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SPECIAL ISSUE: CELL BIOLOGY OF HOST-PATHOGEN INTERACTIONS

Imaging host—pathogen interactions using epithelial and bacterial

cell infection models
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ABSTRACT

The age-old saying, seeing is believing, could not be truer when we
think about the value of imaging interactions between epithelial cells
and bacterial pathogens. Imaging and culturing techniques have
vastly improved over the years, and the breadth and depth of these
methods is ever increasing. These technical advances have
benefited researchers greatly; however, due to the large number of
potential model systems and microscopy techniques to choose from,
it can be overwhelming to select the most appropriate tools for your
research question. This Review discusses a variety of available
epithelial culturing methods and quality control experiments that can be
performed, and outlines various options commonly used to
fluorescently label bacterial and mammalian cell components. Both
light- and electron-microscopy techniques are reviewed, with
descriptions of both technical aspects and common applications.
Several examples of imaging bacterial pathogens and their interactions
with epithelial cells are discussed to provide researchers with an idea of
the types of biological questions that can be successfully answered by
using microscopy.

KEY WORDS: Microscopy, Tissue culture, Bacteria, Pathogens,
Epithelial cells, Co-culture

Introduction

Bacterial pathogens cause a myriad of diseases and interact with
host cells in a variety of ways. They may colonize extracellular
niches, attach to epithelial cell surfaces, breach host barriers,
establish intracellular infections or combine several of these
approaches during the process of infection (Alberts et al., 2002;
Hurwitz et al., 2015; Ribet and Cossart, 2015). The combination of
tissue culture with microscopy is well suited to recapitulate and
document these complex microenvironments, and is an excellent tool
for the in vitro study of host—pathogen interactions. Importantly,
experiments aimed at capturing high-resolution images of host—
pathogen interactions involve the integration of multiple disciplines
and techniques. This Review highlights the cellular systems, and
imaging tools and techniques that allow researchers to better
understand the biology of bacterial infection, as well as potential
targets for disease mitigation. The scope of the article includes studies
focusing on cell culture models of human epithelial barriers and
bacteria relevant to disease and pathology. Although critical for some
research questions, we do not discuss animal models, tissue explants
or cellular systems generated using epithelial-immune cell co-
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cultures (Gordon et al., 2019; Grivel and Margolis, 2009; Jelicks
etal., 2013; Leevy et al., 2007; Papazian et al., 2016). Our discussion
is organized around two main technical issues — choosing the
biological components of the experimental system and assessing
which microscopy-based tools are well-suited to label and image
various cell compartments or biological processes. A variety of
imaging techniques will be addressed, including both light- and
electron-microscopy methods, which cover the spatial scale and
resolution required to visualize entire cellular barriers down to the
cellular ultrastructure (Fig. 1). The discussion will be complemented
with examples of recent studies that have used these methods to
generate highly informative micrographs that provide data relevant to
researchers studying a wide range of subjects related to host-pathogen
interactions.

Building the foundation - choosing model systems and
quality controls

Selecting and establishing an appropriate experimental model
system is an important step, and an often-challenging initial hurdle,
when designing an imaging study that involves the host—pathogen
interface. Although there is no single in vitro model that can be
considered a gold standard, there are approaches that might be more
relevant depending on the specific research question. Therefore, the
selection of epithelial cell type, the culture technique and quality
control measures often requires a great deal of consideration before
embarking on an imaging project. A selection of common options
for building an infection model (e.g. epithelial cell type and culture
technique), including relevant advantages and disadvantages of
each, is presented in Table 1. The discussion below will focus on the
quality control measures that can be used to assess the selected
model system.

For any epithelial and bacterial cell infection model, the
experiments typically require a balance between having a
sufficient population of bacteria to study and not sacrificing the
viability and/or integrity of the host model. Cellular viability and
toxicity are commonly measured to assess potential cell damage
caused by the exposure to the pathogen, and various methods to
evaluate these parameters have been reviewed elsewhere (Stoddart,
2011). These readouts can be a good way to titrate parameters of the
infection that may, in excess, inordinately affect host cell health to a
point where the model is no longer representative of an in vivo
barrier. For example, increasing the number of bacteria being added
to the infection model relative to the number of host cells (i.e.
increasing the multiplicity of infection) can increase epithelial cell
cytotoxicity (Hertle and Schwarz, 2004). Barrier integrity can be
assessed by measuring the transepithelial electrical resistance
(TEER) across the cell layer(s) (Srinivasan et al., 2015). Higher
TEER measurements are indicative of a confluent epithelial layer
with high barrier integrity; conversely, lower TEER measurements
signal breaks in the epithelial barrier, resulting from holes or weak
cell—cell junctions (Srinivasan et al., 2015). Importantly, average or
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Fig. 1. Biology through a lens. The range of microscopic techniques employed to visualize epithelial cells, in vitro infection models and host—pathogen
interactions are depicted on a biological scale. Lower resolution light microscopy techniques, such as brightfield, phase contract and differential interference
contrast (DIC) microscopy offer general assessment of epithelial cell layer integrity and cell differentiation (100 ym—10 pm). Light-microscopy techniques

with higher resolution, including epifluorescence microscopy and confocal laser scanning microscopy (CLSM), allow the imaging of the colonization of epithelial
cell layers by bacterial cells, the bacterial internalization process and the subcellular localization of bacterial cells within epithelial cells (100 pm—1 pym). More
precise colocalization studies can be performed reliably using super-resolution (SR) microscopy, in which the pattern and architecture formed by specific proteins
can be tracked (10 um-0.1 um). Electron microscopy can be used to gain insights into protein and effector (e.g. toxins, transcriptional regulators and
immuno-regulatory compounds) localization within host subcellular compartments and allows a closer look at host—pathogen interactions (50 um-0.005 pm).

