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ABSTRACT
For the past century, the nucleus has been the focus of extensive
investigations in cell biology. However, many questions remain about
how its shape and size are regulated during development, in different
tissues, or during disease and aging. To track these changes,
microscopy has long been the tool of choice. Image analysis has
revolutionized this field of research by providing computational tools
that can be used to translate qualitative images into quantitative
parameters. Many tools have been designed to delimit objects in 2D
and, eventually, in 3D in order to define their shapes, their number or
their position in nuclear space. Today, the field is driven by deep-
learning methods, most of which take advantage of convolutional
neural networks. These techniques are remarkably adapted to
biomedical images when trained using large datasets and powerful
computer graphics cards. To promote these innovative and promising
methods to cell biologists, this Review summarizes the main
concepts and terminologies of deep learning. Special emphasis is
placed on the availability of these methods. We highlight why the
quality and characteristics of training image datasets are important
and where to find them, as well as how to create, store and share
image datasets. Finally, we describe deep-learning methods well-
suited for 3D analysis of nuclei and classify them according to their
level of usability for biologists. Out of more than 150 published
methods, we identify fewer than 12 that biologists can use, and we
explain why this is the case. Based on this experience, we propose
best practices to share deep-learning methods with biologists.

KEYWORDS: 3D nucleus, Deep learning, 3Dmicroscopy images, 3D
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Introduction
The cell nucleus is at the centre of many investigations in biology.
Its characterization is, for example, commonly used to describe new
genetic functions or to classify tumour cells. Indeed, the nucleus
presents a dynamic morphology with a wide range of variations
in shape and size, as well as a dynamic content organized into
chromosomal domains and nuclear bodies. To link nuclear

organization and function, images of nuclei are captured by
microscopy and then subjected to 2D or 3D morphometric
analysis to quantify their morphology and the position and
organization of nuclear domains (Andrey et al., 2010; Poulet
et al., 2017, 2015). Many platforms and libraries dedicated to the
analysis of images from microscopy have been developed, of which
the best known are ImageJ/Fiji (Schindelin et al., 2012), CellProfiler
(Carpenter et al., 2006), Imaris (Oxford Instruments; https://imaris.
oxinst.com/), Icy (De Chaumont et al., 2012) and, more recently,
Ilastik (Berg et al., 2019). They embed an entire series of
mathematical methods for image processing that are assembled to
form pipelines or plugins. Open-source tools dedicated to the
quantitative description of the 3D nucleus include TANGO
(Ollion et al., 2013) and NucleusJ (Dubos et al., 2020). Most of
these tools require human intervention to reach a sufficient accuracy
and become very specialized once configured for a certain image
type.

Recent improvements in imaging techniques have significantly
shortened the time needed to capture microscopy images, especially
for the cell nucleus as it is one of the most studied cell organelles.
Consequently, the amount of data generated by biologists has
drastically increased, leading them to seek methods that reduce the
burden of manual analysis and automate quantitative studies to
facilitate large-scale statistical analysis (Eliceiri et al., 2012).
Concurrently, computer scientists have developed a plethora of
techniques for image and bioimage analysis (Lucas et al., 2021),
among which deep learning (DL) stands out for its accuracy in many
computer vision problems (von Chamier et al., 2019). Additionally,
DL methods almost automatically adapt to new kinds of data, thus
requiring much less human intervention.

Unfortunately, this new panacea for bioimaging also has some
drawbacks. Most DL methods require a significant amount of
manually annotated data to work properly and typically must be
trained on large datasets before they can be used. Existing datasets
are often not publicly accessible, and creating new ones requires
time. DL methods also require a high-performance computer
graphics card and use many software libraries (suites of programs)
that are complex to set up. Reusing an old version of a high-level DL
library is difficult because it depends on lower-level libraries that are
frequently revised and often incompatible from one version to
another. Finally, DL code is far from simple and usually needs to be
configured by an expert. Despite some initiatives to assist users that
are not proficient in DL, DLmethods are still not easily accessible to
biologists (Laine et al., 2021). Thus, the main objective of this
Review is to provide biologists with a roadmap for understanding
and using DL methods that will also help them to select the most
appropriate method for their needs. Particular attention is paid to the
accessibility of methods both for end users and developers, as
despite the profusion of publications, only a few DL methods are
usable.
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In this Review, we open the ‘black box’ of DL, explaining its
most important elements and how they are shared in biology, as well
as detailing accessible and up-to-date DL methods that can be
applied to the analysis of the 3D nucleus.

Opening the DL black box for bioimaging
DL techniques first achieved ‘superhuman’ performance (i.e.
exceeding that of a human experimenter) on visual task problems
as recently as 2011 (Ciresa̧n et al., 2011), owing to the
implementation of convolutional neural networks (CNNs) – a new
DL method – on fast graphical processing units (GPUs) and large-
scale datasets. CNNs became famous in 2012 by winning several
major competitions, including ImageNet 2012 (Krizhevsky et al.,
2012). Afterwards, most computer vision scientific communities
began to use these new methods, and biomedical image analysts
shortly followed. Many of the recent publications in both fields now
use CNNs (Moen et al., 2019), with the U-Net model (Ronneberger
et al., 2015) a well-known example.

What is DL and how does it work?
DL belongs to the broader class of machine-learning (ML) methods.
ML is the art of writing a computer program that can learn to
recognize or predict patterns. Informally, an ML algorithm can be
seen as a black-box machine fed by an input, such as an image, that
produces an output, such as a number (Fig. 1A). The machine,
called a model, is a set of operations adjustable with inner ‘buttons’,
called parameters or weights (w), changing the way the output is

produced for a given input. Mathematically, a model can be seen as
a function f with a set of parameters w that, given an input x,
produces an output ŷ, which can be summarized as ŷ ¼ fwðxÞ. The
performance of the model is then evaluated by the loss function (see
Glossary). The loss function takes the model output ŷ and the
expected results, which are called the ground truth (y), and
compares them by giving a score, Lðŷ; yÞ, that represents the
performance of the model. In most cases, a loss function gives a
positive real number that must be minimized when adjusting the
weights. Depending on the loss score, the model parameters are then
updated by an algorithm called the optimizer. Computing a loss
value and updating the parameters is called training (see Glossary)
(Fig. 1B). Among the many existing optimizers (Géron, 2019), the
most used is gradient descent. This algorithm can be illustrated by
imagining oneself blinded by fog on a hillside that one would like to
descend. By feeling the direction of the slope and by moving
stepwise in that direction, the valley will be reached. In our ML
scope, one position on the ground represents one configuration of
the model parameters, the altitude represents the loss value obtained
on a set of data and the slope is the so-called gradient.
Mathematically, the loss gradient is noted dLw/dw , and the model

parameters are updated by subtracting it: w w� a
dLw
dw

. The

hyperparameter α (see Glossary) is called the learning rate and
represents the size of the step in the direction of gradient. The most
used optimizers based on gradient descent are Stochastic Gradient
Descent, RMSProp and Adam (Ruder, 2016 preprint).

