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To see the reviewers' reports and a copy of this decision letter, please go to: https://submit-
jcs.biologists.org and click on the 'Manuscripts with Decisions' queue in the Author Area. 
(Corresponding author only has access to reviews.) 
 
As you will see, the reviewers gave favourable reports but raised some critical points that will 
require amendments to your manuscript. I hope that you will be able to carry these out because 
I would like to be able to accept your paper, depending on further comments from reviewers.  
 
We are aware that you may be experiencing disruption to the normal running of your lab that 
makes experimental revisions challenging. If it would be helpful, we encourage you to contact us 
to discuss your revision in greater detail. Please send us a point-by-point response indicating 
where you are able to address concerns raised (either experimentally or by changes to the text) 
and where you will not be able to do so within the normal timeframe of a revision. We will then 
provide further guidance. Please also note that we are happy to extend revision timeframes as 
necessary. 
 
Please ensure that you clearly highlight all changes made in the revised manuscript. Please avoid 
using 'Tracked changes' in Word files as these are lost in PDF conversion. 
 
I should be grateful if you would also provide a point-by-point response detailing how you have 
dealt with the points raised by the reviewers in the 'Response to Reviewers' box. Please attend 
to all of the reviewers' comments. If you do not agree with any of their criticisms or suggestions 
please explain clearly why this is so. 
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Reviewer 1 
 
Advance summary and potential significance to field 
 
The authors describe Label2Label: a deep learning-based image restoration algorithm for 
microscopy that is trained using redundancies between images acquired with biologically distinct 
labels for increasing structural contrast.  
This method is conceptually very interesting, as it represents a shift from denoising methods 
based on classical properties of images (e.g. signal-to-noise ratio, local noise statistics) to 
denoising based on the inherent imperfections of biological labelling. There is also technical 
novelty in the exploration of an MS-SSIM based loss function used in training the network. 
 
There are many strengths to this work. The authors elegantly state the limitation of many deep 
learning-based image restoration methods, in that they disregard intrinsic properties of 
biological fluorescence microscopy (lines 70-79); this is in general under-discussed in the field. 
The actin data (Figure 1) is very compelling in favour of L2L as an improvement on current state-
of-the art de-noising. The knockdown validation experiment for the paxillin data (SI Figure 4)  
was also a very interesting component of the paper, as it underscores where ‘unwanted’ signal 
arises from in biological images, and provokes thought on what signal we actually want to keep 
from our original images. The demonstration of the network is separating signals from two 
superposed structures (Figure 4) could be very powerful for multicolour imaging with spectrally 
overlapping fluorophores and I think this would be generally very useful in the fluorescence 
microscopy community. The authors also have a firm grasp on the shortcomings of image quality 
assessment metrics for fluorescence microscopy (lines 435-445). 
 
One of the most interesting things about the paper was that while reading it, I was immediately 
thinking of other contexts that L2L could be used in (could a CycleGAN-based method be used to 
restore between the same structure disrupted under different fixation conditions? could L2L be 
trained on a dataset with GFP and anti-GFP immunolabelling for restoration of live-cell data?), 
which is a real credit to the authors and the appeal of the work. (note that my questions do not 
need answering here, just examples to demonstrate that I found the work exciting!) 
 
Comments for the author 
 
The authors describe Label2Label: a deep learning-based image restoration algorithm for 
microscopy that is trained using redundancies between images acquired with biologically distinct 
labels for increasing structural contrast. This method is conceptually very interesting, as it 
represents a shift from denoising methods based on classical properties of images (e.g. signal-to-
noise ratio, local noise statistics) to denoising based on the inherent imperfections of biological 
labelling. There is also technical novelty in the exploration of an MS-SSIM based loss function 
used in training the network.  
 
There are many strengths to this work. The authors elegantly state the limitation of many deep 
learning-based image restoration methods, in that they disregard intrinsic properties of 
biological fluorescence microscopy (lines 70-79); this is in general under-discussed in the field. 
The actin data (Figure 1) is very compelling in favour of L2L as an improvement on current state-
of-the art de-noising. The knockdown validation experiment for the paxillin data (SI Figure 4) 
was also a very interesting component of the paper, as it underscores where 'unwanted' signal 
arises from in biological images, and provokes thought on what signal we actually want to keep 
from our original images. The demonstration of the network is separating signals from two 
superposed structures (Figure 4) could be very powerful for multicolour imaging with spectrally 
overlapping fluorophores, and I think this would be generally very useful in the fluorescence 
microscopy community. The authors also have a firm grasp on the shortcomings of image quality 
assessment metrics for fluorescence microscopy (lines 435-445).  
 
