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The Hedgehog (Hh) family of secreted
signaling proteins plays a crucial role in
development of diverse animal phyla,
from Drosophila to humans, regulating
morphogenesis of a variety of tissues and
organs (McMahon et al., 2003). Hh
signaling is also involved in control of
stem cell proliferation in adult tissues

and aberrant activation of the Hh
pathway has been linked to multiple
types of human cancer (Taipale and
Beachy, 2001). A lot has happened since
the initial discovery and the molecular
cloning of Drosophila Hh (Lee et al.,
1992; Nusslein-Volhard and Wieschaus,
1980). Many components involved in Hh
signal transduction in Drosophila have
since been identified and characterized.
However, the vertebrate Hh signaling
pathway may yet offer some surprises.
Here we present an overview of Hh
signaling in the light of recent data,
which has revealed an unexpected level
of divergence of the mechanism of Hh
signaling in flies, fish and amniotes.

Hh expression, secretion and
processing
Hh is involved in the patterning of a wide
variety of tissues in many species

(McMahon et al., 2003). Accordingly,
the expression of the different Hh
isoforms is tightly controlled by highly
complex and divergent transcriptional
enhancers (see Sagai et al., 2005 and
references therein). The mechanisms for
subsequent Hh processing and secretion
appear to be conserved in evolution and
are likely to apply to all Hh isoforms,
including the mammalian Hh proteins
Sonic hedgehog (Shh), Desert hedgehog
(Dhh) and Indian Hedgehog (Ihh)
(Ingham and McMahon, 2001).

The Hh proteins undergo multiple
processing steps. First, the signal
sequence is cleaved. Then the C-terminal
domain of the Hh polypeptide catalyzes
an intramolecular cholesteroyl transfer
reaction resulting in formation of a C-
terminally cholesterol-modified N-
terminal Hh signaling domain (HhN)
(Porter et al., 1996). The cholesterol
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modification results in the association of
Hh with membranes, facilitating the final
processing step in which a palmitoyl
moiety (Pepinsky et al., 1998) is added
to the N-terminus of HhN by the
transmembrane acyltransferase Skinny
hedgehog (Ski) (Chamoun et al., 2001;
Lee et al., 2001). This generates the fully
active, dually lipid-modified HhN.

Release and transport of Hh
through tissues
Despite its tight membrane association,
Hh is able to affect patterning of distal
tissues, acting directly over a long range
in a time- and concentration-dependent
manner (Stamataki et al., 2005). The
formation of the gradient of Hh activity
emanating from the secreting cells is
facilitated by multiple macromolecules,
which control release, transport and
sequestration of Hh. Hh is released from
the secreting cell by Dispatched (Disp),
a conserved protein that shares sequence
similarity with transmembrane
transporters (Burke et al., 1999; Zhu and
Scott, 2004). Subsequent transport of Hh
through tissues requires heparan sulfate,
as indicated by the failure of Hh
transport in embryos lacking heparan-
sulfate-synthesizing enzymes of the
EXT/tout velu (ttv) family (The et al.,
1999; Zhu and Scott, 2004). The
cholesterol modification of Hh also
affects the range of Hh action by
affecting its palmitoylation, stability,
diffusion and/or transport (Callejo et al.,
2006; Dawber et al., 2005; Gallet et al.,
2006; Lewis et al., 2001; Li et al., 2006;
Mann and Beachy, 2004).

Several other proteins that affect Hh
transport and/or shape the Hh gradient
have been described in different species.
For example, in addition to the Hh
receptor Patched (Ptc), which sequesters
Hh and restricts its range of action in all
species analyzed (Chen and Struhl,
1996; Zhu and Scott, 2004), vertebrates
have an additional transmembrane
protein, Hh-interacting protein (Hip),
which binds to Hh proteins and reduces
their range of movement (Chuang and
McMahon, 1999; Zhu and Scott, 2004).

Receiving the Hh signal
The binding of Hh to cells is facilitated
by two classes of accessory receptor: the
glypican-family of cell surface

proteoglycans (e.g. dally-like in
Drosophila) (Lum et al., 2003a) and the
transmembrane proteins iHog and Boi
(CDO and BOC in vertebrates) (Tenzen
et al., 2006; Yao et al., 2006). iHog and
Boi also increase the binding affinity of
Hh for the signaling receptor Ptc, a 12-
span transmembrane protein related to
bacterial transmembrane transporters
of the resistance-nodulation-division
(RND) family. In the absence of Hh, Ptc
catalytically inhibits the activity of the
seven-transmembrane-span receptor-like
protein Smoothened (Smo) (Taipale et
al., 2002), potentially by affecting
localization and/or concentration of a
small molecule. Smo activity can be
modulated by many synthetic small
molecules (Chen et al., 2002b). Of
endogenous metabolites, oxysterol
derivatives (Corcoran and Scott, 2006)
and vitamin D3 derivatives (Bijlsma et
al., 2006) have been suggested to
mediate the effects of Ptc on Smo.

Binding of Hh to Ptc results in loss of Ptc
activity, and consequent activation of
Smo, which transduces the Hh signal to
the cytoplasm (Stone et al., 1996; Taipale
et al., 2002), ultimately leading to the
activation of the Ci/GLI family of
transcription factors (Lum and Beachy,
2004; Matise and Joyner, 1999; Methot
and Basler, 2001).

