SNP)
database showsmultiple SNPs on bothNAT8B (https://www.ncbi.nlm.
nih.gov/SNP/snp_ref.cgi?locusId=51471) and NAT8 (https://www.
ncbi.nlm.nih.gov/SNP/snp_ref.cgi?locusId=9027&chooseRs=all). In
the case of NAT8B, three nonsense changes are notable. The first is at
positionR41 of the amino acid sequence (rs757878515), the second at
position Y101 (rs780729191), and the third at position Q168
(rs4852974). Amino acid 168 is also reported with two missense
changes (glutamine to glutamic acid, rs4852974; and glutamine to
histidine, rs369247762). In the case of NAT8 there are two nonsense
changes that are notable: the first is at position Y101 (rs757668615)
and the second is at position Q172 (rs745439157). The above
nonsense and missense mutations do not appear to be associated with
human diseases.

The ER acetylation machinery regulates proteostasis and
autophagy within the secretory pathway
Important functions of the ER include protein synthesis as well as
endolumenal co- and post-translational modifications that help with
the folding, and thus stability and activity of newly synthesized
membrane and secreted polypeptides (Buchberger et al., 2010;
Labbadia and Morimoto, 2015; Pehar and Puglielli, 2013;
Trombetta and Parodi, 2003). Although the essential information
for folding is present in the primary amino acid sequence, co-
translational events (such as N-glycosylation and disulfide bonds)
help to preserve the fidelity of the process. Correctly folded and
unfolded (or misfolded) polypeptides must also be sorted with the
former being allowed to move through the secretory pathway, and
the latter being disposed of. For this purpose, transient post-
translational events must be in place to distinguish correctly folded
from unfolded and/or misfolded polypeptides within the ER.

As wementioned, both ATase1 and ATase2 act as homodimers of
∼50 kDa; however, when analyzed under native and non-reducing
gel conditions, they were found to migrate with a molecular mass of
∼350 kDa (Ding et al., 2014). Mass spectrometry revealed that, in
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addition to the ATases, this high-molecular-mass complex
contained five members of the OST complex, thus suggesting a
functional association between the N-glycosylation and Nε-lysine
acetylation machineries of the ER (Ding et al., 2014). Studies with
truncated versions of BACE1 and CD133, two established
substrates of the ATases, revealed that N-glycosylation and Nε-
lysine acetylation occur sequentially (Ding et al., 2014).
Specifically, full-length and correctly folded polypeptides can be
glycosylated and acetylated, while truncated and incorrectly folded
polypeptides can be N-glycosylated but not acetylated (Ding et al.,
2014). Furthermore, when normally acetylated lysine residues were
mutated to alanine or arginine, to generate loss-of-acetylation
mutants without affecting the overall tertiary structure of the protein,
BACE1 and CD133 failed to exit the ER (Costantini et al., 2007;
Mak et al., 2014). When the same lysine residues were mutated to
glutamine to generate constitutively acetylated (also referred to as
gain-of-acetylation) mutants, BACE1 and CD133 variants were
able to exit the ER and reach the cell surface more efficiently
(Costantini et al., 2007; Mak et al., 2014). In essence, only correctly
folded polypeptides are recognized by the ATases.
It is worth emphasizing that N-glycosylation occurs while the

nascent polypeptide is still unfolded (see Fig. 3); the fidelity of the
biochemical modification is ensured by the presence of the N-x-(T/
S) consensus motif, which is recognized by the OST complex
(Dempski and Imperiali, 2002; Gavel and von Heijne, 1990). In
contrast, no consensus motif for Nε-lysine acetylation has been
identified and only surface-exposed lysine residues are acetylated.
Therefore, it is currently accepted that the fidelity of Nε-lysine
acetylation is ensured by the tertiary structure of protein
(Kouzarides, 2000; Yang and Grégoire, 2007). The standing
hypothesis is that the ATases associate with the OST complex

during the translocation of nascent polypeptides across the ER
membrane; they only recognize and acetylate correctly folded
polypeptides. Acetylated polypeptides are able to move through the
secretory pathway and complete maturation, while non-acetylated
polypeptides are prevented from reaching the Golgi and are
disposed of (see Fig. 3). Although we still need to resolve the
mechanistic aspects of this novel regulatory function, the above
hypothesis is supported by recent studies performed in mice with
increased or reduced AT-1 activity where ER-to-Golgi trafficking of
mature glycoproteins and levels of cell surface proteins were
directly measured (Hullinger et al., 2016; Peng et al., 2018).