optimal TEER values can be cell line specific due to variability in
the junctional complexes (Srinivasan et al., 2015). The integrity of
the epithelial cell barrier can also be assessed by staining adherens
junction proteins, such as E-cadherin and B-catenin, and tight
junctional proteins, such as zonula occludens-1 (ZO-1, also known
as TJP1), claudin-1 and occludin (Barrila et al., 2017; Buckley et al.,
2018; Carvalho et al., 2005; Uotani et al., 2019). While viability,
toxicity, TEER and junctional protein staining can be determined
for all epithelial cell types, cell-type-specific experiments may also
be used to validate your model, such as labelling markers of
differentiation (Fig. 2A; Table S1). Finally, it is important to note
that some experimental conditions, such as prolonged infection or
use of highly virulent strains, may require additional or more
frequent quality control assessments to ensure the viability and
integrity of the infection model is maintained throughout the
experiment (Anderson et al., 2008; Starner et al., 2006; Walker
et al., 2017). The efforts taken to develop, optimize and evaluate
infection models will ensure that an appropriate, biologically
relevant system is selected for further microscopic investigation.

Producing a micrograph that is worth a thousand words -
imaging tools and techniques

Microscopic techniques can be separated into two main categories:
light microscopy and electron microscopy. A description of
traditional light and electron microscopy techniques and general
uses in host—pathogen imaging studies is provided in Table 2. When
choosing the imaging tools and techniques for a host—pathogen
interaction experiment, it is important to consider the spatial scale
and resolution that will be required to answer the question posed
(Fig. 1), and whether you will be working with fixed or live cells.
Light microscopy allows both live-cell and fixed-cell imaging but is
limited in both lateral (200 nm) and axial (500 nm) resolution due to
the relatively long wavelength of visible light (Abbe, 1873;
Rayleigh, 1896). Fluorescence capabilities are acquired with the
addition of a broad-spectrum light source [i.e. visible and ultraviolet
(UV) wavelengths], a series of filters that can fine-tune the source
(excitation) and gathered (emission) light, depending on the target
and a detector (Young, 1961). Live-cell imaging is less prone to

preparation artefacts and can provide important information
regarding cellular structures and processes in real-time, but is not
compatible with multiple labelling techniques, as described below.
Fixing your cells will prevent sample degradation, but the process
can produce artefacts, such as the loss of antigenicity and changes to
cell morphology (Hobro and Smith, 2017; Jamur and Oliver,
2010a). Compared to light microscopy, electron microscopy
provides higher resolution by illuminating the sample with an
electron beam, instead of photons, and because of this, it is used to
investigate cellular ultrastructure (Gordon, 2014). Samples are
fixed, chemically or environmentally, and treated with heavy metal
coatings and stains for contrast, which excludes live-cell imaging
and prevents the depth of field offered by some light microscopy
methods (Winey et al., 2014).

Recently, a group of fluorescence microscopy methods have been
developed that challenged the resolution limits of traditional light
microscopy. In 2014, Betzig, Hell and Moerner were awarded the
Nobel Prize in chemistry for their work in developing super
resolved fluorescence microscopies. This group of methods,
collectively termed super-resolution microscopy, uses specialized
equipment or modifications to typical microscope arrangements,
along with extensive post-acquisition image analysis and
transformation, which results in resolution beyond the diffraction
limit of visible light (Galbraith and Galbraith, 2011; Schermelleh
etal., 2019). This means that cellular structures and processes can be
seen at a resolution closer to that provided by electron microscopy,
while still retaining the benefits of light microscopy, such as live-
cell imaging and tools for specific labelling. Some of these super-
resolution methods use physical grating, that is, controlled separation
of light, to allow for non-uniform delivery of the excitation light
source to improve resolution [e.g. structured illumination microscopy
(SIM) (Langhorst et al., 2009)]. Alternately, dual objectives [e.g. dual
objective multifocal plane microscopy (IMUM) (Ram et al., 2009)],
or selective activation of fluorophores can be used [e.g, photo-
activated localization microscopy (PALM) or stochastic optical
reconstruction microscopy (STORM) (Henriques et al., 2011)].
A recent review (Vangindertael et al., 2018) discusses the theory
behind the various super-resolution techniques in detail and addresses
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Fig. 2. Tools for labelling structures and processes in host cells. (A) Schematic representation of reagents that can be used to label cellular structures (left)
and processes (right) in host cells during infection modelling. A full description and references for these approaches can be found in Table S1. The figure was
created with BioRender.com. (B—D) Examples of micrographs demonstrating the use of fluorescent labelling to provide information about cellular responses
during infection. (B) Imaging of the cytoskeletal protein F-actin that delineates host cell borders, while Annexin-V labels apoptotic events in a P. aeruginosa
infection model. These micrographs demonstrate that the bacteria preferentially bind to cell—cell junctions where apoptosis is occurring. Reproduced from
Capasso et al. (2016) where it was published under a CC-BY 4.0 license. (C) Imaging of ZO-1 to assess barrier integrity and the inflammatory enzyme caspase-1
show active host cell extrusion and programmed cell death in response to Salmonella infection. Reproduced with permission from Knodler et al. (2010).