To introduce DL-specific vocabulary, consider a greatly
simplified example: differentiating mutant and wild-type nuclei
using 2D images (Fig. 1A). To achieve this, we could compute the
weighted sum of all the pixels in an image containing one nucleus
and apply a threshold value to obtain a single digit: 1 for a mutant
nucleus and 0 for wild type. In this example, the weights in the
weighted sum are the parameters. They are randomly initialized and
must be adjusted during the training stage; this provides a so-called
trainable layer (see Glossary). The user could impose the threshold
value applied afterwards; in this case, the thresholding layer is
non-trainable. This layer also belongs to the sub-category of
activation layer as it imposes a choice by transforming a continuous
output to a binary one. This two-layers model has only a single
trainable layer and is therefore a shallow ML model. To transform it
into a DL model, at least one more trainable layer must be added
before or after the existing one. This could be achieved by, for
instance, dividing the initial 2D image into 16 equal parts,
computing a new weighted sum and applying a threshold to each
part, giving us 16 binary values that can then be reordered in a
four-by-four image called a feature map (see Glossary). Aweighted
sum computation and thresholding application can now be
reapplied to this image to obtain the final decision. This four-
layer model is a DL model because it contains a succession of two
trainable layers (see Glossary). The first trainable layer focuses on
simple patterns in small local regions of the image, and the
associated activation layer can force the model to decide whether
each region contains an area of wild-type or mutant nucleus. The
second deeper layer treats more complex patterns in the whole
image and takes the final decision. DL models thus decompose their
input by looking for small patterns first before considering global
ones.

With DL, there is no need for manual feature selection, such as
preselection of a set of possible shapes to evaluate in the data, as this
step is performed automatically. A DL model coupled with a
training module is often called a DL method (Fig. 1B).

Glossary
Dataset: a set of raw images and their corresponding manual
annotations (also called labels or ground truths). These two sets are
usually split into a training set to train the model, and a testing set to
assess the performance of the model. Supervised, weakly or semi-
supervised, and unsupervised models refer to DL models trained with
annotated, partially annotated or unannotated image datasets,
respectively.
Deep learning: a subset of ML methods that contains a neural network
model (also called architecture) with a sequence of more than one
trainable layer.
Feature map: an intermediate output containing the features extracted
by a convolution layer, followed by an activation layer. It usually takes the
form of a 3D image (height, width, depth).
Hyperparameters: a set of manually defined parameters. Example of
hyperparameters are model hyperparameters (e.g. number of layers,
their size, their arrangement) or the training hyperparameters (e.g.
learning rate, batch size).
Layer: a transformation applied to an input (an image or a feature map in
our case). It can be trainable (containing parameters and/or weights
updated during training) or not.
Loss function: a function comparing the ground truth with the model
output. The obtained loss value measures the performance of the model
and is then used to update the model parameters during training.
Mask: a binary image having pixels equal to either zero (black) or one
(white). A mask can be created manually or as the output of a
segmentation model.
Post-processing: a set of operations applied to the model output before
computing a prediction or the loss function. Examples of post-processing
are sigmoid transform or more complex operations, such as those used
in by StarDist (Weigert et al., 2020).
Pre-processing: a set of operations applied to the input before being
inputted into themodel. An example of a pre-processing operation is data
augmentation.
Training: computation of the loss value followed by updating of the
model parameters with the help of an optimizer algorithm that
backpropagates the loss through the model.
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How is DL applied to bioimages?
Most of the DL methods for bioimage analysis are based on a
specific type of trainable layer called the convolution layer
(Fig. 2A), which gives its name to CNNs. The idea behind the
convolution operation is to compute the weighted sum of a small set
of pixels that belong to a small sub-window (usually 3×3 pixels)
within the input image. The set of weights is called a kernel. This
process is reiterated throughout the entire image and aggregated into
a new multi-dimensional image. In order to obtain a low-
dimensional output, as a single digit, and to force the model to
synthesize information, pooling layers have been designed to shrink
the dimension of their input by extracting only a chosen set of pixels
(Fig. 2C). A succession of several convolution, activation (Fig. 2B)
and pooling layers forms the DL model (Fig. 2D). The image is
inputted on one side, then sequentially reduced by the pooling layer
to obtain a single digit. Such a model could be trained for image
classification, which is considered to be the simplest problem in

image processing (Fig. 1C). To tackle different problems, such as
object localization or segmentation, the classification model is
adapted by the addition of more layers and by pre-processing and
post-processing (see Glossary) the data before and after the model
transformations. For instance, upsampling layers double the size of
an input image. Such layers could be sequentially added to the end
of our previous nucleus classification model to transform its low-
dimensional output into an image the same size as the nucleus
image and where each pixel value is either 1 or 0, with 1 (white)
for a background pixel and 0 (black) for a pixel of the nucleus
(Fig. 1B). This type of output is called a segmentation mask (see
Glossary).