As mentioned above, another important function of the ER is to
dispose of unfolded and/or misfolded polypeptides. Monomeric
proteins are preferentially degraded by the proteasome through the
ER-associated protein degradation (ERAD) pathway (McCracken
and Brodsky, 1996; Trombetta and Parodi, 2003; Werner et al.,
1996). In contrast, large protein aggregates are mostly degraded by
the autophagy pathway following encapsulation into
autophagosomes and subsequent fusion with the lysosome (Axe
et al., 2008; Bernales et al., 2006; Ding et al., 2007; Ogata et al.,
2006). As noted earlier, AT-1S113R/+ mice display hyperactivation
of autophagy (Peng et al., 2014), whereas AT-1 sTg mice show
hypoactivation, thus supporting an immediate role of the ER
acetylation machinery in the regulation of autophagy at the ER level
(hence, the term reticulophagy) (Pehar et al., 2012a; Peng et al.,
2018). Interestingly, AT-1 is transcriptionally regulated by X-box-
binding-1 protein (XBP-1), which acts immediately downstream of
inositol requiring protein-1α (IRE1α; also known as ERN1), one of
the three branches of the mammalian unfolded protein response
(UPR) system and an upstream initiator of ERAD (Ron and Walter,
2007; Trombetta and Parodi, 2003; Wang and Kaufman, 2016).
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Fig. 3. The ER acetylation machinery is an integral component of ER quality control and regulates the efficiency of the secretory pathway. Secretory
membrane or lumenal proteins are synthesized close to the ER and enter the organelle through the translocon (SEC61–SEC62–SEC63) complex (1). Proteins
with an N-x-S/T consensus sequence (yellow circles) for N-glycosylation that is 14 or 15 amino acids (∼40 Å) away from the inner membrane, are recognized by
the oligosaccharyltransferase (OST) complex, which interacts with the translocon and transfers a preassembled GlcNAc2Man9Glc3 oligosaccharide
(branched lines) to the asparagine residue of the nascent glycoprotein (2). Correctly folded glycoproteins are then recognized by the ATases, which interact with
the OST to acetylate specific lysine residues (3). The acetylated lysine residues act as a positive marker that allows correctly folded glycoproteins to advance
toward the Golgi (4). Unfolded or misfolded glycoproteins, although N-glycosylated, are not recognized by the ATases (5), and, as a result, are prevented
from reaching the Golgi and are disposed of (6). Although supported by a number of publications (see text), the above is only a working model for how the
ER acetylation machinery might regulate the secretory pathway.
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Downregulation of XBP-1 results in hyperactivation of autophagy
and consequent autophagic cell death (Hetz et al., 2009; Matus
et al., 2009; Pehar et al., 2012a); however, this can be prevented by
overexpressing AT-1 (Pehar et al., 2012a). Furthermore, AT-1 is
upregulated under conditions of physiological ER stress, such as
during periods of enhanced protein production demands associated
with cellular differentiation and activation of B cells (Shaffer et al.,
2004). This points toward a possible link between acetyl-CoA levels
in the ER, lysine acetylation and protein quality control. Indeed,
many proteins involved in protein quality control and ERAD (such
as calnexin, calreticulin and ERAD E3 ligase subunits), as well as
sensors for protein misfolding [such as GRP76, GRP94 and
GRP170 (also known as BiP, HSP90B1 and HYOU1, respectively)]
and regulators for autophagy (such as ATG9A), were found to be
acetylated in the ER (Pehar et al., 2012b). In essence, both cellular
and animal studies suggest that sufficient import and utilization of
acetyl-CoA in the ER is required for proper protein folding and
passage through the ER, and for tight regulation of reticulophagy
(see Figs 3 and 4).
It is alsoworth noting that ER acetylation occurs within the lumen