(D) Imaging of F-actin and host-cell DNA were used to visualize the complex architecture of host cells within the ‘gut-on-a-chip’ infection model, and the location of
GFP-labelled E. coli microcolonies that preferentially congregated in the intestinal crypt-like structures. Reproduced with permission from Kim et al. (2016).
TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labelling. Scale bars: 10 um (B,C); 50 ym (D).

their potential use in life sciences. While not specifically focused on  (Schermelleh et al., 2019). A striking example of the use of super-
infection models, others have described how the biological questions  resolution microscopy in host—pathogen interactions is the imaging of
can determine the selection of the specific super-resolution technique  host cytoskeletal proteins in a Shigella infection model (Krokowski
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Table 2. Description and potential uses of common light and electron microscopes

Technique Description

General uses for studying host—pathogen interactions

Brightfield Simplest form of light microscopy
Can image live or fixed samples
Relies on inherent contrast
Unable to penetrate thick samples

No aperture

Phase contrast Phase ring enhances inherent contrast
Can image live or fixed samples
Unable to penetrate thick samples

No aperture

Differential interference
contrast (DIC)

Combines light from multiple focal planes
using a prism

Enhanced inherent contrast

Yields a pseudo-three-dimensional image

Can image live or fixed cells

Unable to penetrate thick samples

No aperture

Epifluorescence illumination Uses reflected fluorescent light

High intensity filtered light excites fluorophores

Can image live or fixed cells

Can penetrate through thicker samples (~10 pm)

No aperture

Gives spatial context

Identify tissue-specific structures (e.g. microvilli)

Quality control (e.g. to visualize barrier integrity of monolayers,
confirm the presence of differentiated cell types)

As for brightfield

As for brightfield

Image fluorescently labelled surface structures (host or bacterial)

Fluorescently labelled bacteria in relation to labelled components of
the host cell

Images can be overlaid with other micrographs (e.g. brightfield,
phase contrast or DIC) to provide context

Can be combined with computational deconvolution

to improve spatial resolution

Confocal laser scanning
microscopy (CLSM)

Uses lasers to excite fluorophores
Can image live or fixed cells

Can penetrate much thicker samples (~100 um)

As for epifluorescence illumination
Additional control of the depth of field to image host structures or
fluorescently labelled bacteria inside host cells

Uses an aperture to image at a single focal point

Laser scans a single focal plane at a time

Transmission electron
microscopy (TEM)

Uses electrons to image samples

electrons
Samples must be fixed/stained
Cannot image through thick samples

Image is a negative projection from penetrating

Image inside host cells
Mechanisms of bacterial entry and intracellular persistence
Host ultrastructure (e.g. mucous granules, cilia)

Uses apertures to image at a single focal plane

Can incorporate specific labels

For host—pathogen interactions, samples typically

prepared by ultra-thin sectioning

Scanning electron
microscopy (SEM)

Uses electrons to image samples

Sample thickness does not matter

Aperture used to focus electrons in a single focal

plane

Image is a surface scan from backscattered electron

Bacteria interacting with host cell surfaces

Bacterial aggregation (i.e. biofilm) on the surface of epithelial cells

Quality control (e.g. to visualize barrier integrity of monolayers,
confirm the presence of differentiated cell types)

et al., 2018; Mostowy et al., 2010). In the 2010 paper, the authors
used mostly confocal microscopy to show the interaction of host cell
cytoskeletal proteins called septins with intracellular bacteria, but also
used STORM to capture high-resolution image of fluorescently
labelled septin assemblies they refer to as ‘cages’ surrounding
individual Shigella (Mostowy et al., 2010). In addition, they also
provide a direct comparison between the resolving power of
conventional and STORM methods (Mostowy et al., 2010). In
subsequent work from the same group, the authors used fluorescent
labelling and SIM to capture the overlap of the bacterial division
protein filamentation temperature-sensitive protein Z (FtsZ) with
septin 7 (SEPT7), which led them to conclude that the microscale
change in membrane curvature that occurs during bacterial division
can act as a trigger for host cytoskeletal arrangements that result in the
entrapment of intracellular bacteria (Krokowski et al., 2018). Others
have used STORM to visualize the nanoscale distribution and linear
organization of the host ubiquitin on the surface of intracellular
Salmonella  Typhimurium (Van Wijk et al, 2017). These

observations, which would not have been possible using traditional
light microscopy, contributed to the hypothesis that specific
ubiquitylation patterns, or ‘signatures’, may elicit specific host
signalling pathways involved in bacterial clearance (Van Wijk et al.,
2017). The main drawbacks to these methods, in general, is the cost
and access to specialized equipment and/or software, and the high
level of expertise required to use them. Accordingly, these highly
technical and challenging methods have not been widely used in the
studies that fall within the scope of this Review, but will likely become
more prominent in the field in years to come as they become more
accessible outside of core facilities or specialized research groups.

Light microscopy imaging tools and techniques

There are many imaging tools that can be used to enhance the
power and utility of light microscopy, and the information gained
from labelling experiments often provides key clues to
pathogenic mechanisms at the host—pathogen interface.
Labelling techniques used with light microscopy can be
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broadly separated into those that can be used with fixed cells and
those that can be used with live cells.