One of the most interesting things about the paper was that while reading it, I was immediately 
thinking of other contexts that L2L could be used in (could a CycleGAN-based method be used to 
restore between the same structure disrupted under different fixation conditions? could L2L be 
trained on a dataset with GFP and anti-GFP immunolabelling for restoration of live-cell data?), 
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which is a real credit to the authors and the appeal of the work. (note that my questions do not 
need answering here, just examples to demonstrate that I found the work exciting!)  
 
I have a few general concerns that I would like the authors to address:  
 
Application of MS-SSIM metric 
There are quite a few parameters involved in the MS-SSIM calculation. For example, how did the 
authors select the values of the weights ? In the Methods, the authors use the weights for M=5 as 
described in reference 32, but these were originally derived (as far as I can tell) from human 
perceptual assessment of 64x64 pixels distorted images of subjects such as faces, natural scenes 
etc., which is a very different dataset to the images here. I am definitely not asking the authors 
to try and derive a microscopy-specific set of weights, but I am curious to know how sensitive 
the MS-SSIM loss function and assessment of images using MS-SSIM is to these weights. For 
example, are radically different results obtained if L2L is trained with a MS-SSIM loss function 
where the weights are all equivalent, or where higher frequency components have larger 
weights etc? On a similar note, how was the size of the low-pass Gaussian filter selected? This 
feels like a parameter which should depend on the pixel sampling size and image resolution and 
thus vary between images.  
Is there any way of using a priori information about the structure being imaged (such as the 
typical structure size, or dimensionality) to decide which value of M should be used in the L2L 
loss function? It was interesting to observe that M=5 yielded the best results for actin,  
tubulin, caveolae, and paxillin) which all exist on similar size scales, yet M=1 yielded the best 
result for the Sytox nuclear stain, which is a much larger structure that is also two- dimensional 
in the image.  
 
Comparison with 'classical' denoising methods 
Deep learning is clearly a very powerful technique for image processing, but it would be 
interesting to see how L2L and N2N compare to simpler techniques such as Gaussian smoothing 
(which could recreate the 'in-painting' discussed by the authors) and a rolling ball background 
subtraction (which may recreate the cytosolic signal filter for the paxillin data). This is already 
shown to a small extent in the Gaussian-filtered images in SI Figure 5, but I would like to be 
thoroughly convinced that the image content in L2L-processed data is more useful than just 
applying a very simple filter that has no danger of inducing hallucination artefacts. I would like 
to see quality metrics for such non-deep learning methods shown alongside the L2L and N2N 
results.  
On a related point, what is the interplay between contrast increase/denoising and image 
resolution (as this is a disadvantage of just using a Gaussian filter, for example)? And does the 
order of the MS-SSIM make a difference to resolution? I mainly ask this because in the 
microtubule data that is validated with the STED imaging (Figure 2A, lower row), the 
microtubule diameters appear thinner in the L2L 3S-SSIM image than the L1 image.  
 
Image artefacts 
I have a concern with the data in the lower row of Figure 2A that all three deep learning 
methods appear to be collapsing structures onto one another (artificial sharpening) - this is most 
visible on the triangle-shaped crossing halfway up the image on the right-hand side, and on the 
two parallel microtubules running diagonally across the top left. It is really useful to have the 
STED validation here, as otherwise this sort of artefact would not be obvious. In terms of 
biological information, although the input image clearly looks awful, I wonder whether this is 
still actually as reliable than the denoised data (e.g. if I had to manually trace the microtubules 
in both the input and L2L 3S-SSIM images, I think I would get results that I was equally confident 
in from both).  
When the authors mention hallucinations in images, it would be good to annotate examples of 
these either directly on the images or in a supplementary figure (to avoid obscuring the main 
figures too much). Examples are mentioned in lines 209-212 and lines 283-285, and it would be 
useful to guide the reader a little more here, especially if they are unfamiliar with looking at 
deep learning-generated images.  
 
