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Summary

The development of the non-metazoan eukaryote
Dictyostelium discoideunmdisplays many of the features
of animal embryogenesis, including regulated cell-cell
adhesion. During early development, two proteins,
DACAD-1 and csA, mediate cell-cell adhesion between
amoebae as they form a loosely packed multicellular mass.
The mechanism governing this process is similar to
epithelial sheet sealing in animals. Although cell
differentiation can occur in the absence of cell contact,
regulated cell-cell adhesion is an important component
of Dictyostelium morphogenesis, and a third adhesion
molecule, gp150, is required for multicellular development
past the aggregation stage.

Cell-cell junctions that appear to be adherens junctions
form during the late stages ofDictyosteliumdevelopment.
Although they are not essential to establish the basic

multicellular body plan, these junctions are required to
maintain the structural integrity of the fruiting body. The
Dictyostelium B-catenin homologue Aardvark (Aar) is
present in adherens junctions, which are lost in its absence.
As in the case of its metazoan counterparts, Aar also has a
function in cell signalling and regulates expression of the
pre-spore genepsA

It is becoming clear that cell-cell adhesion is an integral
part of Dictyostelium development. As in animals, cell
adhesion molecules have a mechanical function and may
also interact with the signal-transduction processes
governing morphogenesis.
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Introduction that Dictyostelidspossess signal-transduction pathways that

In animals, cell-cell adhesion is responsible for the mechanicafe closely related to those of metazoa. In addition,
forces that regulate cell shape, cell motility and tissue structur®ictyosteliumcells undergo a relatively simple programme of
In addition to playing this architectural role, the proteinmulticellular development, which in many ways resembles
complexes found at points of cell contact are integrated int@himal development. The study of cell adhesion straddles both
cellular signalling pathways (Braga and Harwood, 2001)cell and developmental biology; although at one time a strong
These pathways regulate the creation and remodelling of cé@lea of Dictyosteliumresearch, it has had relatively little
contacts and can also generate their own intracellular signallifgipact on our understanding Bfictyosteliumdevelopment.
activity. Some junctional proteins, suchfsatenin, appear to \We are now entering a renaissance in this area, following the
have separate roles, mediating both cell adhesion and sigrfiscovery of severaDictyosteliumadhesion systems that are
transduction. The interface with signal transduction underliekglated to those of animals and involved in a level of
the interaction between cell adhesion, differentiationdevelopmental complexity that has only become apparent
proliferation and apotosis. Loss of cell contact not only affect&ecently.
tissue morphogenesis but also is linked with metastasis. There
are still major gaps in our understanding of adhesion in ) ]
animals, and many more adhesion systems remain to Keell adhesion during early development
investigated. One approach is to explore the evolutionarRictyosteliumcells have adopted a strategy for multicellular
origins of cell contact and to examine the features that nomevelopment that differs from that of metazoa (Fig. 1). In their
metazoan adhesion systems and their animal counterpausgetative stagdictyosteliumcells are single-celled amoebae
share. One promising organism for this type of study igshat feed on bacteria and multiply by binary fission. The
Dictyostelium(Harwood, 2001; Kessin, 2001) striking feature oDictyosteliumamoebae is that, when their
Dictyostelium discoideuns a eukaryote that is related to food source is depleted, they undergo a switch in behaviour to
animals and fungi, a position it shares with Acanthamoebaferm a fruiting body. This is a highly differentiated
and the acellular slime moulds, such d&hysarum multicellular structure composed of spore cells supported by a
polycephalun{Baldauf et al., 2000). It has proved to be a goodskeleton of stalk cells that are arranged as a stalk and a basal
organism in which to study many cell biological processesdisc, which anchors the stalk to the substratum. Although the
especially cell movement, chemotaxis and phagocytosifsuiting body possesses only a small number of cell types, its
(Cardelli, 2001; Firtel and Chung, 2000). It is now apparentievelopment shows much of the complexity seen in metazoa.
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Fig. 1. Dictyosteliumdevelopment. Amoebae proliferate as single cells during the growth phase. Upon starvation, amoebae undergo chemotaxis
towards a pulsatile cyclic AMP (cAMP) source. During aggregation, cells coalesce into adherent cell ‘streams’ that eveméulgether to

form the mound, the first stage of multicellular development. The mound compacts to form a tight aggregate and then tpieldpsta *

coordinates further development. After extension to form the first finger, the developing structure either immediatelydiimysbedy, the

process of culmination or forms a motile slug that migrates to seek conditions favourable for culmination. Scale showsnetptife

development.