The initial model is considered to be a backbone to which
specification modules are added to provide specialization (for
example detection, segmentation or denoising). Common backbone
models include VGG (Simonyan and Zisserman, 2014 preprint),
ResNet (He et al., 2016), and EfficientNet (Tan and Le, 2019).
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Fig. 1. Basic principles of machine learning methods for image analysis. (A) Basic units of an ML model. The two-layer model shown here takes a nucleus
image as input and decides whether it is amutant or awild-type nucleus. The trainable layer (red, parametric layer) is parametrized by three adjustable parameters
(weights) that determine its behaviour. The non-trainable layer (purple, non-parametric layer) is not adjusted during training and here applies a fixed threshold to
the input. (B) Schematic illustration of a DL method and its training for image analysis. A DLmodel for segmentation converts a raw image (left) into a binary mask
(right). It comprises a pre-processing step (yellow engine), several sets of layers (central grey rectangles) and a post-processing step (orange engine). The output
of the model is then transferred into the training module together with the ground truth images. The aim of the loss function (white scale) is to compare the output
and ground truth images and to compute the loss value that assesses the performance of the model. The model parameter values are then either increased or
decreased by the optimizer (robot), depending on the loss value, and this process is reiterated until a satisfactory loss value is reached. Subsequently, the training
module is removed to yield the so-called trained model that can now be used to infer predictions from new images. (C) Typical image analysis tasks for images of
nuclei solved by DLmethods. From left to right: classification of two nuclei into two categories, wild-type or mutant; detection of the centroids of four nuclei present
(red crosses); detection of the bounding boxes around the four nuclei; semantic segmentation of the entire image into a binary mask where nuclei are coloured in
black and the background in white; instance segmentation of the four nuclei into four classes (coloured regions) and of the background (white region); denoising of
the image.
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How are DL methods developed and shared in biology?
Sharing a DL method is more difficult than sharing non-trainable
methods or shallow ML methods (Fig. 3A). To be shared, a DL
model should be delivered together with: (1) a detailed explanation
in the associated publication; (2) commented code comprising the
complete model and its pre- and post-processing steps; (3)
documentation containing at least the installation steps and the
prediction procedure; (4) a DL environment, including the software
and hardware requirements, with the former ideally packaged using
Anaconda or Docker (Fig. 3B; Box 1); and, finally, (5) a trained
model in the form of a file containing all of the model parameters
after training.
With these elements available, a DL model can be used to infer

predictions. However, to reproduce the DL method (i.e. to train the
model or fine-tune it) additional elements are required, such as
training and testing datasets, the code of the training module
(including the loss, metrics and optimizer definition with all the
hyperparameter values), the training routine (i.e. the training pre-
processing and post-processing), and additional documentation of
the training procedure and setups. Furthermore, to make a tool
accessible for those not familiar with programming, the sharing of

the inference procedure has to be complemented with an interface,
either a command line interface (CLI) or a graphical user interface
(GUI). Aside from the datasets (see below), sharing this information
can be done on code-sharing platforms, such as GitHub or GitLab,
or environment-sharing platforms such as DockerHub.

DL needs large datasets
This section aims to help users in creating a dataset or using an
existing one for training or pre-training. We first describe and
categorize existing datasets for nuclear image analysis, before
listing tools for data labelling. Finally, we focus on data storage and
sharing, and discuss the handling of large bioimages.

Datasets for nuclear image analysis
What is a dataset for image analysis?
A dataset is generally a set of pairs of images and their associated
annotations. The latter are either scalar annotations (e.g. 0 or 1) for
image classification, a set of bounding box coordinates for object
detection, or masks for image segmentation. Developers should pay
attention to the validity of each pair, because a single mistake may
slow down the training process. For example, a mask with the same
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Fig. 2. Examples of DL layers and a CNNworkflow for image analysis. (A) A convolution layer (in red) defined by a 3×3 kernel is applied to a 4×4 input image
by a ‘sliding window’ process starting from the top left corner and ending in the bottom right corner. For each new location of the kernel, the weight values are
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size, colour depth and format as the original image might be
required for each image annotation. Annotations are usually manual
and highly time-consuming to make, which should not be
underestimated when planning a DL project.

Importance of data
Data are the exclusive source of knowledge for the model. Thus, a
good dataset must contain all the required information for the model
to understand the objects of interest. For instance, does an abrupt
change in colour intensity in a piece of an image represent an edge?
Are such pixels signal or noise? Do certain objects have regular
shapes? Pre-training on a large set of general images may give the
model the basis on which to function. Another solution is to
manually provide the model with additional information, such as
object shape. The StarDist nucleus segmentation method (Weigert
et al., 2020), for instance, instructs the model to look for 3D star-
shaped polyhedrons, because a nucleus can be assimilated to an
invaginated ellipsoid, which can be modelled as a star-shaped
polyhedron.
A list of available datasets for 2D and 3D nuclear image analysis

is presented in Table 1. These datasets have already been manually
segmented and can be used for pre-training. As manual annotation
of bioimages is time-consuming, recent approaches have also
involved artificially generating pairs of images and annotations by
either using a non-DL method such as CytoPacq (https://cbia.fi.

muni.cz/simulator/index.php; Wiesner et al., 2019), which has been
used for the generation of 3D nucleus images with their
segmentation masks, or a DL method, such as that reported by Fu
et al. (2018) (Box 2).

Data labelling and visualization tools
Data annotation and/or labelling
Creating a training dataset requires a good labelling tool. Choosing
one depends on the 2D or 3D dimensions of the images and is
guided by the imaging application. Here, we present free-to-use
tools.

For classification, two pieces of information are extracted from
each image and stored in a file: the image name or identifier and its
class. 3D bioimages might be classified slice by slice. The ImageJ
plugin Qualitative Annotations (Thomas et al., 2021) is an
annotation tool for classification, storing the manual annotations
in a text file. This plugin relies on the ImageJ selection tools and can
also be used for object detection by drawing bounding boxes around
objects. 3D Slicer (https://www.slicer.org/), which is designed for
annotation of 3D biomedical images, or more general-purpose
software, such as VGG Image Annotator (VIA; https://www.robots.
ox.ac.uk/~vgg/software/via/; Dutta and Zisserman, 2019) or
LabelImg (https://github.com/tzutalin/labelImg) for 2D images
and 3D-bat (https://github.com/walzimmer/3d-bat; Zimmer et al.,
2019) for 3D images, can also be used. A plethora of solutions exist
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for the central bioimaging problem of segmentation. 3D Slicer or
ITK-SNAP can be used for both 2D and 3D images. The best
annotation tools for segmentation we have tested are Ilastik (Berg
et al., 2019) and Weka (Arganda-Carreras et al., 2017); both
integrate ML algorithms (Random Forest) to quickly label a large
number of large 3D images. The webKnossos (https://webknossos.
org/; Boergens et al., 2017) platform provides many tools for
manual online segmentation in both 2D and 3D.