Fixed-cell techniques

Methods used with non-living fixed cells commonly exploit
fluorescently labelled antibodies to mark epithelial or bacterial
cells, or use natural or synthetic compounds that bind specific cell
structures (e.g. nuclei) or intracellular compounds (e.g. Ca®")
(Fig. 2A; Table S1). Antibody-based methods can be completed
with traditional multidomain antibodies, or more recently
developed single domain alternatives called nanobodies.
Nanobodies are a unique form of immunoglobulin G (IgG)
isolated from the sera of Camelidae, comprising a single heavy
chain and a single variable domain, which favourably affects the
size, solubility and affinity of nanobodies versus multidomain
antibodies (Beghein and Gettemans, 2017), and reduces some
labelling artefacts associated with larger multidomain antibodies
(Beghein and Gettemans, 2017; Sograte-Idrissi et al., 2020). While
nanobodies are not as widely available, or commonly used in
traditional light microscopy, they are well suited for high- and super-
resolution applications because of their spatial resolution in the
nanometer range (Ries et al., 2012), as reviewed recently (Beghein
and Gettemans, 2017). Fixed-cell methods can usually be
completed without significant technical development prior to
imaging and follow similar protocols in bacterial and host cells.
A common method to label fixed cells is immunolabelling. These
experiments use fluorescently labelled antibodies to detect
proteins, and generally follow a standard procedure of fixation,
permeabilization, blocking, and addition of primary and/or
secondary antibodies that recognize the target antigen (Bratthauer,
2010). The need for a permeabilization step that allows antibodies to
cross fixed membranes, and the reagent used to perform this step,
will depend on the subcellular location of the antigen (Jamur and
Oliver, 2010b) but can also be used as a method of examining
specific host-pathogen interactions. For example, selective
permeabilization with digitonin, which permeabilizes the plasma
membrane but not intracellular membrane-bound organelles, has
been used to determine whether intracellular Salmonella localize in
the cytosol or inside a vacuole during infection of mucosal epithelial
cells (Knodler et al., 2010).

With immunolabelling, primary antibodies can recognize a
conserved antigen within the target and thus can be used
across multiple cell lines (e.g. cytoskeletal or junctional protein
antigens) or bacterial species and/or strains [e.g. highly conserved
lipopolysaccharide core antigens (Pollack et al., 1987)]. Alternately,
antibodies can be specific to a group of bacteria that share a common
surface structure (i.e. serotype) (Aubey et al., 2019; Carvalho et al.,
2005), or bind a specific protein such as a bacterial virulence factor
(Uotani et al., 2019). Another strategy to detect or image specific
cellular structures in fixed cells is epitope tagging; here, genetic
constructs are generated that allow for the co-expression of polypeptide
protein tags (with commercially available antibodies) and a gene of
interest (Fritze and Anderson, 2000). Common tags include
hemagglutinin (HA) or the Myc epitope. When fluorescently labelled
antibodies are applied using indirect immunolabelling protocols (i.e.
both primary and secondary antibodies are used), fluorophore-labelled
secondary antibodies can be varied to accommodate different colour
combinations in multiplexing experiments that simultaneously image
multiple proteins within a single sample. When this approach is used,
online tools can help to determine the spectral compatibility of dyes and
probes before setting up experiments, including SpectraViewer
from Thermo Fisher Scientific (https://www.thermofisher.com/ca/

en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-
spectraviewer.html#!/) or Spectra Analyzer from Biolegend (https://
www.biolegend.com/en-us/spectra-analyzer). After the application of
the antibodies, counterstains that bind to specific structures, such as the
nucleus or the plasma membrane, provide contrast and cellular context.
However, it is important to keep in mind, when using these reagents in
co-culture, that some common fluorescent dyes or stains bind to
structures that are found in both host cells and bacterial cells. For
example, wheat germ agglutinin (WGA)-conjugated dyes bind sialic
acid residues, which are found on the surface of epithelial cells but also
in some bacterial membranes (Severi et al., 2007). After the labelling
protocols, the samples are then mounted, with the option of using anti-
fade mounting media (Ono et al., 2001) to prolong the stability of the
fluorescent signal for subsequent imaging.

Fixed-cell samples can also be labelled using fluorescent in situ
hybridization (FISH), which uses fluorescently labelled
oligonucleotide probes that recognize a nucleic acid sequence of
interest inside fixed cells (Spector et al., 2005; Liehr, 2017). This
approach was used to tag Nontypeable Haemophilus influenzae
(NTHi) in a co-culture system with primary epithelial cells, using a
cyanine dye-labelled probe that recognized NTHi 16S RNA (Walker
et al., 2017). Although quick and easy to perform in theory, this
method is not as commonly used for imaging of host-pathogen
interactions, likely due to a lower abundance of the target compared to
protein antigens, as well as the potential technical challenges and time
investment required for the optimization of the initial FISH protocol in
bacteria, including probe design and sample preparation, as reviewed
elsewhere (Frickmann et al., 2017; Moter and Gobel, 2000). The main
advantage of this technique compared to antibody-based methods is
that it can be used when there are no commercially available
antibodies for the target or when the production of custom antibodies
is cost prohibitive. A list of published rRNA-targeted probes for
bacteria can be found on the open-source repository ProbeBase
(https://probebase.csb.univie.ac.at/; Greuter et al., 2016).

Live-cell techniques

Live-cell techniques most often involve the use of fluorescent
microscopes (Table 2) and fluorescent protein labels. The most-used
fluorescent protein is green fluorescent protein (GFP), which has
many variants (see Box 1). After a suitable fluorescent protein has
been selected, the corresponding gene can be transiently introduced
into live bacteria using an autonomously replicating plasmid (Di
Paola et al., 2017; Ernstsen et al., 2017; Knodler et al., 2010; Rajan
et al.,, 2000; Starner et al., 2006; Sullivan and Ulett, 2018)
(Fig. 3A.iii,Ciii) through standard transformation protocols (Froger
and Hall, 2007; Gonzales et al., 2013). Plasmid-based systems are
efficient to work with; they can provide a strong signal due to
frequently producing multiple copies per bacterium and can often be
used with more than one species. However, they commonly require
the addition of antibiotics to the culture medium for plasmid
maintenance, which may not be ideal for experiments involving
several bacterial strains with variable antimicrobial sensitivity. This
issue can be circumvented by empirically determining the time
frame of plasmid stability following the removal of the antibiotic
from the culture and completing the experiments within that
window (Starner et al., 2006).

