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ABSTRACT
Multiple test corrections are a fundamental step in the analysis of
differentially expressed genes, as the number of tests performed
would otherwise inflate the false discovery rate (FDR). Recent
methods for P-value correction involve a regression model in order to
include covariates that are informative of the power of the test. Here,
we present Progressive proportions plot (Prog-Plot), a visual tool to
identify the functional relationship between the covariate and the
proportion of P-values consistent with the null hypothesis. The
relationship between the proportion of P-values and the covariate to
be included is needed, but there are no available tools to verify it. The
approach presented here aims at having an objective way to specify
regression models instead of relying on prior knowledge.
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INTRODUCTION
High-throughput transcriptome sequencing (RNA-seq) is a widely
used technique to understand biological systems and, in general,
phenotypic variation. Specifically, the detection of differentially
expressed (DE) genes is a topic of constant discussion and
improvement (see Costa-Silva et al., 2017).
An important part of the differential expression analysis is the

multiple testing correction, given that the number of simultaneous
tests usually varies in the range of thousands to tens of thousands.
Although the correction proposed by Benjamin and Hochberg
(1995) is still arguably the most used, there have been some new
proposals to improve this step it in the last decade (see, for example,
Korthauer et al., 2019).
Some of the most recent methods mainly include improvements

related to power. One of them consists of including a regression step
with an informative covariate (see Boca and Leek, 2018; Lei and
Fithian, 2018 and Scott et al., 2015). All these methods rely on the
relationship of the covariate to the P-value outcome of the test used
for detecting differential expression. However, to the best of our
knowledge, there is no systematic method to identify the functional
relationship that these tools require. Until now, the researcher would
need to have prior information on the informativeness of the
covariate or achieve a satisfactory model through trial and error.
An important part of the correction proposed by Boca and Leek is

the tuning parameter lambda (λ). This parameter is used in the
estimation of the proportion of null P-values as it is shown in the

Materials and Methods. The choice of a single value of λ constitutes
a trade-off between bias and variance. A small value of λ will give
biased estimates with low variance, and a value closer to 1 will give
estimates with a smaller bias but that is highly variable. Like in other
previous work, Boca and Leek tackle this issue by calculating
estimates for a range of values of λ and taking as a final estimate the
smoothed value at a λ close to 1, in this case λ=0.95 (Boca and
Leek, 2018). This method will give a more robust estimate with a
reasonable bias.

Here, we present Progressive proportions plot (Prog-Plot; https://
github.com/nbellor/progplot), a visual tool to help identify the
functional relationship between the co-variate and the null
proportion. Prog-Plot was conceived to identify this relationship
in the context of the correction proposed by Boca and Leek (2018).
In brief, Prog-Plot draws curves of proportions based on different
thresholds of λ in a progressive manner, which allows the user to
choose the best model fit. Prog-Plot is implemented in the R
programming language. Instructions for download and usage can be
found at https://github.com/nbellor/progplot.

RESULTS
As a demonstration, we constructed the Prog-Plot for a dataset
consisting of 20 paired samples of the GTEx project. Ten of these
samples belonged to the Nucleous accumbens tissue of female
individuals, and the other 10 to the Putamen tissue. This dataset was
previously analyzed by Reyes and Huber (2018), and it is available
at https:/doi.org/10.5281/zenodo.1475409.

The pre-processing included a filter of the genes with average
counts across all samples of less than 1. This left us with 30,374
genes and 20 samples, as stated previously. These counts are then
processed through the DESeq2 pipelinewith default settings, and the
raw P-values are taken to fit the Boca and Leek model (hereafter BL
model) correction. Finally, the appropriate calculation is carried out
to find the final false discovery rate (FDR)-corrected P-value as
described later in this section.

Particularly, what we are looking for in the Prog-Plot in Fig. 2 is
that the final estimate of the null proportion (the solid line) behavior
resembles those of the non-parametric curves (dotted lines). If, for
example, the dotted lines exhibited a strong non-linear behavior and
the solid line ignored this shape by just estimating a straight line
(e.g. with a linear regression), it would be clear that the specified
model is inappropriate for the data at hand.

An important assumption of the BLmodel is that the P-values must
be independent from the covariate under the null hypothesis. Usually,
the histogram of theP-values stratified by the covariates is examined in
order to evaluate the validity of the hypothesis. Particularly, the
histograms must look uniform for larger P-values. We plotted the
histograms, and they appear to be approximately uniform in Fig. 1.