Implementation/deployment of algorithm  
Is the code freely available for people to download and use on their own data? Would any of the 
trained networks here be directly applicable to someone else's data, or should new networks be 
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trained for each use instance? If the code is not available, or would not be practical to be used 
directly on fresh data from other sources, I personally think it is acceptable to just say that the 
work here is a useful proof of principle (as the manuscript is currently presented I am not sure if 
this is something that I can instantly use myself or not). If this method is already intended to be 
used by researchers, then there should also be guidance on which loss function is best to use - 
should this be a purely metric-based decision as shown in Table 1, or more subjective and based 
on the user's judgement (e.g. as in lines 335-337, also discussed in lines 435-436)?  
 
A few smaller miscellaneous comments:  

 The description of CycleGANs (lines 60-62) is a little confusing, especially for a biological 
audience (e.g. what is back-translation?)  

 In the description of noise2clean (lines 95-99) it might be worth also highlighting 
reference 8 by the name 'CARE', as I think this is the name by which most people know it 
as. Also, I did not quite follow the argument against using noise2clean in IF data with 
non-dynamic specimens and high photon counts.  

 In Table 1, evaluation metrics such as NRMSE can sometimes be a bit misleading because 
of good matching between large regions of background which dominate an image, rather 
than the structure itself. SSIM lends itself to creating a map of similarity via its sliding 
window implementation - would it be possible for one of the datasets to show such a 
map (in addition to the RMS map as in Figure 1) given the emphasis on using MS-SSIM?  

 Is there a difference if you switch the input and benchmark images in training, or is the 
method somewhat commutative? If there is a difference, and the two labels are not of 
markedly different quality (as appears the case at least for the microtubules data), 
could this switching be used as an additional data augmentation? In my experience, 
many different markers/antibodies for the same structure have been similarly mediocre 
(i.e. it wouldn't be clear which to use as the benchmark)  

 I did not understand lines 424-426, sorry (what is a non-dynamic image corruption?) 

 To show that L2L is useful, it would be good to actually demonstrate the binarization 
discussed in lines 466-467 in a Supplementary Figure, comparing L2L with just e.g. a big 
Gaussian blur or threshold. This would be the cherry on the cake to demonstrate how 
L2L can be used to help downstream analysis rather than just make more visually 
appealing images.  

 
 
Reviewer 2 
 
Advance summary and potential significance to field 
 
The key advance or contribution of this paper is that the authors demonstrate a new application 
of standard CNN models which can help assist or accelerate quantitative cell biology findings. 
 
Comments for the author 
 
In general, I think the paper is well written and indeed demonstrates a new application of a CNN 
in helping accerlerate quantitative cell biology study. But I do have two major concerns, which 
in my opinion must be addressed before publication. 
 
Major concern 1:  
The paper's claim on what the model is actually doing is not accurate, and need some re-
wording. The paper claims that "..., but current image restoration methods cannot correct for 
background signals originating from the label. Here, we report a new method to train a CNN as 
content filter for non-specific signals in fluorescence images that does not require a clean 
benchmark, using dual-labelling to generate the training data". But, there is no strong evident 
showing the proposed L2L model actually correct the backgroung signals originating from labels 
and only filter out the target content. What the L2L model actually does is simply a "style 
transfer", namely transferring the image from one type of signals or styles to another, via the 
training using dual-labelling images. For example, the paper mentions that "While the phalloidin 
stain labels almost exclusively the actin filaments, images of the antibody (AC-15) exhibit a high 
background signal in the cell body. This background signal likely originates from unspecific 
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binding and/or binding to cytosolic protein by the AB, resulting in high intensity punctate regions 
as observed in the cell cytoplasm". We can see that the model is simply transfering one type of 
signal (AC-15) with high background signal to another type of signals (phalloidin) with much less 
background signals. The background singals or noise still exist, but just transformed from one 
type of background signal to another. I would suggest just to avoid explicitly claiming filtering 
out the struture signal or correcting background signals, instead saying something like 
transferring one label to another to make the structure more visible or something similar.  
 
Major concern 2: 
Are all structures able to be imaged via dual-labelling images? If not, I think this needs to clearly 
noted in the paper and more importantly claimed as one disadvantage over other methods like 
N2N which has no such requirement.  
 