Volume rendering
Visualizing the results of segmentation might be difficult using a
slice-only viewer, and 3D Slicer, ITK-SNAP and ImageJ all have
integrated tools for volume rendering. Tools such as the Medical
Imaging Interaction Toolkit (MITK; Wolf et al., 2004) and Icy
(De Chaumont et al., 2012) also incorporate well-adapted
visualization features for 3D medical images and bioimages.
Napari (Sofroniew et al., 2022) is also a good alternative, because
it provides an easy-to-use programmable graphical interface for
Python, a language that is widely used in DL programming. Finally,
ParaView (Ahrens et al., 2005), which is designed for scientific
visualization and volume rendering, allows the user to highlight

object structures by applying a range of colours to 3D images using
simple thresholds.

Data sharing
To develop novel DL methods, datasets with their metadata (for
example, image modality and resolution) should be made available.
The images should be identifiable by their filenames and be in a
unified image format. Image quality criteria, such as a good signal-
to-noise ratio, a proper image annotation and a limited heterogeneity
between objects, should be considered, as outliers can introduce
unwanted bias during training.

Such formatted datasets can then be shared through diverse
methods, depending on time investment and dataset size. Most of
the datasets listed in Table 1 are shared on authors’ websites, but
ideally a dataset should be stored in a public repository and the
associated code should be made available at an open-access
repository such as Zenodo or Github/Gitlab. Another solution is
to use a cloud-storage platform, which for security reasons, we do
not recommend. For bioimages, we recommend the Broad
Bioimage Benchmark Collection (BBBC) platform (https://bbbc.
broadinstitute.org/; Ljosa et al., 2012); the Image Data Resource
(IDR; https://idr.openmicroscopy.org/; Williams et al., 2017)
developed by OMERO creators (https://www.openmicroscopy.
org/omero/; Allan et al., 2012), which can also be installed on
any institution server; and webKnossos.

DL methods for nuclear image analysis
DL methods trained on manually and fully annotated datasets are
called supervised methods (see Glossary) and constitute the current
standard approach. However, manual annotation of datasets takes
time, and methods dealing with insufficiently labelled datasets are
becoming one of the major trends in the field of computer vision. In
this section, we present various supervised methods and provide
more details about the most accessible among them.

The discussion below is based on 151 publications on DL
methods for nuclear image analysis that have been published since
2014 (108 of which were published between 2019 and 2021) either
in relevant journals or posted on open-access preprint severs, such
as bioRxiv and arXiv (Table S1). For additional information about
non-nucleus-specific methods, we advise the reader to visit the
Papers With Code website (https://paperswithcode.com/sota),
where all the state-of-the-art methods for computer vision
problems are listed alongside their code.

Image classification
Image classification consists of sorting images into categories,
called classes (Fig. 1C). Nuclear image analysis studies usually
focus on 2D histopathology images of human tissues that have been
stained with Haematoxylin and Eosin. Unfortunately, apart from
one study (Qu et al., 2019a), the 24 other methods we found do not
provide code or datasets, drastically compromising reproducibility
(Table S1). To our knowledge, no work has been published on
image classification of 3D nuclear images.

For classification of 2D nuclei, basic programming skills are
needed to use a standard DL framework (Box 1). Tools that do not
require programming have also been developed to help users
automatically train and fit models to a private training dataset, but
unfortunately these tools are not open-source and free, and often
only support 2D images. The most well-known are Google AutoML
Vision (https://cloud.google.com/vision), Roboflow (https://app.
roboflow.com/; Alexandrova et al., 2015), H2O (https://www.h2o.
ai/products/h2o-driverless-ai/) and KNIME (https://www.knime.

Box 1. Programming tools used for DL
Code. Most DL methods are coded using the easy-to-use programming
language Python, but its lack of performance sometimes forces the
use of lower-level languages such as C++. DL frameworks, such as
TensorFlow, PyTorch, JAX (https://github.com/google/jax), Flax (https://
github.com/google/flax) or fastai (https://www.fast.ai/), contain pre-made
functions, which facilitate DL coding. For image analysis studies, higher-
level frameworks are available, such as TensorFlow model (https://
github.com/tensorflow/models), TensorFlow Hub (https://tfhub.dev/),
torchvision (https://pytorch.org/vision/stable/index.html), mmDetection
(https://github.com/open-mmlab/mmdetection), segmentation_models
(https://github.com/qubvel/segmentation_models) or detectron2 (https://
github.com/facebookresearch/detectron2). For biomedical images,
frameworks such as MONAI (https://monai.io/), nnDetection (https://
github.com/MIC-DKFZ/nnDetection), YAPiC (https://yapic.github.io/
yapic/) or Gunpowder (https://github.com/funkey/gunpowder), or
business solutions, such as Nvidia Clara Imaging (https://developer.
nvidia.com/clara-medical-imaging), Microsoft Project InnerEye (https://
www.microsoft.com/en-us/research/project/medical-image-analysis/) or
Aivia (https://www.aivia-software.com/), can help the analysis. For the
specific problem of nuclear image analysis, the best development tools
are DeepCell and Cellpose.

Sharing. All new developments of DL tools for image analysis are
based on existing frameworks, each having an appropriate version and
dependencies. A good practice is to package them all into a development
environment manager, such as Docker or Anaconda (Fig. 3B). These
managers facilitate code sharing and reproducibility. A packaged code is
then easy to benchmark, if integrated in a platform such as BIAFLOWS
(https://biaflows.neubias.org/), or to share on easy-to-use platforms for
biologists, such as Bioimage.io.