Alternatively, the gene encoding the fluorescent protein can be
integrated into the genome by site-specific recombination.
Examples of integration vectors include mini-Tn7 (Barnes et al.,
2008; Choi et al., 2005) or mini-CTX (Hoang et al., 2000). Barnes
and colleagues used the mini-Tn7 vector to demonstrate the
adhesion of GFP-labelled Pseudomonas aeruginosa to the host
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eukaryotic cells and either transient or stable transfection protocols
Box 1. Variations of GFP (Colosimo et al., 2000). In general, the choice between transient or

A commonly used fluorescent protein, GFP, or one of its derivatives,
began its rise to notoriety in the imaging world following its appearance
on the cover of Science in 1994 as a novel marker for gene expression
(Chalfie et al., 1994). Synthetic variants of the GFP molecule, which was
originally isolated from the jellyfish Aequorea victoria (Morise et al.,
1974), were developed by random amino acid substitutions that resulted
in enhanced stability and brightness (Cormack et al., 1996; Heim et al.,
1994). Members of the GFP family are now commercially available with
profiles in the cyan (e.g. ECFP), green (e.g. EGFP), yellow (e.g. EYFP)
and red (e.g. dsRED) spectral regions. Importantly, the spectral
properties of GFP and its variants can be influenced by changes in
culture conditions, including temperature and pH (Campbell and Choy,
2001; Ward et al., 1982), so some variants may be more appropriate than
others for different culture conditions. On the pathogen side, this can be
particularly relevant if researchers are imaging bacteria in multiple
cellular compartments with different pH ranges (e.g. lysosomes
compared to cytosol); here, an acid-tolerant (pKa<4.0) (Shinoda et al.,
2018) or pH-stable fluorescent protein (Roberts et al., 2016) can reduce
variability between subcellular compartments. Another variation of the
standard GFP is the split-GFP, which has been used as a tool to examine
the spatial distribution of T3SS effector molecules from Salmonella in
living host cells (Van Engelenburg and Palmer, 2010). The system works
by tagging a bacterial effector protein with the terminal portion of GFP
(GFP11), which only produces a fluorescent signal when it is complemented
by the remaining portion of the GFP (GFP1-10) that is produced by the
host cell (Van Engelenburg and Palmer, 2010). Others have used this
system to study the accumulation and specific distribution of secreted
virulence factors of L. monocytogenes and S. enterica during the course
of infection (Batan et al., 2018; Van Engelenburg and Palmer, 2010;
Young et al., 2017).

extracellular matrix protein fibronectin (Barnes et al., 2008). One
disadvantage to chromosomally expressed GFP, however, is that the
signal is often not as strong due to the lower copy number compared
to a plasmid-based approach. Once integrated, the gene can be under
the control of (1) a constitutive promoter that provides continual
expression, (2) an inducible promotor that provides on—off control,
or (3) a gene-specific promoter that can also provide information on
the expression of genes that, for example, influence virulence. The
latter option was elegantly used to track the downregulation of the
Salmonella type 111 secretion system (T3SS) genes and flagellar
genes following host-cell internalization, and to show differential
activation of individual genes depending on the location of the
bacteria inside the cell and the time post-infection (Knodler et al.,
2010) (Fig. 3Ciii).

Importantly, when labelling a bacterium with a fluorescent protein
certain caveats and controls must be considered. First, a signal from a
fluorescent protein may not mean a live bacterium, so alternative
methods of accurately assessing viability such as LIVE/DEAD
staining and estimating cell colony forming units are necessary.
Second, maturation and degradation rates of the fluorescent proteins
may vary between bacterial species, growth conditions or culture
conditions, and standard curves of relative fluorescence units (RFU)
versus time should be completed when the signal is used for
quantification or assessment of viability, especially in the case of
systems with inducible promoters. Finally, the production of large
fluorescent proteins can become a metabolic burden so growth curves
should be completed to ensure that the use of fluorescent proteins in
live-cell systems is not generating experimental artefacts (e.g.
decreased growth or virulence).

For host cells, similar approaches can be employed using
expression vectors and/or transfection reagents intended for use in

stable transfection will depend on the timeline of the experiment and
how amenable the cells are to manipulation. For shorter experiments
(12-72h) involving cells growing as an undifferentiated
monolayer, transient transfection methods can deliver the genetic
information required for fluorescent protein production in a large
proportion of cells in the culture and provide a fluorescent signal for
few days post transfection, before it is lost owing to replication or
degradation (Colosimo et al., 2000). This approach was used
recently to label autophagic membranes of Listeria monocytogenes-
infected cells growing in multiwell plates (Kortebi et al., 2017). The
transfected protein was expressed up to 3 days post-infection and
micrographs from these experiments aided in demonstrating that the
bacteria entered a persistent state and became trapped in lysosome-
like vacuoles in a subset of cells (Kortebi et al., 2017). In contrast,
infection models that involve well-differentiated polarized cells
(Rybakovsky et al., 2019) or cell systems that require weeks to
establish, are better suited to stable transfection approach that
produces cultures with inheritable fluorescence (Colosimo et al.,
2000). Some aspects of the stable transfection protocol may require
optimization, such as the method of transfection, the selection
reagent, the culture medium or the plasmid concentration, which
can become a rate-limiting step in the transfection of different cell
types. However, the final product, now considered a new cell line,
can be a valuable tool for ongoing research. For instance, stable
transfection using a lentiviral vector was used to generate mCherry-
expressing human gastric epithelial spheroids (Sebrell et al., 2018) that
were employed in Helicobacter pylori infection studies (Sebrell et al.,
2019). Of note, the non-profit plasmid repository Addgene includes
information on both prokaryotic and eukaryotic vectors and contains a
fluorescent protein guide (www.addgene.org/fluorescent-proteins/)
that can aid in the selection of the appropriate tools. In addition, a
small selection of stable human GFP- and/or red fluorescent protein
(RFP)-expressing cells are now commercially available for use in
situations where the transfection protocols cannot be performed and
there is flexibility regarding the cell line that can be used.