As suggested by Korthauer et al. (2019), we used the mean gene
expression as a covariate, but as the Prog-Plot in Fig. 2 shows, the fit
is better with a logarithmic transformation. For this plot, we grouped
the response variable based on the quantiles of the covariate given
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*Author for correspondence (nbellor@unal.edu.co)

N.B., 0000-0002-5089-1484; L.L.-K., 0000-0001-9325-9529

1

© 2023. Published by The Company of Biologists Ltd | Journal of Cell Science (2023) 136, jcs260312. doi:10.1242/jcs.260312

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://github.com/nbellor/progplot
https://github.com/nbellor/progplot
https://github.com/nbellor/progplot
https://github.com/nbellor/progplot
https://github.com/nbellor/progplot
https://doi.org/10.5281/zenodo.1475409
mailto:nbellor@unal.edu.co
http://orcid.org/0000-0002-5089-1484
http://orcid.org/0000-0001-9325-9529


that the covariate has a skewed distribution, and if we based the
groups on same-length intervals, it would lead to some groups
having very few data points to estimate the null proportion.
Please note that in Fig. 2 we are plotting the final estimatecp0. The

final estimate of the q value (the one used to determine whether the

gene has differential expression) will be given by multiplying this
proportion by the Benjamin and Hochberg (BH) adjusted P-value.
This means that, for example, if we have a gene with a BH adjusted
P-value of 0.07 and a logarithm of mean expression of
5 ðp̂0 � 0:6Þ, then its q value will be 0.042. Because of this

Fig. 1. Histograms of the P-values obtained from
DESeq2 stratified by the covariate. Diagnostic plot
to check the assumption that the P-values are
independent from the covariate under the null
hypothesis. The histograms show counts for
P-values assigned to each of six groups based on
covariate value, with group 1 containing the lowest
17% values of the covariate and group 6 containing
the highest 17% of values of the covariate.

Fig. 2. Prog-Plot. The proportion of estimated P-values consistent with the null hypothesis was plotted against the covariate at different threshold λ; the
thicker solid black line represents the fit of the BL model. (A) A logistic fit with the logarithm of the mean expression; (B) a logistic model with a randomly
generated covariate.
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relationship, we know that for a pre-specified significance threshold,
the number of genes identified as DE will always be more with the
BL correction compared to that with the BH correction on its own.
For example, in this data set with a significance threshold of 0.05
using the BH correction we found 2010 DE genes, whereas using
the BL correction we found 2678 DE genes, as can be seen in
Table 1. It is very important to note that this increase in the number
of DE genes is not comparable with simply raising the significance
threshold for the BH adjusted P-values, as the BL correction is
mostly adding genes to that list for which we know the test has a
higher power (and the BH correction would assume the null
proportion to be equal at all levels of the covariate).

DISCUSSION
Prog-Plot (https://github.com/nbellor/progplot) is a visual tool that
provides researchers with the capability of specifying an adequate
functional relationship between the null proportion and the
covariate. Multiple test correction methods are recently
incorporating informative covariates through regression models,
and this tool will help researchers in taking advantage of the
flexibility of these novel methods after verifying in an objective and
handy way if the required assumption is met.

MATERIALS AND METHODS
DESeq2
DESeq2 is a widely used technique to identify DE genes proposed by Love
et al. (2014). This method takes as input a matrix of raw mapped counts that
results from a typical high-throughput sequencing experiment. The first step
of this tool is normalizing the counts based on the median of the ratio
between the counts themselves and the geometric mean per gene (although
other normalizations can also be used). The next step is specifying the
generalized linear model (GLM) for these counts, the model for an
experiment with two conditions would be the following:

log2ðqijÞ ¼ bi0 þ xibi1; ð1Þ

where qij are the normalized counts of gene i in the sample j, and xi is an
indicator variable of the sample group (usually 0 for control and 1 for
treatment). It is worth noting that the counts are assumed to follow a negative
binomial distribution.

Apart from the previous model, DESeq2 models the dispersion
parameters through another GLM of the gamma family in an iterative
manner. The consecutive step consists of the estimation of the coefficients in
Eqn 1, which are the log-fold changes (LFCs). This estimation is carried out
assuming a normal distribution and the maximum likelihood estimates are
used in the prior distribution.

Finally, the statistical tests are carried out where the null hypothesis is that
there is no differential expression between the groups (H0:βir=0). The test used
is based on theWald statistic, although the implementation allows other tests. A
correction must be done owing to the number of multiple tests involved; the
default is a BH correction (Benjamini and Hochberg, 1995) with independent
filtering (Bourgon et al., 2010). In the following section we discuss a multiple-
tests correction that includes a covariate.

Multiple testing correction and plot
Prog-Plot is based on the model proposed by Boca and Leek (2018). The
regression model (usually logistic) will be given by the following:

p̂l
0 ¼ ÊðYijXi ¼ xiÞ

1� l
; ð2Þ

where Yi=1(Pi>λ) and Pi represents the P-value associated to the test
performed for the gene i. As Boca and Leek argue, this would only be an
estimate for a single λ (Boca and Leek, 2018). When estimating the null
proportion through this method, smaller values of λ give biased estimates,
but bigger values have an increased variance because of the denominator,
hence the values of the null proportion are smoothed over a series of
threshold λ. Ultimately, the final estimation of the null proportion will be
taken as the smoothed value at λ=0.95.

Given that the response of the model is a binary variable, it is not possible
to directly plot the response in any useful way. However, given that
we usually work with a considerable amount of hypothesis, we can
group the binary response into a proportion for short intervals related to
the covariate. These local estimates of the null proportion are specific to a
single threshold and form a curve that describes the relationship with the
covariate. Additionally, we also plot the proportions curve for increasingly
higher thresholds as the final estimate is based on a smooth estimate of these
curves.
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