of the ER, whereas the core autophagic machinery is located in the
cytosol. Therefore, the above notion of a possible link between
lysine acetylation and reticulophagy would require the existence of a
sensor for the levels of acetyl-CoA within the ER that is able to
communicate the acetylation status of the ER lumen to the
autophagy machinery (Fig. 4). Research efforts in this direction
led to identification of ATG9A. The acetylation status of several
members of the autophagy-related (ATG) family of proteins has
been linked to induction of autophagy, with an increased acetylation
status acting as an inhibitory signal and a decreased one as an
activation signal (Lee et al., 2008; Lee and Finkel, 2009). ATG9A is
an ER-localized integral membrane protein with several ER-facing
loops and is crucial for autophagosome formation (Pehar et al.,
2012a; Yen and Klionsky, 2007). ATG9A is expressed in several
tissues, but the highest levels are found in the brain, spinal cord and
liver (Saitoh et al., 2009). Although synthesized and found in the
ER, ATG9A can traffic through the trans-Golgi network,
endosomes and the autophagosome; this transition is stimulated
during periods of cellular starvation and increased autophagic flux

(Imai et al., 2016; Lee and Finkel, 2009; Nishimura et al., 2017;
Ohashi and Munro, 2010; Tamura et al., 2010; Webber et al., 2007;
Young et al., 2006). While investigating the potential role of
ATG9A as an acetyl-CoA sensor in the ER, we found that it is
acetylated at two lysine positions (K359, K363) on the second ER-
facing loop (Pehar et al., 2012a). Expression of a loss-of-acetylation
mutant form of ATG9A (K359R/K363R) in H4 neuroglioma cells
resulted in widespread autophagic cell death, whereas expression of
a gain-of-acetylation mutant (K359Q/K363Q) had no such effect.
Furthermore, expression of the K359Q/K363Q mutant provided
significant protection against the autophagic cell death caused by
knockdown of either AT-1 or XBP1 (Pehar et al., 2012a).

Taken together, these findings provided ample evidence that
ATG9A indeed acts as an acetyl-CoA sensor within the ER,
although the exact mechanistic relationship between ATG9A
acetylation and autophagy remains to be elucidated. Nevertheless,
by studying AT-1S113R/+ and AT-1 sTg mice, we were able to show
that reduced influx of acetyl-CoA into the ER leads to reduced
acetylation of ATG9A and induction of reticulophagy, while
increased influx of acetyl-CoA leads to increased ATG9A
acetylation and a block in the induction of reticulophagy (Peng
et al., 2014, 2018). Furthermore, detailed analysis of AT-1 sTg mice
revealed that the acetylation status of ATG9A regulates its ability to
interact with FAM134B (also known as RETREG1) and SEC62
(Fig. 4) (Peng et al., 2018), two ER membrane proteins that act as
receptors for LC3β (also known as MAP1LC3B), an essential
component of the core autophagic machinery (Fumagalli et al.,
2016; Khaminets et al., 2015; Mochida et al., 2015; Rubinsztein,
2015; Schuck, 2016). Interestingly, both FAM134B and SEC62 are
found on the rough ER, where the bulk of protein biosynthesis
occurs (Fumagalli et al., 2016; Khaminets et al., 2015; Mochida
et al., 2015; Rubinsztein, 2015; Schuck, 2016). Furthermore,
SEC62 is an integral member of the ER translocon machinery and
its ability to engage with LC3β requires it to dissociate from the
translocon (Fumagalli et al., 2016; Schuck, 2016). It has been
proposed that both FAM134B and SEC62 might couple the
machinery that allows biosynthesis and insertion of newly
synthesized proteins into the ER with the machinery that controls
the disposal of unfolded and/or misfolded polypeptides and
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Fig. 4. The ER acetylation machinery
regulates the induction of reticulophagy.
ATG9A is acetylated on two lysine residues
(K359 and K363) that face the lumen of the ER.
The acetylation status of ATG9A regulates its
ability to interact with SEC62 and FAM134B.
Both SEC62 and FAM134B appear to act as
reticulophagy receptors by engaging with
cytosolic LC3β, whereas ATG9A appears to
act as an ER acetylation sensor. In its
acetylated form, ATG9A is unable to interact
with either SEC62 or FAM134B, thus impeding
further engagement of LC3β and inhibiting the
induction of reticulophagy (upper half ). In
contrast, when non-acetylated, ATG9A is able
to interact with SEC62 and FAM134B, which
engage LC3β and induce reticulophagy (lower
half ). Although supported by a number of
publications (see text), the above is only a
working model for how the ER acetylation
machinery might regulate the induction of
reticulophagy.
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maintains the size of the ER (Nakatogawa and Mochida, 2015;
Schuck, 2016). We discussed above the possible role of the ER
acetylation machinery in quality control, efficiency of the secretory
pathway and autophagy-mediated disposal of toxic protein
aggregates. Therefore, we can envision a model where functional
association of ATG9A–FAM134B and ATG9A–SEC62 within the
membrane of the ER is an initial step for the induction of
reticulophagy. This association is required to engage cytosolic
LC3β and can only occur when ATG9A is not acetylated (Fig. 4).