In addition to labelling cellular structures, reagents are also
available to track processes that are relevant to host—pathogen
interactions in live host cells (Fig. 2; Table S1); these include the
externalization of phosphatidylserine associated with early stages of
apoptosis, assessed for instance by Annexin V staining (Fig. 2B),
DNA degradation during late stages of apoptosis by TUNEL
staining, the activation of caspase enzymes (e.g. caspase-1) linked
to inflammation (Fig. 2B), fluctuations in Ca?' that indicate
signalling events (by using Fura-2) (Bain et al., 1998), the
acidification of lysosomes (e.g. LysoTracker™) (Capasso et al.,
2016), as well as cell location or its replication state by using
CellTracker™ or CellTrace™ (Capasso et al., 2016). The use of
these reagents can provide important information regarding the
underlying mechanisms of infection. For example, studies
examining the infection of host cell layer with either
P. aeruginosa (Capasso et al., 2016) (Fig. 2B) or S. Typhimurium
(Knodler et al., 2010) (Fig. 2C) both showed host-cell extrusion
events associated with areas of pathogen accumulation, but the
respective use of reagents to track cellular processes suggests
distinct underlying mechanisms. In the P. aeruginosa infection,
Annexin V staining was used to demonstrate that these bacteria
preferentially bind to cell-cell junctions in host cells that are
undergoing apoptosis (Capasso et al., 2016) (Fig. 2B). Importantly,
control experiments showed that under their culture conditions, the
bacteria were not inducing host cell death, merely taking advantage
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Fig. 3. Complementary views of individual infections models. Here, each column represents a single infection model that has been imaged using SEM (top
row), TEM (middle row) and light (bottom row) microscopy. Each imaging technology provides a different type of information, which taken together, can uncover
mechanism of attachment (A), dissemination (B,C), or colonization (D) during infection of host cells. The micrographs represent infection models of (Aiiii)
Nontypeable H. influenzae, reproduced from Starner et al. (2006) with permission from the American Thoracic Society. (Bi-iii) Escherichia coli, reproduced from
Velle and Campellone (2017) with where it was published under a CC-BY 4.0 license; (Ci—iii) Salmonella Typhimurium, reproduced with permission from Knodler
et al. (2010); (Di-iii) Streptococcus pneumoniae, reproduced from Weight et al. (2019) where it was published under a CC-BY 4.0 license. The bottom row shows
fluorescence imaging of: (Aiii) GFP-labelled NTHi bacteria; (Biii) E. coli (blue), epithelial F-actin (red) and bacterial effectors (HA-Tir, green); (Ciii) wild-type
Salmonella carrying PprgH-GFP[LVA] (green), host cell DNA (cyan), villin (red) and ZO-1 (grey); and (Diii) host nuclei (blue), host surface carbohydrates
(WGA, red), and bacteria (specific serotype antiserum, green). Annotations retained from the original papers are not defined here for brevity.

of its outcomes, as indicated by similar rates of apoptosis in
uninfected controls (Capasso et al., 2016). In contrast, extrusion
events in the S. Typhimurium infection model showed that host-cell
extrusion was associated with an active inflammatory process
involving the increased activation of caspase enzymes, as indicted
with caspase-1 immunolabelling (Knodler et al., 2010) (Figs 3Ci—iii
and 2C). This type of labelling, therefore, provides information that
can be used to target separate and specific host-cell processes when
developing anti-infective therapy for these pathogens.

In addition, time-lapse or real-time imaging in host—pathogen
interaction is important as it captures the dynamic nature of the
interactions during the infection process. Examples include the
recording of ciliary beat frequency to determine whether
H. influenzae exposure affects mechanical innate immune
responses (i.e. mucociliary clearance) (Walker et al., 2017). Time-
lapse imaging can also be used to visualize intracellular motility of
various pathogens to examine the mechanism involved in host-cell
transmigration (Golovkine et al., 2016), motility within host cells

(Nieto et al., 2019), or the switch between dissemination and
persistence (Kortebi et al., 2017; Nieto et al., 2019). It has also been
used for the verification of intracellular replication (Lerner et al.,
2016; Nieto et al., 2019). Finally, real-time imaging is an excellent
technique for visualizing bacterial translocation across the surface of
cultured cells, and has been used to demonstrate the cell-cell
transmission of pathogenic Escherichia coli (Sanger et al., 1996;
Velle and Campellone, 2017), which has the important consequence
of expanding the range of bacterial colonization within a host.