Computational resources. As DL requires a lot of computational
resources towork, both for training and inference, many large companies
offer cloud computing services to run code online on their computers.
Online DL development can also remove the need for computer
configuration by integrating most of the necessary tools. Google Colab
(https://research.google.com/colaboratory/), for instance, offers free
access to powerful GPUs and allows any user to run Python code
online with minimal setup. ZeroCostDL4Mic (https://github.com/
HenriquesLab/ZeroCostDL4Mic) is a set of implementations of DL
methods for microscopy running in Google Colab. Other competitors are
Amazon Web Services (https://aws.amazon.com/machine-learning),
Microsoft Azure (https://azure.microsoft.com/en-us/services/machine-
learning/) and Paperspace.com (https://www.paperspace.com/).

6

REVIEW Journal of Cell Science (2022) 135, jcs258986. doi:10.1242/jcs.258986

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://webknossos.org/
https://webknossos.org/
https://webknossos.org/
https://bbbc.broadinstitute.org/
https://bbbc.broadinstitute.org/
https://bbbc.broadinstitute.org/
https://idr.openmicroscopy.org/
https://idr.openmicroscopy.org/
https://www.openmicroscopy.org/omero/
https://www.openmicroscopy.org/omero/
https://www.openmicroscopy.org/omero/
https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.258986
https://paperswithcode.com/sota
https://paperswithcode.com/sota
https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.258986
https://cloud.google.com/vision
https://cloud.google.com/vision
https://app.roboflow.com/
https://app.roboflow.com/
https://app.roboflow.com/
https://www.h2o.ai/products/h2o-driverless-ai/
https://www.h2o.ai/products/h2o-driverless-ai/
https://www.h2o.ai/products/h2o-driverless-ai/
https://www.knime.com/community/image-processing
https://www.knime.com/community/image-processing
https://github.com/google/jax
https://github.com/google/jax
https://github.com/google/flax
https://github.com/google/flax
https://github.com/google/flax
https://www.fast.ai/
https://www.fast.ai/
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://tfhub.dev/
https://tfhub.dev/
https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
https://github.com/qubvel/segmentation_models
https://github.com/qubvel/segmentation_models
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://monai.io/
https://monai.io/
https://github.com/MIC-DKFZ/nnDetection
https://github.com/MIC-DKFZ/nnDetection
https://github.com/MIC-DKFZ/nnDetection
https://yapic.github.io/yapic/
https://yapic.github.io/yapic/
https://yapic.github.io/yapic/
https://github.com/funkey/gunpowder
https://github.com/funkey/gunpowder
https://developer.nvidia.com/clara-medical-imaging
https://developer.nvidia.com/clara-medical-imaging
https://developer.nvidia.com/clara-medical-imaging
https://www.microsoft.com/en-us/research/project/medical-image-analysis/
https://www.microsoft.com/en-us/research/project/medical-image-analysis/
https://www.microsoft.com/en-us/research/project/medical-image-analysis/
https://www.aivia-software.com/
https://www.aivia-software.com/
https://biaflows.neubias.org/
https://biaflows.neubias.org/
https://research.google.com/colaboratory/
https://research.google.com/colaboratory/
https://github.com/HenriquesLab/ZeroCostDL4Mic
https://github.com/HenriquesLab/ZeroCostDL4Mic
https://github.com/HenriquesLab/ZeroCostDL4Mic
https://aws.amazon.com/machine-learning
https://aws.amazon.com/machine-learning
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://www.paperspace.com/
https://www.paperspace.com/


Table 1. List of available datasets for nuclear image analysis in 2D and 3D

Topic Name Description

Nucleus classification 2D Mitos-Atypia-14 – Grand Challenge Classification of nuclear atypia in breast cancer biopsy slides. Approximately
10,400 frames. https://mitos-atypia-14.grand-challenge.org/Dataset/

Nucleus segmentation 2D MoNuSeg – Grand Challenge Multi-organ nuclei segmentation challenge. Challenge of MICCAI 2018.
Thirty images with approximately 22,000 nuclear boundary annotations.
https://monuseg.grand-challenge.org/Data/

Nucleus segmentation and
classification 2D

MoNuSAC – Grand Challenge In total, 31,000 annotated nuclei from four different organs (lungs, prostate,
kidney and breast) stained with Haematoxylin and Eosin. https://monusac-
2020.grand-challenge.org/Data/

Nucleus segmentation 2D Segmentation of nuclei in histopathology images
by deep regression of the distance map

Fifty annotated histopathology images. https://zenodo.org/record/1175282

Nucleus segmentation 2D NucleusSegData: cell nucleus segmentation
dataset for fluorescence microscopy images

A total of 2661 cell nuclei in 37 fluorescence microscopy images http://www.
cs.bilkent.edu.tr/~gunduz/downloads/NucleusSegData/

Nucleus segmentation 2D Kaggle Data Science Bowl, 2018 A large variety images showing nuclei under a variety of conditions (small or
large nuclei, from coloured or greyscale images of different resolutions).
Kaggle competition proposed by Booz Allen Hamilton https://www.kaggle.
com/c/data-science-bowl-2018/data

Nucleus segmentation 2D A dataset and a technique for generalized
nuclear segmentation for computational
pathology

Images containing 21,000 nuclear boundaries in Haematoxylin and Eosin-
stained tissue. Used in many publications. https://
nucleisegmentationbenchmark.weebly.com/dataset.html

Nucleus segmentation 2D Deep learning for digital pathology image
analysis: a comprehensive tutorial with
selected use cases.