There is one fundamental difference: animals develop from the extracellular domain of metazoan cadherins (Wong et al.,
single cell by a combination of growth and differentiation.1996). It appears, however, to have twd@anding domains.
Dictyosteliumdevelopment, however, requires no growth, andOne of these domains may conform to the structure of the
multicellularity is achieved by aggregation of many unicellularCa*-binding region seen in cadherin proteins; the second
amoebae. This greatly simplifies the study of development ardbmain is in the C-terminus and has similarity to the EF-hand
provides an easy route to examine cell-cell adhesion througbe?*-binding domain. DdCAD-1 also differs from classical
studies of aggregation and cell-surface binding animal cadherins by lacking a transmembrane domain, and
Dictyosteliuncells must first aggregate to form a multicellular appears to reach the cell surface through an unconventional
mass: the mound. The driving force behind this processes lisute via the contractile vacuole (Sesaki et al., 1997). DACAD-
chemotaxis towards a pulsatile source of extracellular cyclit is a soluble protein; however, a substantial portion of secreted
AMP (cAMP). Initially, amoebae move as individual cells DACAD-1 protein remains associated with the extracellular
towards the signal. However, as they near the source, and cslirface. This association is sensitive t&?'Cehelation, and
density increases, cells coalesce into multicellular streamSiu et al., proposed that the C-terminaPthinding domain
These streams move coordinately towards the signalling centneight associate with an unidentified transmembrane linker
to form a mass of up to 1@ells. As this mound forms, cells protein (Siu et al., 1997). Antibodies raised to DdCAD-1 and
enter the multicellular stage of development and begin teecombinant DACAD-1 fusion proteins both block the
differentiate into pre-spore and pre-stalk cells, the precursors @frmation of EDTA-sensitive adhesive contacts between cells
spore and stalk cells, respectively (Williams et al., 1989). (Brar and Siu, 1993; Knecht et al., 1987; Wong et al., 1996).
It has long been known that cells within streams adhere tBurthermore, pre-treatment of cells with an anti-DdCAD-1
each other, and pioneering work Dictyosteliumidentified  antibody blocks the binding of labelled recombinant DACAD-
several proteins that mediate cell-cell adhesion (Barondes &tto cells, which suggests a homophilic interaction between
al., 1982; Gerisch, 1961a; Gerisch, 1968). The first proteiDdCAD-1 molecules on adjoining cells (Brar and Siu, 1993).
known to be expressed is DACAD-1, also named contact sitesA second homophilic adhesion molecule is expressed during
B (csB) or gp24 (Beug et al., 1973; Yang et al., 1997). DdCAD/{ater stages of aggregation. This protein, csA (also known as
1 is expressed soon after the beginning of starvation and is gp80), has a mass of 54 kDa and is induced by the cAMP
seen in cells growing on bacteria. Initially, it is present withinpulses that mediate chemotaxis (Faix et al., 1992; Muller
the cytoplasm and is only slightly enriched at the plasmand Gerisch, 1978). csA is a globular protein of the
membrane. However, as aggregation proceeds, DdCAD{inmunoglobulin superfamily and has similarity to the neural
redistributes to the external surface of the plasma membrawell adhesion molecule N-CAM (Noegel et al., 1986; Wong and
(Sesaki and Siu, 1996). DACAD-1-mediated cell adhesion iSiu, 1986). csA is heavily glycosylated, hence its apparent
sensitive to both EDTA and EGTA, which suggests th&t Ca molecular weight of 80 kDa on SDS-PAGE. This modification
is involved in this process (Garrod, 1972; Gerisch, 1961b)s lost in the glycosylation mutantodB(Gerisch et al., 1985).
DdCAD-1 has been cloned, and it shares some homology wittoss of glycosylation leaves adhesion unaffected. Unlike cell
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contacts involving DACAD-1, csA-mediated ones are ndt Ca (Brock and Gomer, 1999), have increased DdCAD-1
dependent and are insensitive to EGTA and EDTA. Thexpression and cell-cell adhesion during early development.
homophilic interaction site has been mapped, and peptiddhis leads to the formation of giant aggregates and fruiting
mimicking this region of the protein, as well as anti-csAbodies (Roisin-Bouffay et al., 2000).
antibodies, block EDTA-resistant cell-cell adhesion and cell- Compensatory changes in gene expression have been
surface binding of recombinant csA protein (Kamboj et al.pbserved after gene disruptionDictyostelium as well as in
1989; Siu et al., 1987). other organisms. This may also be the case withct#e