For all techniques described above that use fluorescence
microscopy, it is important to assess non-specific fluorescence
(i.e. autofluorescence) that can arise from the cell culture media
(e.g. riboflavin) or autofluorescent components that naturally occur
in host tissues (e.g. collagen and tryptophan). Here, washing out,
modifying or using specific imaging media (e.g. FluoroBrite™)
(Di Paola et al., 2017) can help limit autofluorescence, as can the use
of blocking and quenching reagents (e.g. animal serum, BSA and
TrueBlack® Lipofuscin) during sample processing.
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Electron microscopy imaging tools and techniques

Electron microscopy provides greater image resolution compared to
light microscopy and, therefore, is commonly used to investigate the
ultrastructure of cells and their components. The two main types of
electron microscopy are transmission electron microscopy (TEM)
and scanning electron microscopy (SEM) (Table 2), and both are
commonly and effectively used to study host—pathogen interactions.

TEM requires samples to be fixed either chemically, with
aldehydes and osmium tetraoxide, or by using an environment with
cryogenic temperatures at high pressure, termed high pressure
freezing and freeze substitution; afterwards, the samples are
embedded in a plastic resin and sliced in thin sections for imaging
(Bozzola and Russel, 1998). Importantly, the options at each step
may introduce reagent- or method-specific artefacts, such as
shrinkage and masking of antigens, which have been discuss
extensively elsewhere (Maunsbach and Afzelius, 1999). While the
preparation of thin sections is technically challenging, this method
has resulted in very detailed and informative images of host—
pathogen interactions. For instance, the specific location of
Bordetella pertussis attachment to cell monolayers and the
ultrastructure surrounding the site of host—pathogen interactions
have been shown in detail by TEM (Guevara et al., 2016). TEM was
an important tool in this study because it offered the resolution to
show the interaction of individual bacteria with individual cilia on
the highly differentiated epithelial cells (Guevara et al., 2016). From
this, the authors were able to discern patterns of intimate attachment,
including the clustering of multiple bacteria and the attachment to
cilial ‘tufts’ (Guevara et al., 2016). Furthermore, the ‘cross-section’
view afforded by thin-sectioning allows for the visualization of
areas of adherence, invasion, bacterial replication and host
cytoskeletal changes all in the same sample, and thus provides a
detailed overview of the infection process in this model (Guevara
et al.,, 2016). One of the most common applications of thin-
sectioning and TEM is the visualization of internalized bacteria. For
instance, TEM has been used to demonstrate that internalized
P. aeruginosa reside within an intracellular membrane vesicle
(Capasso et al., 2016). Similarly, Streptococcus pneumoniae were
found to reside within a vacuole after infection, but were also shown
to be able to transmigrate between epithelial cells to spread infection
(Weight et al., 2019) (Fig. 3Dii). TEM can also be used as a quality
control protocol to confirm specific characteristics of an infection
model that may be relevant to host—pathogen interactions, such as
the presence of mucus granules, where H. influenza were shown to
congregate during the early stages of infection (Marrazzo et al.,
2016). With TEM, specific cellular structures can be labelled by
gold-conjugated antibodies, using similar methods as those
described above for light-microscopy-based immunolabelling
experiments.

SEM can also provide high-resolution ultrastructural information
on host—pathogen interactions. Processing is, in general, less
laborious than TEM, with the vast majority of samples following
a standard protocol of chemical fixation, dehydration by critical
point drying and then coating with a thin layer of electrically
conductive metal, such as gold (Fischer et al., 2012). Importantly,
because SEM generates images by scanning the surface of a sample
with electrons rather than penetrating the sample, visualization
is limited to the observation of extracellular host—pathogen
interactions. Accordingly, SEM is often used to study the initial
attachment of bacterial cells on a monolayer. For example, SEM
studies were able to detect epithelial membrane folding as a
response to S. pneumoniae interaction (Weight et al.,, 2019)
(Fig. 3Di). This was an important observation both because

S. pneumoniae is conventionally considered an extracellular
pathogen, and the folds were different from the membrane ruffles
previously seen during invasion by intracellular pathogens such as
S. Typhimurium, suggesting a novel mechanism of invasion
(Weight et al., 2019). In addition, SEM is a good tool for
studying bacterial biofilms, as it can demonstrate both bacterial cell
clustering and production of exopolymeric substances (EPS), both
of which are hallmark features of biofilm formation (Flemming and
Wingender, 2010). For example, SEM was used to show that
H. influenzae forms biofilms more readily on the surface of
epithelial cells from patients with primary ciliary dyskinesia as
compared to healthy controls (Walker et al., 2017). Combined with
TEM, SEM was also used to show that H. influenzae formed
adherent biofilms on the apical surface airway epithelia of patients
with cystic fibrosis (Starner et al., 2006) (Fig. 3Ai,ii). It is important
to note that unlike light microscopy, and to some degree TEM,
specific cell structures or processes cannot be labelled when
samples are prepared according to the SEM protocol; however, more
innovative techniques are continuing to push the limits of what both
TEM and SEM can tell us about host—pathogen interactions.