Tissue images containing nucleus segmentation, epithelium segmentation,
tubule segmentation, lymphocyte detection, mitosis detection, invasive
ductal carcinoma detection and lymphoma classification http://
andrewjanowczyk.com/wp-static/

Nucleus segmentation 2D Dataset from Immunohistochemistry (IHC)
Image Analysis Toolbox

Fifty-two images of clustered stained nuclei https://www.dropbox.com/s/
9knzkp9g9xt6ipb

Nucleus segmentation 2D Hand-segmented 2D nuclear images In total, 100 images of clustered stained nuclei http://murphylab.web.cmu.
edu/data/2009_ISBI_Nuclei.html

Nucleus segmentation 2D EVICAN dataset – a balanced dataset for
algorithm development in cell and nucleus
segmentation

Greyscale images from multiple bright field microscopes. Comprises 4600
images and 26,000 segmented cells https://edmond.mpdl.mpg.de/imeji/
collection/l45s16atmi6Aa4sI

Nucleus segmentation 2D An annotated fluorescence image dataset for
training nuclear segmentation methods

Annotated fluorescence images of nuclei from different tissue origins https://
www.ebi.ac.uk/biostudies/files/S-BSST265/dataset.zip

Nucleus segmentation and
classification 2D

PanNuke: an open pan-cancer histology dataset
for nuclei instance segmentation and
classification

A total of 205,343 semi-automatically segmented nuclei from 19 different
tissues stained with Haematoxylin and Eosin. https://warwick.ac.uk/
services/its/intranet/projects/webdev/sandbox/juliemoreton/research-
copy/tia/data/pannuke

Nucleus segmentation and
classification 2D

Dataset of segmented nuclei in Haematoxylin
and Eosin-stained histopathology images of
ten cancer types

The largest annotated dataset listed here. From The Cancer Genome Atlas
(TGCA): 5060 whole-slide tissue images from ten cancer types (∼ 5 billion
segmented nuclei) automatically segmented and quality controlled, and
1356 manually segmented patches from the TCGA from 14 cancer types.
https://app.box.com/s/yd4pbndk2bxtnourzpbvopga8dczsnes/folder/
99392899243

Nucleus segmentation 2D
and 3D

Broad Bioimage Benchmark Collection Database of various medical image analysis problems. https://bbbc.
broadinstitute.org/image_sets
Some of the image sets focus on nuclei segmentation in 2D and 3D,
including: Nuclei of U2OS cells in a chemical screen (2D), https://bbbc.
broadinstitute.org/BBBC039
Drosophila Kc167 cells (cells and nuclei outlined in 2D), https://bbbc.
broadinstitute.org/BBBC007
Human U2OS cells (out of focus, 2D), https://bbbc.broadinstitute.org/
BBBC006
Human HT29 colon-cancer cells (diverse phenotypes, 2D), https://bbbc.
broadinstitute.org/BBBC018
Murine bone-marrow-derived macrophages (2D), https://bbbc.
broadinstitute.org/BBBC020
Nuclei of mouse embryonic cells (3D), https://bbbc.broadinstitute.org/
BBBC050

Nucleus segmentation 3D EPFL – Electron microscopy dataset Segmented nuclei of CA1 hippocampus brain region captured with electron
microscopy. Two segmented 3D images (one for training and one for
testing). https://www.epfl.ch/labs/cvlab/data/data-em/

Nucleus segmentation 3D Neurosphere dataset Fifty-two cells with stained nuclei captured using a light sheet fluorescence
microscope. http://opensegspim.weebly.com/download.html

Nucleus segmentation 3D Asynchronous fate decisions by single cells
collectively ensure consistent lineage
composition in the mouse blastocyst

Confocal microscopy images of mouse embryo. Consists of 545 segmented
3D images. http://dx.doi.org/10.6084/m9.figshare.c.3447537.v1

Nucleus segmentation 3D Arabidopsis thaliana cotyledon cell nuclei Confocal microscopy images of individual plant cell nuclei. A total of 413 3D
images. https://omero.bio.fsu.edu/webclient/?show=project-3451
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com/community/image-processing), with the first two offering free
trials for image classification problems.

Object detection
Object detection methods can be classified into distance-map-based
and bounding-box-based methods (Fig. 1C). We found 31
publications for 2D and 3D nuclei detection with a dedicated DL
model (Table S1). Among these, only five provide a valid code with
a trained model [StarDist (Schmidt et al., 2018), SP-CNN (Tofighi
et al., 2018), KiNet (Xing et al., 2019), NucleiDetection (Valkonen
et al., 2020) and QCANet (Tokuoka et al., 2020)], and only one
works with 3D images (QCANet). A distance map for nuclei
detection is a greyscale image, of the same size as the input image,
where white pixels represent the nuclei and black pixels represent
the background. Pixels closer to the centroid of the nucleus have a
higher intensity and can thus be used to count nuclei. This technique
is the main idea underlying all five methods cited above. In this case,
the model is generally a 2D or a 3D U-Net model.
Bounding-box methods, such as Faster R-CNN (Ren et al., 2017)

or YOLO (Redmon et al., 2016), frame each object of interest
either in a rectangle (2D) or in a rectangular cuboid (3D). Although
a third of the 31 publications about nucleus detection employ
such methods, none of them present the associated code, and
new DL models must thus be trained. A code-free solution is to
first find a manually annotated dataset of nuclei before using an

easy-to-use graphical interface generated for DL model training,
such as ZeroCostDL4Mic (https://github.com/HenriquesLab/
ZeroCostDL4Mic; von Chamier et al., 2021). A large set of DL
models for object detection (for 2D images only), as well as for
image segmentation, denoising and virtual staining, have been
encapsulated and set up online on Google Colab servers. Once
uploaded on a Google Drive, a nucleus dataset can be used to train
an object-detection model such as YOLO online. Once trained, the
model will be able to detect nuclei in any set of images. For a
programmer, another solution is to employ the implementation of
the state-of-the-art methods for general object detection in 2D
developed by OpenMMLab (https://github.com/open-mmlab/
mmdetection).

Image segmentation
Segmenting an image involves extracting objects of interest
(foreground) from the rest of the image (background) by labelling
each pixel with an integer, resulting in what is called a mask. For
example, a pixel can be assigned the value 0 if it belongs to the
background and 1 if it belongs to a nucleus; this is called semantic
segmentation (Fig. 1C). The discrimination of nuclei from each
other is referred to as instance segmentation. In this case, each pixel
of the first nucleus is labelled with 1, each pixel of the second
nucleus is labelled with 2 (and so on), and background pixels are
labelled with 0. This task is more difficult than semantic
segmentation and is usually implied when referring to nuclei
segmentation. Instance segmentation makes it possible to study the
morphology of each individual nucleus.