Minor concerns: 
- why cycleGAN is only tested on FA structures?  
- I would highly recommend to show some not quite successful ROI in the predictions. For 
example, in Figure 1, I can clearly see some not quite good ROI in the predictions, but the zoom-
in areas are more like good ROI examples. 
- I would highly recommend to do another type of validation. Specially, I would recommend to 
do segmentation on the cleaner images and the predictions, as well as the noiser images to show 
that after restoration the images can be better segmented to permit more accruate downstream 
quantitative analysis. For example for the actin example, segmentation from AC-15 can be hard, 
but segmentation from Phalloidion might be much easier so that the actual topology of the actin 
structures can be better identified. It would be good to show the segmentation from prediction 
is comparable to segmenataino from Phalloidion and better permits accurate downstream 
analysis comparig to AC-15.  
 

 

 
First revision 
 
Author response to reviewers' comments 
 
We thank both reviewers for their thorough and helpful feedback and comments. 
 
Reviewers' comments in Blue, our response in Black. 
 
Our response to comments from Dr Culley: 
 
The authors describe Label2Label: a deep learning-based image restoration algorithm for 
microscopy that is trained using redundancies between images acquired with biologically distinct 
labels for increasing structural contrast. This method is conceptually very interesting, as it 
represents a shift from denoising methods based on classical properties of images (e.g. signal-to-
noise ratio, local noise statistics) to denoising based on the inherent imperfections of biological 
labelling. There is also technical novelty in the exploration of an MS-SSIM based loss function 
used in training the network. 
 
There are many strengths to this work. The authors elegantly state the limitation of many deep 
learning-based image restoration methods, in that they disregard intrinsic properties of 
biological fluorescence microscopy (lines 70-79); this is in general under-discussed in the field. 
The actin data (Figure 1) is very compelling in favour of L2L as an improvement on current state-
of-the art de-noising. The knockdown validation experiment for the paxillin data (SI Figure 4) 
was also a very interesting component of the paper, as it underscores where ‘unwanted’ signal 
arises from in biological images, and provokes thought on what signal we actually want to keep 
from our original images. The demonstration of the network is separating signals from two 
superposed structures (Figure 4) could be very powerful for multicolour imaging with spectrally 
overlapping fluorophores, and I think this would be generally very useful in the fluorescence 
microscopy community. The authors also have a firm grasp on the shortcomings of image quality 
assessment metrics for fluorescence microscopy (lines 435-445). 
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One of the most interesting things about the paper was that while reading it, I was immediately 
thinking of other contexts that L2L could be used in (could a CycleGAN-based method be used to 
restore between the same structure disrupted under different fixation conditions? could L2L be 
trained on a dataset with GFP and anti-GFP immunolabelling for restoration of live-cell data?), 
which is a real credit to the authors and the appeal of the work. (note that my questions do not 
need answering here, just examples to demonstrate that I found the work exciting!) 
 
We thank Dr Culley for the kind comments about our work. We do think that images for the L2L 
training do not have to stem from the same sample if a CycleGAN is used for the training. This 
might indeed be useful, for example, in multiplex imaging experiments were, as pointed out, 
certain fixatives might lead to increased unspecific cytosolic background signals for some labels, 
but are essential to study other targets in a multi-labelled sample (as known, for example, in 
fixatives that contain glutaraldehyde). Applying L2L to retrospectively enhance live cell data 
that traditionally suffers from high background signals and high image noise is another 
interesting prospect. 
 
I have a few general concerns that I would like the authors to address: 
 
Concern 1: Application of MS-SSIM metric: There are quite a few parameters involved in the MS-

SSIM calculation. For example, how did the authors select the values of the weights γi? In the 

Methods, the authors use the weights for M=5 as described in reference 32, but these were 
originally derived (as far as I can tell) from human perceptual assessment of 64x64 pixels 
distorted images of subjects such as faces, natural scenes etc., which is a very different dataset 
to the images here. I am definitely not asking the authors to try and derive a microscopy-
specific set of weights, but I am curious to know how sensitive the MS-SSIM loss function and 
assessment of images using MS-SSIM is to these weights. For example, are radically different 
results obtained if L2L is trained with a MS-SSIM loss function where the weights are all 
equivalent, or where higher frequency components have larger weights etc? On a similar note, 
how was the size of the low-pass Gaussian filter selected? This feels like a parameter which should 
depend on the pixel sampling size and image resolution and thus vary between images. 
 