Therapeutic potential of inhibiting the ER acetylation
machinery in proteostatic disorders
Given the importance of the regulation of autophagy in order to
maintain cellular homeostasis, it is no surprise that both hypoactive
and hyperactive autophagy are deleterious in normal mice (Kuma
et al., 2017). However, an elevated autophagic flux appears to be
beneficial in mice with genetic disorders that result in the
accumulation of cytotoxic protein aggregates (Bhuiyan et al.,
2013; Hetz et al., 2009; Madeo et al., 2009; Pickford et al., 2008;
van Dellen et al., 2000).
By using a combination of cell- and animal-based studies, we

discovered that inhibition of the ER acetylation machinery can
stimulate autophagy-mediated disposal of toxic protein aggregates
that form within the ER and secretory pathway but not those that
form in the cytosol (Peng et al., 2016). These findings are in line
with the fact that the ER acetylation machinery controls proteostasis
within the ER and secretory pathway (discussed above).
Importantly, an ATase specific inhibitor (6-chloro-5H-
benzo[a]phenoxazin-5-one; commonly referred to as Compound
9), was able to rescue the Alzheimer’s disease-like phenotype of
APP695/swe mice (Peng et al., 2016) as well as the segmental
progeria phenotype of AT-1 sTg mice (Peng et al., 2018).
It is worth keeping in mind that defects in autophagy, with the

consequent disruption of proteostasis, contribute to the progression
of many chronic human diseases, including neurodegenerative
disorders, such as Alzheimer’s disease, Parkinson’s disease and
Huntington disease, cancer and nephropathies, as well as immune
and cardiovascular diseases (Frake et al., 2015; Levine et al., 2015;
Nixon, 2013). Defective autophagy has also been implicated in
aging (Frake et al., 2015; Levine et al., 2015; Nixon, 2013).
Conversely, increased levels of autophagy have been associated
with more efficient protein and organelle homeostasis,
cytoprotection, lifespan extension and rescue from proteotoxicity
(Madeo et al., 2015). With the realization that autophagy can be
triggered in a rather specific and well-organized fashion, there has
been an effort to focus on specific targets to tightly control its
therapeutic potential (Kroemer, 2015; Levine et al., 2015;
Vakifahmetoglu-Norberg et al., 2015). With the observation that
inhibition of the ER acetylation machinery can induce
reticulophagy and rescue proteostatic defects of the ER and
secretory pathway in Alzheimer’s disease and segmental progeria
mouse models, we can easily envision exciting translational
implications for different diseases where the primary pathological
event resides in the aberrant accumulation of toxic protein
aggregates within the ER (and secretory pathway).

Conclusions and outstanding questions
Since its discovery in 2007, the ER acetylation machinery has
emerged as a novel biological process that maintains proteostasis
within the ER and the overall efficiency of the secretory pathway.
The identification of human diseases caused by genetic mutations
and gene duplication events that disrupt the ER acetylation

machinery, as well as the generation of relevant mouse models,
have further shown the biological impact of this previously
unknown machinery. Finally, the identification and
characterization of compounds that can modulate ER acetylation
in vivo has revealed an unexpected translational potential for a broad
class of developmental and degenerative diseases. Although much
has been learned, there are still several outstanding questions that
remain to be addressed, which include those discussed below, as
well as many others that we do not discuss owing to space limitations.

Structural biochemistry
Ongoing and future structural biochemistry-based approaches will
help define the intrinsic features of AT-1, ATase1 an ATase2
activity. Specifically, it remains unclear where the acetyl-CoA binds
or docks within the AT-1 and ATase dimers, where the peptidyl-
lysine group of the polypeptide inserts within the ATases, and how
AT-1 assembles within the ER membrane. Answering these
questions will expand our understanding of how the entire
machinery works and help in designing new ATase inhibitors for
potential use in medical therapies.