We found 101 recent publications reporting DL methods
designed for nuclei segmentation (Table S1). Among those, only
35 provide an open-source implementation, and of these, ten can
handle 3D nuclei: CDeep3M (Haberl et al., 2018), DeepSynth
(Dunn et al., 2019), 3D U-Net (Cicek et al., 2016), QCANet
(Tokuoka et al., 2020), Retina U-Net (Jaeger et al., 2020), NuSeT
(Yang et al., 2020), StarDist (Weigert et al., 2020), nnU-Net
(Isensee et al., 2021), DeepCell (Van Valen et al., 2016), and
Cellpose (Stringer et al., 2021). However, only five provide a trained
model: DeepSynth, QCANet, NuSeT, DeepCell and Cellpose.

According to the literature, six main difficulties arise in the
segmentation of nuclei: (1) nuclei-related difficulties, including
variability in cell size, shape and texture among different organs,
tissues and cell types; (2) noise-related difficulties, including
poor signal-to-noise ratio, background complexity, uneven colour
distribution, heterogenous sample preparation and variations in
capture conditions; (3) image modality-related difficulties, including
variability of images from different devices (2D versus 3D, confocal
and electron microscopes, etc.); (4) manual-annotation-related
difficulties, including subjectivity of the manual annotator (inter-
observer variability), labelling cost and the small size of handmade
datasets in biology; (5) method-related difficulties, including
inaccuracies and lack of robustness of classical image processing,
configuration, design and training of DL methods, interpretation of
DL results and prohibitory computational costs for 3D application;
and (6) use-related difficulties, including DL tool setup and use both
for computer scientists and biologists. A properly designed DL
workflow can tackle difficulties associated with nuclei and noise, as
long as a good manually labelled dataset has been built.

Semantic segmentation
Most of the current methods for semantic segmentation are based on
a very popular DL model called the U-Net encoder–decoder model
(Ronneberger et al., 2015), which is also known as a Feature

Box 2. Methods for insufficiently labelled datasets
Four types of solution have been designed to overcome the lack of
manually annotated datasets.

Synthetic data generation. This approach can be used to complete
the training set either by data augmentation or by generative methods.
Data augmentation involves applying small transformations to the input
image and eventually to the annotation, such as rotations or noise
(https://github.com/MIC-DKFZ/batchgenerators), thus providing a new
point of view. Generative methods artificially create novel images.
Generative Adversarial Networks (GANs; Goodfellowet al., 2014) are DL
methods that have been successfully applied to image generation of 3D
nuclei (Dunn et al., 2019; Fu et al., 2018), owing to a derivative of the
CycleGAN model (Zhu et al., 2017) simultaneously training a nucleus
segmentation model.

Weak supervision. This approach involves the training of models
using noisy or partial annotations (https://github.com/jeromerony/
survey_wsl_histology). For instance, annotations with only the nucleus
centroid labelled (https://github.com/huiqu18/WeaklySegPartialPoints;
Qu et al., 2020) or only the nucleus bounding box added (Zhao et al.,
2018) can be used to train the model to perform a full nucleus
segmentation.

Active learning. Also known as ‘human-in-the-loop’, this method
incorporates a human annotator during the training process. While
training starts with just a few annotations, the model repeatedly asks a
human annotator to label the images that would increase its performance
the most. Active learning has already been applied to medical image
analysis (Budd et al., 2021), 2D nucleus classification (Shao et al., 2018)
and 2D nucleus segmentation (https://github.com/vanvalenlab/deepcell-
label; Greenwald et al., 2021).

Transfer learning. This approach consists of first giving a general
knowledge to the DL model, by, for instance, training it on a large
annotated generic dataset, such as ImageNet (Deng et al., 2009) before
specializing it by replacement or addition of trainable layers (Kolesnikov
et al., 2020). Self-supervised learning is another related solution using
large unlabelled datasets to perform pre-training on a so-called pretext
task, such as solving the jigsaw puzzle of a split image, before
specialization on a so-called downstream task, such as nucleus
segmentation in 2D (Buchholz et al., 2020; Sahasrabudhe et al., 2020).
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Pyramid Network (FPN). The encoder (the descending U-branch) is
a standard CNN, such as ResNet (He et al., 2016), DenseNet
(Huang et al., 2017) or EfficientNet (Tan and Le, 2019), or a
Transformer model (Hatamizadeh et al., 2022); it progressively
transforms the input image into a series of five feature maps, each
having a progressively lower resolution – hence ‘feature pyramid’.
In its original version (Ronneberger et al., 2015), the encoder is four
series of convolution, activation and pooling. The low-resolution
encoder output is then composed by the decoder (the ascending
U-branch) into the final mask, with the same resolution as the input,
by progressively upsampling the feature maps four times and, at
each level, applying a series of convolution and activation layers. To
retrieve more information, each level of the decoder feature pyramid
is merged with its corresponding level in the encoder pyramid
before the application of the convolutions. A version of U-Net also
exists for 3D images (Cicek et al., 2016), and this has been
integrated into the ZeroCostDL4Mic project. Alternatives to U-Net-
like models are full-resolution models, which retain the original
image resolution at every stage of the model (Qu et al., 2019b) but
are more computationally demanding. According to the Papers with
Code website (https://paperswithcode.com/sota), one of the current
best performing 2D semantic segmentation models is HRNet
(https://github.com/HRNet/HRNet-Semantic-Segmentation; Sun
et al., 2019); however, this model must be adapted for 3D images,
which is not a simple task.