csA is anchored to the membrane by a lipid glycan (Sadeghiutant, where premature expression of a third adhesion
et al., 1988; Stadler et al., 1989) and, as has been found forotein, gp150, has been observed. gpl150 is normally first
other such membrane-linked proteins, associates with a Tritoexpressed at the mound stage (Wang et al., 2000). Interestingly,
insoluble floating fraction (TIFF) isolated from the cell cells lacking botlcsAandgp150genes are still able to stream
membrane of developing cells (Harris et al., 2001). TIFF is rictand aggregate, although EDTA-resistant adhesion is almost
in sterols and is predicted to form a closely packed liquidtotally abolished. A possible fourth adhesive interaction has
ordered environment. Among the other proteins associatdzeen reported (Fontana, 1993), and examination of the data
with the TIFF are F-actin, the regulatory myosin light chainfrom the Dictyosteliumgenome project (Kay and Williams,
kinase and comitin. This suggests a means to link csA th999) indicates the presence of at least one other DACAD
the underlying actinomyosin cytoskeleton. Comitin is aprotein and two gpl50-related proteins. Nothing more is
membrane-associated protein that binds to F-actin arnkhown about these proteins and their interactions.
intracellular vesicles, and associates with the Golgi (Weiner et _
al., 1993). TIFF may be transported to the plasma membrar@teraction of DdCad-1 and csA
via the Golgi (Heino et al., 2000; Nichols et al., 2001). Anti-The expression of csA is dependent on DACAD-1 function and
csA antibodies cause capping of csA, F-actin, the other TIFRs severely reduced when DACAD-1-mediated adhesion is
associated proteins and sterol-rich membrane regions — bBkcked by EDTA, carnitine or fast-shaken low-density culture
visualised by filipin staining (Harris et al., 2001). Regions of(Desbarats et al., 1994). In the absence of DACAD-1-mediated
csA-mediated cell contact are enriched in sterols and TIFFell contact, stimulation with cAMP pulses fails to restore csA
associated proteins. In addition, depletion of membrane steradxpression, which argues that DACAD-1-mediated cell contact
greatly reduces the ability of wild-type cell contacts to resisis required for full csA induction. Caution must be taken in
high-shear forces. This effect is also seen in cells lacking thaterpretation of these observations, because cAMP signalling

csAgene. has also been reported to be stimulated by cell contact;
) however, this effect is non-specific and can be induced by
Cell-cell adhesion mutants bacteria or inert latex beads (Fontana and Price, 1988). The