Adaptation of the secretory pathway
Ex vivo and in vivo studies indicate that the secretory pathway is able
to adapt to changes in AT-1 activity; increased ER acetylation leads
to more proteins being transported through the secretory pathway,
whereas reduced ER acetylation leads to the opposite (Hullinger
et al., 2016; Peng et al., 2018). However, we still need to discover
how this adaptation is ensured. In mammalian cells, the budding of
COPII-coated transport vesicles occurs at specific sites that are
referred to as transitional ER (tER); these vesicles subsequently
evolve into full COPII vesicles and post-ER membrane structures
(reviewed in Budnik and Stephens, 2009; D’Arcangelo et al., 2013).
The ER could theoretically adapt by regulating (1) the number of ER
exit sites (ERES) and, therefore, the number of COPII vesicles; (2)
the size of COPII vesicles; or (3) both size and number of COPII
vesicles (Aridor et al., 1999; Forster et al., 2006; Guo and Linstedt,
2006). Similarly, the arrival of more or less cargo material at the
Golgi will require functional adaptation of the organelle. We
specifically measured incorporation of sialic acid into mature
glycoproteins and showed that AT-1 sTg mice incorporate more
sialic acid whereas AT-1S113R/+ mice incorporated less (Hullinger
et al., 2016; Peng et al., 2018). It is worth remembering that
fucosylation, galactosylation and sialylation of transiting
glycoproteins occurs in the Golgi, with sialic acid being the very
last sugar to be added at the reducing end of galactose within the
trans-Golgi network (reviewed in Hirschberg et al., 1998).
However, it is unclear whether the Golgi adapts to the increased
trafficking of glycoproteins through the secretory pathway of AT-1
sTgmice by increasing the expression and/or the catalytic properties
of the glycosylation machinery, and whether the Golgi itself must
undergo morphological changes.

Regulation of reticulophagy
We have already discussed that the ATG9A–FAM134B and
ATG9A–SEC62 interaction is regulated by the acetylation status
of ATG9A. However, the specific molecular mechanisms that allow
the acetylation of two lysine residues on ATG9A to reduce its ability
to interact with FAM134B and SEC62 are still unclear. The
intraluminal loop of ATG9A that undergoes acetylation has four
small helical segments, one of which contains both acetylated lysine
residues (K359 and K363). The acetylated helix is flanked by two
coiled regions, which are predicted to create conditions that are

7

REVIEW Journal of Cell Science (2018) 131, jcs221747. doi:10.1242/jcs.221747

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce



favorable for protein–protein interaction. Therefore, it is
theoretically possible that the acetylation of this intraluminal loop
regulates the ability of ATG9A to interact with FAM134B and
SEC62 through alterations in tertiary structure. However, it is
currently unclear whether FAM134B has any segment facing the
lumen of the ER (Fregno et al., 2018; Khaminets et al., 2015).
Therefore, it is also possible that the interaction is regulated by an
additional protein that is able to recognize acetylated versus non-
acetylated ATG9A and influence the formation of the ATG9A–
FAM134B and ATG9A–SEC62 complex by sequestering ATG9A
when acetylated.

The Golgi-based deacetylase
Finally, one of the most pressing gaps in our understanding of Nε-
lysine acetylation within the secretory pathway is the identity of the
deacetylase(s) involved in the removal of the acetyl group. This has
been a standing question since the observation that BACE1 is
acetylated in the ER and deacetylated in the Golgi as it transits
through the secretory pathway (Costantini et al., 2007).
Interestingly, an isoform of the Bombesin receptor-activated
protein (the protein product of C6orf89), which localizes to the
cis-Golgi and Golgi cisternae and possess deacetylase enhancer
activity has been identified (Lalioti et al., 2013). Whether C6orf89
is the actual deacetylase or just an enhancer, as suggested, remains
to be fully determined. However, it is clear that the identification of
the Golgi-based deacetylase would help us further understand how
Nε-lysine acetylation regulates the efficiency of the secretory
pathway.
In conclusion, the past ten years have witnessed the discovery of

the ER acetylation machinery. With it, we have gained a deeper
understanding of the intrinsic mechanisms that maintain
proteostasis within the ER, and ensure proper sorting and
processing of newly synthesized glycoproteins. We have also
gained new tools and new hopes to prevent and/or treat different
debilitating diseases. Further work in this area will expand our
knowledge on important aspects of cell biology and open new
avenues of translational research.
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