Instance segmentation
Four conceptually different approaches for instance segmentation
can be distinguished. The first approach uses a semantic
segmentation model that classifies pixels into ‘nucleus centre’,
‘nucleus border’ or ‘background’ and couples it with a non-DL
method to separate the nuclei clusters. The additional ‘nucleus
border’ prediction forces the model to leave sufficient space
between each nucleus centre so that they can be separated by a non-
DL algorithm. A powerful but computationally demanding example
in 2D uses 32 U-Net models (Caicedo et al., 2019) (Table S1).
Conversely, the method used by DeepCell, called Mesmer, relies on
PanopticNet, a DL model designed to predict both nuclei centres
and borders (Greenwald et al., 2021) (Table S1). Mesmer predicts
the centre and border of each cell, as well as of each nucleus, and
tracks cells in 2D images, in 2D time-lapse data, as well as in 3D
images.
The second approach is based on predicting a distance map,

similar to the one used for object detection, which is then used to
discriminate individual objects from each other by detecting each
centroid and, in parallel, to predict each segmentation mask. It is
used by StarDist (Weigert et al., 2020) (Table S1) for 2D and 3D
images. Cellpose (Stringer et al., 2021) (Table S1) has also adapted
this technique for 3D images. Here, segmentations are computed
slice-by-slice along each of the three axes and then combined to
obtain a 3D mask; this technique is called 2.5D segmentation
(Angermann and Haltmeier, 2019).
In the third approach to instance segmentation, a subset of the

original image containing the object of interest (a nucleus) is
defined using the predictions of a bounding-box detection method.
Then, a semantic approach is used to segment the isolated nuclei.
This is the main concept underlying the Mask R-CNN method
(He et al., 2020), which integrates these steps in a single model by
specializing an image-classification model with several trainable
modules to extract features of different sizes and to obtain object
classes, bounding boxes and their individual masks. Mask R-CNN
is designed for 2D instance segmentation. An adaptation has been

created for 3D images (Jaeger et al., 2020; https://github.com/MIC-
DKFZ/medicaldetectiontoolkit) and applied to the segmentation of
human tissue images. An adaptation attempt has also been made for
the 3D nucleus (Tatout et al., 2022).

The final method is a parallelization of the previous approach;
detection of nuclei and semantic segmentation are computed
separately with a DL model for the entire image before being
combined using a non-DL method, resulting in separate nuclei
clusters. The two main methods using this technique for 3D images
are QCANet (Tokuoka et al., 2020) and NuSeT (Yang et al., 2020)
(Table S1). QCANet uses two different models for bounding-box
detection and segmentation, whereas NuSeT uses a single U-Net
model to compute both. Additionally, NuSeT provides a user-
friendly interface.

To conclude, if planning to segment 2D nuclei, we advise first
trying the online version of DeepCell (https://www.deepcell.org/),
Cellpose (https://www.cellpose.org/) or NucleAIzer (https://www.
nucleaizer.org/), which has a well-designed graphical interface and
does not require any setup. However, in case of 3D nucleus
segmentation, if previous results are inaccurate, the model must be
applied to a large dataset or the data cannot be uploaded to an online
server, we suggest using and configuring the offline version of
DeepCell (Van Valen et al., 2016), Cellpose (Stringer et al., 2021),
QCANet (Tokuoka et al., 2020) or NuSeT (Yang et al., 2020). The
setup of these methods remains tedious, and good results are only
guaranteed on images that are sufficiently similar to those used to
train them. For other images, the model will have to be fine-tuned or
retrained from scratch on a new manually labelled dataset. We
advise non-programmers to use ZeroCostDL4Mic, which also
contains DL models for segmentation, or alternatively either the
U-Net (Falk et al., 2019) or DeepImageJ (Gómez-de-Mariscal et al.,
2021) ImageJ/Fiji plugins, which both have a graphical interface.
The U-Net plugin integrates a pre-trained model for 2D and 3D
segmentation, which can be refined using a few images if it is
installed with appropriate software on a powerful computer.
DeepImageJ works with the Bioimage.io website (https://
bioimage.io), where many DL models for image segmentation, as
well as for other image analysis problems, can be uploaded to the
plugin. These models are currently non-retrainable, but some of the
segmentation models created with ZeroCostDL4Mic are compatible
with the plugin. For users more familiar with programming,
nnU-Net (Isensee et al., 2021; https://github.com/MIC-DKFZ/
nnUNet) is recommended for 3D instance segmentation because it
automatically handles the full model configuration and training, and
for 2D images, implementation of most state-of-the-art methods for
segmentation can be found on GitHub (https://github.com/qubvel/
segmentation_models.pytorch).

Image denoising
A better visualization of nuclei, from the point of view of both the
human eye and DL, could facilitate image analysis. Denoising has
also been explored with the help of DL methods. We have found
five methods that provide the underlying code: VoidSeg
(Prakash et al., 2020), Noise2Void (Krull et al., 2019), DenoiSeg
(Buchholz et al., 2020), DecoNoising (Goncharova et al., 2020) and
3D-RCAN (Chen et al., 2021) (Table S1). They all use a U-Net
model by training it with artificially noised images to reproduce the
original image. The first three solutions are based on the CSBDeep
(Weigert et al., 2018) toolbox (Table S1) and have proven their
efficiency with 2D nucleus images. In particular, the DenoiSeg
method couples denoising and segmentation in the same model and
has demonstrated a substantial improvement in 2D nuclear
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segmentation compared with other methods, such as U-Net alone or
StarDist. In addition, 3D-RCAN is also suitable for denoising 3D
images. Programmers might be interested in looking at these
methods, whereas non-programmers could employ one of the easy-
to-use denoising models integrated into ZeroCostDL4Mic if they
have access to a suitable dataset, which only needs to be composed
of raw images and does not require manual labelling.
The imaging problems discussed above are currently the main

focus of DL methods for nucleus image analysis, but readers might
be interested to explore future challenges proposed by the 4D
Nucleome initiative (https://www.4dnucleome.eu/).

Conclusions
DL methods are powerful techniques for image analysis that can
reach levels of accuracy not achieved previously and automate the
formerly manual feature-selection step. Instead of being required for
feature selection, human intervention is now needed for dataset
creation and design of DL methods. This shift in focus also needs to
be applied to the code-sharing process. If an article reporting a
method and its associated code are the DNA of DL, then the
datasets, trained model, documentation and development
environment can be considered the epigenetic signals required for
its proper functioning. Sharing the former without the latter is to
give a solution without the means to apply it. DL studies of the 3D
nucleus do not avoid this reality, and unfortunately far too many
methods are not reusable.
There are several ways by which the gap between biologists and

computer scientists could be bridged: firstly, by biologists sharing
their datasets publicly to provide valuable resources to DL
engineers; and secondly, by computer scientists sharing their
methods, including all appropriate material and, ideally, with an
easy-to-use interface. Finally, we believe that the best way to bridge
this gap is to create interdisciplinary teams and to support good
practice in specialized method sharing.
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