No mutant that lacks thBdCAD-1gene has been described; specificity of the DdCAD-1-mediated induction has not been
however, blocking DdCAD-1 binding by antibodies andfully tested.
carnitine arrestdictyosteliumdevelopment (Loomis, 1988;  The potential link between DdACAD-1 and csA expression is
Siu et al., 1992). Similarly, a peptide form of an N-terminalinteresting in the context of their interaction in aggregation
fragment of csA prevents the streaming and morphogenesis stfeams. During early aggregation, before cell contact,
wild-type cells (Kamboj et al., 1989). In contrast, a mutanDdCAD-1 is not uniformly distributed around the cell
lacking the csA gene exhibits no obvious difference in periphery and is preferentially localised to membrane
phenotype when developed under standard laboratomyrotrusions such as filopodia (Sesaki and Siu, 1996). These
conditions (Harloff et al., 1989), perhaps owing toregions are also enriched with F-actin, although it is not clear
compensation from other related proteins (see belowhow localisation of actin polymerisation and DACAD-1 is
However, when cells that laatsAare mixed with wild-type linked. Cells initially contact each other through binding of
cells in cell suspension, both cell types sort out to form strairtheir adjacent filopodia using DdCAD-1 (Fig. 2A). As
specific aggregates (Ponte et al., 1998). This suggests that teighbouring cells draw their filopodia back into their cell
relative adhesive strength between neighbouring cells igodies, more extensive membrane contacts are made, and these
important for multicellularity. Furthermore, changing theare also associated with F-actin. This second wave of contacts
balance of adhesive forces betwesAmutant cells and their is made by csA (Choi and Siu, 1987). At the emergence of csA-
substratum, by developing these cells on soil, leads to theinediated contacts, DACAD-1 redistributes to other regions of
reduced intracellular adhesion and motility. Under thes¢he membrane (Fig. 2B). This is particularly striking as cells
conditions, mangsAmutant cells fail to enter the multicellular enter the stream, in which cells in the centre are completely
phase of development (Ponte et al., 1998). surrounded by neighbouring cells through csA-mediated
The importance of the strength of DACAD-1- and csA-contacts. At the periphery of the stream, cells contact those
mediated adhesion during aggregation is also demonstrated Wwjthin the stream through csA but have DdCAD-1 on the
thesmlAmutant, which forms very small aggregates and hencenembranes that project away from the stream (Sesaki and Siu,
small fruiting bodies (Brock et al., 199&mIAmutants show 1996).
reduced expression of DACAD-1 and csA during streaming and This pattern of assembly of adhesive contacts in
early aggregation (Roisin-Bouffay et al., 2000). This leads t®ictyosteliumresembles the sealing of epithelial cell sheets
reduced intercellular adhesion and causesA streams to seen during development 8frosophila and Caenorhabditis
break up and eventually form aggregates smaller than thoséegangKiehart et al., 2000; Simske and Hardin, 2001). These
of the wild-type. Conversely,Dictyostelium prossessing processes, known collectively as epiboly, occur as the
mutations incountin a factor that limits the size of aggregatesepithelium migrates around the developing embryo. When the
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two edges of the advancing cell sheets meet, they seal to mdke cell-cell contact is responsible for the absence of
a complete covering. In both species, the cells project filopodiaevelopmentally regulated gene expression in these cases.
which extend in front of the moving sheetQneleganswhen Ectopic csA expression in growing cells induces
filopodia meet along the contacting cell edges, they promotgevelopmentally regulated genes (Faix et al., 1990). In light of
the assembly of adherens junctions, adhesive contadtse ability of a mutant that lacks csA to develop an apparently
mediated by a cadherin-catenin adhesion system (Costa et aild-type fruiting body under normal conditions, it is unlikely
1998). The closure process involves events similar to thogbat csA overexpression directly induces development. A more
seen inDictyostelium in which the membranes of streaming likely explanation is that, owing to the induction of aggregates,
cells first make contact through their filopodia and then ‘zippecells are excluded from the surrounding growth medium.
up’. In animals, the epithelial contacts are mechanically mor&his leads to starvation, partial entry into development
stable than those observedittyosteliumwhere cells remain  and induction of developmentally regulated genes. Cells
highly motile throughout multicellular development. However,overexpressing csA during development do exhibit a degree of
the processes imictyosteliumand animals both involve aberrant multicellular development, but this is related to
common events, such as initiation of contact, rearrangement ekcessive adhesion rather than aberrant gene expression
the actin cytoskeleton and maturation to form more extensivgKamboj et al., 1990; Faix et al., 1992).
adhesive contacts. The strongest objection to the cell contact hypothesis is
provided by observations of low-density monolayer cultures.
) ) o In such experiments, cells are plated at a density low enough
Cell adhesion and differentiation for each cell to develop without touching its neighbour. The
Is cell-cell adhesion important for development beyond theignals required for cell differentiation are then added
mound stage? A simple hypothesis is that adhesion betweerogenously. Amoebae plated in such low-density
cells in the mound is required to trigger cell differentiation.monolayer cultures can be induced to form cells with the
Initially, experiments appeared to suggest that this might be treharacteristics of both stalk and spore cells (Kay and
case. Disaggregation of slug cells causes rapid loss of boilievan, 1981; Town et al., 1976). DIF-1 [(3,5-dichloro-2,6-
gene expression (Mehdy et al., 1983) and developmentallyihydroxy-4-methoxyphenyl)-1-hexanone (Morris et al.,
regulated enzyme activity (Haribabu et al., 1986). In addition1987)] is a potent inducer of stalk cells in low-density
early experiments indicated that cells starved in high-speednonolayer culture and induces the transcription of pre-stalk-
shaken suspension or in the presence of EDTA do not expregsecific genes in shaking culture (Berks and Kay, 1990;
developmentally regulated genes (Mehdy et al.,, 1983jermyn et al., 1987; Williams et al., 1987). Spore cells can
Chisholm et al., 1984). In the majority of these cases, howevednge induced in low-density monolayer culture by activation of
post-aggregative genes are induced by the addition of cCAMEye cAMP-dependent protein kinase (PKA) either by the
a signal molecule present throughout development. Thigeatment with 8-Br-cAMP (Kay, 1989) or addition of cAMP
suggests that loss of cell signalling rather than a requiremetd mutants that possess constitutively active PKA (Hopper et
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Fig. 3. Morphogenesis in the mound. (A) Within the mound, cell movement switches from directly towards the aggregation centwa to rotati
perpendicular to the tip axis. In addition, differentiation into the precursor cells of the fruiting body begins. The pst® aedls move into