Divergence of the mechanism of
intracellular Hh signaling
The components and mechanisms
involved in Hh signaling from secretion
to reception of signal thus appear largely
conserved. However, a major divergence
of mechanism appears to have taken
place between the Smo signal transducer
and the Ci/GLI transcription factors.

In Drosophila, Smo accumulates at the
cell surface after Hh stimulation (Denef
et al., 2000). By contrast, oncogenically
activated mammalian Smo proteins
localize to the endoplasmic reticulum
(Chen et al., 2002a), and mammalian
Smo has been reported to internalize
after pathway activation (Incardona et
al., 2002). Thus, it seems that Smo
localization is differentially regulated in
vertebrates and invertebrates.

Furthermore, phosphorylation of Smo is
also differentially regulated in
Drosophila and in mammals. In

Drosophila, Smo activation is coupled to
the hyperphosphorylation of 26
serine/threonine residues of its C-
terminal cytoplasmic tail by protein
kinase A (PKA) and casein kinase I
(CKI) (Apionishev et al., 2005; Jia et al.,
2004; Zhang et al., 2004). However,
none of these phosphorylation sites is
conserved in mammals, although many
of them are located within or at the
border of the evolutionarily conserved
region of Smo (Lum et al., 2003b;
Varjosalo et al., 2006).

Further evidence of divergence comes
from analysis of the atypical kinesin
Costal2 (Cos2), which is a key negative
regulator of the Hh pathway downstream
of Smo in Drosophila (Hooper and Scott,
2005). Cos2 forms a tight protein
complex with Fused (Fu), a protein
kinase that acts positively on the Hh
pathway. Cos2 also bridges Smo to the
Ci transcription factor by associating
directly with both of these proteins (Jia
et al., 2003; Lum et al., 2003b; Ruel et
al., 2003). In the absence of Hh, full-
length Ci is retained in the cytoplasm by
Cos2 and another protein: Suppressor of
Fused [Su(Fu)]. Cos2 also promotes
phosphorylation of Ci by PKA, GSK3�
and CKI. Phosphorylated Ci associates
with the Slimb/�TrCP E3 ubiquitin
ligase, and is processed by the
proteasome to a repressor form (CiR). In
the presence of Hh, Smo is stabilized and
activated, leading to increased
association of Cos2 to Smo. Cos2 bound
to active Smo is not able to facilitate Ci
processing, and Ci enters the nucleus as
a transcriptional activator (CiA) (Lum
and Beachy, 2004).

By contrast, mouse Smo is not stabilized
after Shh addition, and mouse Smo does
not bind to either Kif27 or to Kif7, the
two mouse orthologs of Cos2.
Furthermore, neither overexpression or
RNAi-mediated knockdown of the these
two Cos2 orthologs has any effect on
Shh pathway activity or on Gli
transcriptional activity (Varjosalo et al.,
2006). Thus, it appears that mammals
lack a functional equivalent of Cos2.
Mammalian Fu also appears not to act on
the Hh pathway: Fu-knockout mice fail
to show any indications of disturbance of
Hh signaling during embryogenesis
(Chen et al., 2005; Merchant et al.,
2005). Thus, although mammalian GLI
proteins are regulated by
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phosphorylation and proteolytic
processing analogously to Ci (Pan et al.,
2006; Wang et al., 2000), coupling of
Smo to the regulation of GLI activation
and processing appears not to require
Cos2 or Fu orthologs.

If Cos2 is not needed to suppress the
mammalian Hh pathway in the absence of
ligand, can Su(Fu) alone suppress the
pathway? This seems to be the case
because loss of Su(Fu) results in complete
activation of the Hh pathway in mouse
embryos, essentially phenocopying the
effects of loss of Ptc function (Svard et al.,
2006). This is in striking contrast to
Drosophila, in which the Su(Fu)-null
mutant phenotype is so mild that it was
initially not reported and only later
identified by a detailed study of Su(Fu)-
null fly wings (Ohlmeyer and Kalderon,
1998).

Vertebrate-specific components
in Hh signaling
A number of vertebrate-specific Hh
regulators either have no known
Drosophila ortholog or have orthologs
that appear not to affect Hh signaling in
Drosophila. For example, mutations in
several components required for
formation of primary cilia, including
Kif3a, Ift88 and Ift172, result in
embryonic phenotypes characteristic of
loss of Shh signalling (Huangfu et al.,
2003). Subsequent biochemical studies
have linked these proteins to processing
of GLI transcription factors (Liu et al.,
2005). It has also been reported that
Smo, Su(Fu) and unprocessed Gli
proteins are localized to the primary
cilium (Corbit et al., 2005; Haycraft et
al., 2005). However, the role of these
cilia proteins in Hh signaling seems to be
specific to mammals, because loss of
their orthologs appears not to affect Hh
signaling in Drosophila or Zebrafish
(Nybakken et al., 2005; Sun et al., 2004).

Future directions
Although many players in the Hh
signaling cascade have been identified,
we know surprisingly little about the
precise mechanisms by which they act.
Open questions in the Hh signaling field
concern, for example, how Ptc controls
Smo activity. How is Smo activity
coupled to phosphorylation of Ci/GLI?
What is the role of cilia in mammalian

Hh signaling, how is Su(Fu) activity and
Ci/GLI nuclear localization regulated,
and which target genes mediate the
effects of Hh in different tissues? Owing
to the many unconventional components
in this pathway, the established signaling
paradigms do not seem to apply. Thus,
new thinking and innovative
experimental strategies are needed to
reveal the mechanisms that lie beneath
this key signaling pathway.
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