Looking forward - advanced electron microscopy
techniques
Understanding host—pathogen interactions is critical to advancing
our knowledge and treatment of bacterial infections. The studies
referenced and discussed in this Review provide a small subset of
the observations that have been previously made using microscopy,
and undoubtedly, with the technological advances in imaging
techniques, the research questions that can be answered with
microscopy will continue to grow. One of the major limitations with
traditional electron microscopy methods is sample thickness. As
described above, imaging has been traditionally limited to the
surface of intact samples in SEM and to serially sectioned samples
in TEM. Recently this limitation has been addressed by techniques
that automate the removal of precise layers from the surface of a
sample using either an ultramicrotome, in a process known as serial
block face (SBF), or a gallium ion source, described as focused ion
beam (FIB) milling. Both techniques, and how they contribute to
three-dimensional sample imaging, have been reviewed elsewhere
(Peddie and Collinson, 2014). These techniques can be used
with samples that have been prepared in a variety of ways (e.g.
embedded, fixed, dried or cryo-preserved). Samples are alternately
milled then imaged, resulting in a Z-stack of SEM or TEM images,
which combined with post-acquisition image analysis can give rise
to high-resolution three-dimensional images. A workflow for FIB
processing of infected eukaryotic cells has been published
elsewhere (Medeiros et al., 2018), as well as a detailed
description of combining FIB with SEM to image tissues and
epithelial cells (Drobne, 2013) and a workflow for SBF-SEM
(Russell et al., 2017). Although these methods are labour intensive,
and require optimization and extensive sample preparation, the use
of these techniques with electron microscopy has the potential to
generate highly informative images of pathogens interacting with
the internal compartments of host cells in three-dimensional space.
Likewise, several research questions in host—pathogen interaction
studies require the high magnification and resolution presented by
electron microscopy but would also benefit from the specific
labelling, spatial resolution and depth of field offered by
fluorescence microscopy. In addition to super-resolution
techniques discussed above, correlative light electron microscopy
(CLEM) (reviewed by de Boer et al., 2015) will likely emerge as
another key tool in the future of host—pathogen imaging. While not
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extensively used in studies that fall within the scope of this Review,
CLEM can, in theory, provide detailed cellular context for structures
and processes labelled by fluorescent proteins or be used to pre-
select rare events for EM analysis. A recent methods paper describes
a workflow that can be used to combine confocal light microscopy
of intact epithelial monolayers with SEM to address interactions
between polarized epithelial cells and bacterial pathogens
(Kommnick et al., 2019). In a study discussed above, CLEM had
also been used to obtain information about the ultrastucuture within
infected host cells (Mostowy et al., 2010). Specifically, the authors
used fluorescence light microscopy to identify the host SEPT6-GFP
surrounding intracellular Shigella, and then employed SEM to
determine the morphology of the filamentous septin assemblies
within the host cell at high resolution (Mostowy et al., 2010).
Importantly, the authors were able to use SEM to image the
ultrastrucuture of the interior of the host cell because they first
removed the host-cell membrane by treatment with Triton X-100 in
a cytoskeleton stabilization buffer (Mostowy et al., 2010).
Immunogold labelling was also used to identify the specific
location of host-cell phosphorylated myosin light chain (pMLC)
and SEPT6, in the samples prepared for SEM, which supported the
conclusion that these specific host proteins form the cages that serve
to compartmentalize the intracellular bacterium (Mostowy et al.,
2010). In a more recent study, CLEM was used to correlate images
of fluorescently labelled Mycobacterium tuberculosis and host-cell
membranes with SEM images to locate replicating bacteria within
the cytosol and autophagosomes of the host cell (Lerner et al.,
2016). In that study, SBF-SEM was used to gain access to the inside
of the host cell at the precise location of previously identified
population of EGFP-labelled M. tuberculosis (Lerner et al., 2016).
The results from the CLEM experiments showed that a
subpopulation of M. tuberculosis is able to grow in LC3-positive
autophagic compartments within host lymphatic endothelial cells,
which are specialized epithelial cells that line lymphatic vessels
(Lerner et al., 2016). The authors noted that finding replicating
bacteria in this location was unexpected considering the established
role of autophagy in the antimycobacterial host immune response
(Lerner et al, 2016). Importantly, obtaining this specific
observation required the incorporation of live-cell imaging,
specific light-microscopy-based labelling, preselection of areas
within the host cell that contain bacteria and ultrastructural
information about host cell compartments, which could only be
accomplished using CLEM techniques.

Conclusions and perspectives

While the imaging approaches and recent technical advances
discussed throughout this Review have contributed greatly to the
advances in the field, we would also like to see more complexity
added at the level of experimental design. This could include studies
that use multiple bacterial strains (laboratory strains and/or clinical
strains) (Hendricks et al., 2016; Starner et al., 2006; Weight et al.,
2019), and/or epithelial cell lines (Weight et al., 2019), types
(Guevara et al., 2016; Hendricks et al., 2016), or models (Carvalho
et al.,, 2005), to demonstrate universal mechanisms that are
independent of model-specific variables. Furthermore, we chose
to focus on imaging studies of two-component models (i.e. one
epithelial cell and one pathogen) because the relative simplicity of
the cell culture techniques makes the models discussed here
accessible to most research laboratories, and because this
reductionist approach is an important first step in understanding the
basic interactions between bacteria and host epithelial barriers.
However, as our understanding of bacterial interspecies

communication (Azimi et al., 2020) and community-based bacterial
phenotypes (e.g. cheating and competition) (Dunny et al., 2008;
Rainey and Rainey, 2003), as well as the collective role of bacterial
communities in the expression of infectious disease (Chow et al., 2011;
Libertucci and Young, 2019; Vayssier-Taussat et al., 2014) progresses,
it will be important to expand these models to include more than one
pathogen. Similarly, adding complexity by using host models with
more than one mammalian cell type (Barrila et al., 2017; Noel et al.,
2017; Papazian et al., 2016) will expand the utility of infection
modelling that is based on cell culture systems. Importantly, as the
complexity of both imaging and infection modelling continues to
increase, collaborative studies between research groups with expertise
in each of these areas will become even more important, allowing for
the combination of multiple, powerful and complementary methods
that will allow scientists to improve their knowledge of host—pathogen
interactions.
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