the tip, and pstB cells move to the base. Pre-spore cells occupy the central region of the mound. (B) LagC/gp150 is reejuzeld fo
adhesion and, through the transcription factor GBF, for the switch in the direction of movement and cell differentiatidnin@Gifzpfactor

(GBF) is required for lagC/gp150 expression, which creates a feedback loop. (C) Cell differentiation requires GskA dstisitgdLitated

by extracellular cAMP through two receptors, cAR3 and cAR4. At low cAMP, cAR3 activates GskA activity through ZAK1; at high
concentrations cAR4 inhibits GskA activity. GskA regulates the pstB—pre-spore ratio.

al., 1993; Mann and Firtel, 1993; Simon et al., 1992). Thespotential IPT sequence — an immunoglobin-like fold found in
experiments argue that cell contact is not required fomammalian plexin and the MET receptor proteins.
differentiation to form the stalk and spore cells — the end Wild-type cells progress rapidly from a loose aggregate to a
point of development. However, before proposing that celtight aggregate, in which the cell mass compacts and the
contact is not required for multicellular development, weoutside of the mound becomes encased within an extracellular
must consider that cells in culture may receive signammatrix known as the slime sheath (Fig. 1). Within the mound,
concentrations higher than those encountered during normtile cells change their morphogenetic behaviour and begin to
development. Furthermore, multicellular developmentotate rapidly around the mound (Fig. 3A). Finally, a ‘tip’
proceeds through a complex process of pattern formatioiorms on the upper surface of the tight aggregate, which then
(see below), which could indeed require inputs generated IBlongates into a tall, thin finger-like structure, the first finger.
cell contact. This may fall on to its side and migrate along the substratum
as a slug. The tip is an organiser that coordinates
) morphogenesis of the slug and fruiting body. Cells lacking
gp150 and multicellular development lagC fail to establish rotational movement in the mound and
Cell-cell adhesion appears not to be necessary fdrave aberrant cAMP signalling (Sukumaran et al., 1998).
differentiation in isolated cells. Furthermore, direct Pre-spore and pre-stalk cells form within the mound and sort
visualisation and mathematical modelling (Dormann et alinto different spatial patterns (Fig. 3AxgC-mutant cells fail
2000; Dormann et al., 2001) could explain morphogenesit express these pre-stalk- and pre-spore-specific genes and
from mound to fruiting body in terms of differential cell exhibit severely deficient spore formation. When mixed with
movement and signalling. Several recent observations hawéld-type cells,lagC mutant cells form stalk cells but not
demonstrated that cell-cell adhesion is, however, an integrapores. This suggests that the failure of lHgC mutant to
component of multicellular development. proceed through development is in part due to a defect in pre-
lagC is a mutant that aggregates normally but does ndadtalk gene induction and in part due to a failure of prespore
proceed past the early mound stage. At this stage, which dglls to respond to a signal for terminal differentiation (Dynes
often referred to as the loose aggregate stage, cells are oelyal., 1994).
weakly adherent. Cells lackindagC disaggregate and ThelagC phenotype can be rescued by expression of G-box-
reaggregate to form small mounds (Dynes et al., 1984  binding factor (GBF), a transcription factor that is required for
encodes gp150 (Geltosky et al., 1976; Wang et al., 2000), a 98 expression of all post-aggregative genes (Sukumaran et al.,
kDa protein that runs on SDS-PAGE with an apparent mask998). The expression of gp150 requires GBF, and gp150 is
of 150 kDa, owing to glycosylation. Given its predicted necessary for GBF expression. This suggests that gp150 acts
transmembrane domain, gpl50 is likely to be an integrah a feedback loop to maintain GBF expression (Fig. 3B).
membrane protein. In contrast to DACAD-1 and csA, gpl150hrough its genetic interaction witibf, lagC is required for
is a heterophilic cell-surface binding protein, although itscell differentiation and morphogenesis. Presumably, the high
ligand is currently not known. gpl50 rapidly accumulatedevel of exogeneously added cAMP is sufficient to bypass the
at the mound stage, and anti-gp150 antibodies block cetequirement fofagC in isolated cell cultures.
reassociation after experimental disaggregation (Geltosky et
al.,, 1979; Wang et al., 2000). gp150 shows little sequence ) ) ) N
similarity to any animal protein, although a search of the Pfardherens junctions in the fruiting body
database (Bateman et al., 2000) reveals that gpl150 hasUatil recently, virtually nothing was known about intercellular
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adhesion systems lateictyosteliumdevelopment, within the metazoarB-catenin proteins are active in the Wnt-1 signalling
fruiting body. Cells of the first finger and slug are held in a prepathway. Wnt stimulation leads to an increase in the cellular
patterned state ready to initiate the morphogeneticoncentration off3-catenin, which then accumulates in the
transformation into the fruiting body, a process known aswucleus where it regulates gene expression (Hulsken and
culmination (Fig. 4A). The anterior fifth of the slug is composedehrens, 2000). This signal transduction pathway is important
entirely of pre-stalk cells, whereas the remaining posterior fouiin the regulation of cell proliferation and in pattern formation
fifths contains pre-spore cells and a population of pre-stalk celtturing embryonic development (Dale, 1998).
known as anterior-like cells (ALC) (Sternfeld and David, 1981; Although it does not arrest development, loss of Aar causes
Sternfeld and David, 1982). The anterior of the slug containa reduction in the expression of the pre-spore-specificgghe
the prestalk A and prestalk O (pstA and pstO) cells, whiclduringDictyosteliumdevelopment (Grimson et al., 2000). The
eventually form the stalk (Jermyn et al., 1989). The precursorsffect of loss ofaar on cells developed in shaking culture
of the basal disc, the pre-stalk B (pstB) cells, first arise in this more striking: cAMP is no longer able to indupsA
mound, where they move to its base (Fig. 3A) (Williams et al.expression. When Aar is overexpressed, the opposite result is
1989). The slug also contains a population of cells that haveeenpsAexpression is hyperinduced by cAMP. In monolayer
differentiated from the pstA cells; these are known as pstABulture, spore-cell formation is reduced, although not
cells (Fig. 4A). PstAB cells are arranged in an inverted coneompletely lost, in thear mutant. These observations argue
shape slightly posterior to the tip, and they mark the position dhat Aar has a role in the induction of prespore genes that is
what becomes the entrance to the stalk tube in the fruiting bodlydependent of cell-cell adhesion. Interestingly, psA is a cell-
(Jermyn et al., 1989). During culmination, the posterior of thesurface protein that has similarity to csA and animal N-CAM
slug moves under the tip, and first the pstAB cells and then ti{&arly et al., 1988). In mammals, the E-cadherin gene is a
pstA and pstO cells pass through the centre of the pre-spad@ect target of3-catenin signalling (Huber et al., 1996). No
cells, where they differentiate to form the stalk and embed imle for psA in cell adhesion has been demonstrated, but it is
the basal disc (Jermyn et al., 1989). The stalk elongates throutgmpting to speculate that Aar, in common wg#tatenin,
the addition of new stalk cells to its top and raises the sporegulates the expression of cell-adhesion molecules required
head as it grows (Fig. 4A). Rapid cryopreservation preparatiofor development.
for electron microscopy has revealed a complex ultrastructure In metazoa, the protein kinase GSK-3 phosphorylgtes
in the developing fruiting body (Fig. 4B) (Grimson et al., 2000).catenin, leading to its degradation. Wnt-1 stimulation blocks
The stalk is separated from the surrounding pre-stalk cellBSK-3 phosphorylation of-catenin, allowingf-catenin to
by a protein and cellulose matrix. This matrix forms abuild up in the cell. As in metazoa, Dictyosteliumthe GSK-
continuous tube, open at the top, into which pre-stalk cell8 homologue,gskA is critical for regulation of cell fate
enter and immediately differentiate into stalk cells. Grimson etHarwood et al., 1995). GsSkA is required in the mound, where
al. (Grimson et al., 2000) showed that, just below its openingt regulates the ratio of pre-spore to pstB cells (Fig. 3C). A
the stalk tube is compressed to form a constriction (Fig. 4B)mutant that lackgskAoverproduces pstB cells at the expense
Transverse sections through the constriction show that the pref the pre-spore cells, producing a fruiting body that has an
stalk cells surrounding the stalk are connected by electromxpanded basal disc but very few spores (Harwood et al.,
dense junctional complexes that have a morphology similar tb995).
metazoan adherens junctions. This similarity is strengthened Extracellular cAMP activates GskA through the cAMP
by the fact that each junction around the stalk is connectegceptor cAR3 (Plyte et al., 1999) and the tyrosine kinase
within the cells by actin filaments (Fig. 4B). ZAK1 (Kim et al., 1999). A second receptor, CAR4, appears to
Metazoan adherens junctions contain transmembrangegatively regulate GskA, and a mutant that lacks cAR4 has
cadherins, which engage in homophilic interactions withreduced pre-stalk differentiation and increased pre-spore
neighbouring cells. Cadherins are connected to the actiifferentiation (Ginsburg and Kimmel, 1997; Louis et al.,
cytoskeleton byi- andf-catenin (Angst et al., 2001). A search 1994). This mutant phenotype can be reversed by treatment
of the Dictyostelium cDNA database (Morio et al., 1998) with lithium, an inhibitor of GSK-3. Given that cAR4 has a
identified a homologue off3-catenin, Aardvark (Aar). lower affinity for cCAMP than cAR3 does, this may establish a
Antiserum raised against Aar protein immunostains thehreshold response in which gskA is inactive at low and high
Dictyosteliumjunctional complexes, and disruption of thaer  levels of CAMP, but active at intermediate concentrations. Aar
gene causes a complete loss of the junctional complex and thas a set of putative GSK-3-phosphorylation sites at its N-
stalk-tube constriction. Overexpression of Aar leads to aterminus (Grimson et al., 2000). Overexpression of Aar in cells
increase in the number and size of the junctional complexes atatking gskAdoes not lead to the hyperinductionpsfA seen
an increase in the F-actin content of the junction-containingn a wild-type background (Grimson et al., 2000). This
cells. These observations demonstrate that Aar expressioniiglicates that GskA activity is required for Aar signalling.
both necessary and limiting for junction formation. Loss of theCells lacking cAR4, which have increased GskA activity, also
junctions does not prevent culmination; however, the resultinghow hyper-induction of pre-spore genes (Louis et al., 1994),
fruiting bodies are mechanically unstable, and the majorityvhich is consistent witlyskAacting upstream odar in the
collapse onto the substratum (Grimson et al., 2000). induction of prespore gene expression. These observations
indicate that, as in the case of metazgaoatenins, Aar
] ] ) possesses both cytoskeletal and signalling roles during
A B-catenin homologue required for both adhesion development. This argues that both cellular functiong-of
and signalling catenin proteins evolved before the origin of metazoa. It will
In addition to their structural role in adherens junctionsbe interesting to establish which other eukaryotes pofsess
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Upper cup

Lower cup

Basal disc

Transverse
section

Fig. 4. Formation of the fruiting body. (A) The slug contains a pre-pattern that presages culmination. The pstAB cells form andneerted
structure within the slug tip. These cells mark the future entrance to the stalk tube and are the first cells to entehshmubtatiation
proceeds, they embed into the basal disc. When development passes directly from mound to culmination, the basal difom foepedB
population. During slug migration, pstB cells are lost and re-differentiate from the anterior-like cells (ALC). The ALG arsoalce of the
pstO cells. During culmination, pstO cells differentiate into pstA cells and then into stalk cells within the stalk tulppefl@d lower cup
structures form from pstO and pstB populations, respectively. (B) During culmination, the stalk tube forms a constriogimnyjitst
entrance. A transverse section of this region shows that the cells surrounding this stalk tube are connected by eleathoereles genctions
(AJ) and actin filaments (AF). Reprinted by permission from Nature 408:727-731 copyright 2000 Macmillan Magazines Ltd.
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A B C adhesion and signalling share both sequence and functional
cAMP Wnt-1 MOM-2 similarity to their counterparts in animals. In addition to the
S\ proteins discussed here, a number of otbértyostelium
cAR3 CAR4 Fz and LRP5/6 MOM-5 genes that in animals encode proteins present in adhesion

complexes have been cloned. These include two talin
homologues and two cortexillins, members of the

ZAK1 Dsh actinin/spectrin superfamily (Faix et al., 1996; Fey and Cox,
\ l 1999; Niewohner et al., 1997; Tsujioka et al., 1999), which
are required for substrate adhesion and morphogenesis. In
GskA GSK-3 GSK-3  addition, a search of thBictyostelium genome sequence
J 1 j database (http://dictybase.org/dictyostelium_genomics.htm)
Aar B-catenin WRM-1 indicates the presence of a number of metavinculins and
paxillins. Our knowledge of the roles of these proteins in
Fig. 5. Comparison of GSK-Btcatenin signalling iDictyostelium Dictyosteliumdevelopment is rudimentary at present. It is
and animals. (A) Extracellular cAMP activates GskA through clear, however, that we have embarked on a journey of

CARS3/ZAK1 and inhibits it through cAR4. GskA positively regulates rediscovery, and we expect to see further major revelations
the-catenin homologue, Aar. (B) The extracellular ligand Wnt-1  from the study ofDictyosteliumcell-cell adhesion in the
stimulates the co-receptors Frizzled (Fz) and LRP5 (or LRP6) to  fytyre.
inhibit GSK-3 function through Dishevelled (Dsh). GSK-3
negatively regulate@-catenin. (C) In nematodes, the Wnt. AJH. is a Wellcome Trust Senior Research Fellow in Basic
homologue, MOM-2, acts positively on GSK-3 function via the FZ  gijomedical Science.
protein MOM-5. GSK-3 appears to positively regulatefreatenin
homologue WRM-1.
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