Thank you for your question. Determining weights for a MS-SSIM index specifically for 
fluorescence microscopy images is challenging, since immunofluorescence (IF) images 
traditionally exhibit many low intensity pixels. This leads to a much narrower image histogram 
compared to the example images used by Wang et al. (2003) and makes a human perceptual 
assessment of image distortions as demonstrated by them challenging. Further, for our purpose 
(L2L training), it is unclear if weights should be determined empirically for the raw, noisy images 
of either label or, for example, for high frame average images instead (which in the case of, for 
instance, the caveolae dataset are still noisy). 
 
Notably, the weight over scale trend for the "original" 5S-SSIM index follows the contrast 
sensitivity function of the human visual system. Therefore, to estimate the weights for a 3S-SSIM 
index, we fitted a polynomial function to the weights of the 5S-SSIM index over the scale using 
Origin (see line plot and fit results in Figure R1). We estimated the weights for the 3S-SSIM index 
by calculating the weights for x=1.25, 2.75, 4.25, using the fit function. Then those weights were 
normalised to sum up to 1, resulting in (0.2096, 0.4659, 0.3245). 
 



Journal of Cell Science | Peer review history 

© 2022. Published by The Company of Biologists under the terms of the Creative Commons Attribution License 
(https://creativecommons.org/licenses/by/4.0/). 7 

 
 
Figure R1 – Weight over scale for a MS-SSIM index 
(Black) Empirically determined weights for the 5S- SSIM index by Wang et al. (2003), (line plot) 
polynomial fit, and (red) weights used to calculated the 3S-SSIM index in this work prior to 
normalisation. 
 
We are satisfied with the predictions after using both, the 5S-SSIM and the 3S-SSIM loss function, 
with weights that follow the trend of the contrast sensitivity function and the filter sizes 7 or 11, 
respectively. Comparing the predictions dependent on the loss function, we observe the 

expected (see Figure S2+S5): with higher M, predictions converge towards results obtained when 

using a L1 loss function for the network training instead. 
 
Nonetheless, it is indeed a good question how sensitive the MS-SSIM index is to the weights and 
the filter size – and if that sensitivity is dependent on the particular dataset. We show this in our 
analysis below in Table R1+R2 and Figure R2. In Table R1+R2, the calculated 3S- and 5S-SSIM 
indices are shown between 1000 randomly selected training inputs and benchmarks for L2L 
training for each dataset, using weights that follow different trends. While weights vary 
significantly (e.g. weights linearly increase or decrease), all calculated MS-SSIM indices deviate, 
on average, by less than ± 10% from the (arbitrary) mean. Further, the default weights used in 
this work lead to comparably high calculated 3S-/5S-SSIM indices for all datasets, with the 
caveolae dataset being the only exception. 
 

 
 

Table R2 – Weight-dependent 3S-SSIM indices for all generated datasets. 

The indices were calculated between the images that were used as input and benchmark for L2L 

training for the particular dataset, or between the separate and superposed IF images of cells 

that were dual-labelled with a SYTOX stain and anti-CD44 antibody, respectively. For the 

calculation, 1,000 image patches were randomly selected from the training data. The size of 

the Gaussian filter was set to 11 (=default). The highest calculated 3S-SSIM indices for each 

dataset are depicted in bold. 
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Table R2 – Weight-dependent 5S-SSIM indices for all generated datasets 

The indices were calculated between the images that were used as input and benchmark for L2L 

training for the particular dataset, or between the separate and superposed IF images of cells 

that were dual-labelled with a SYTOX stain and anti-CD44 antibody, respectively. For the 

calculation, 1,000 image patches were randomly selected from the training data. The size of 

the Gaussian filter was set to 7. The highest calculated 5S-SSIM indices for each dataset are 

depicted in bold. 

 
Notably, for the caveolae dataset, the highest and lowest 3S- and 5S-SSIM indices are observed 

for weights that linearly decrease and increase, respectively. For the tubulin dataset, this trend 

is the opposite. 

 
Regarding the filter size: The default filter size when calculating the SSIM/MS-SSIM is 11 px 

(Wang et al. 2003). This was also the filter size we used for the SSIM and 3S-SSIM loss function. 

However, due to the (M-1) times downsampling of the image patches during the calculation of 

the MS-SSIM index, the maximal possible filter size is the size of the images in the last iteration, 

which (for image pairs of size 128 px x 128 px) is 8 px x 8 px in size. Consequently, we reduced 

the filter size in a 5S-SSIM loss function to 7. 

 
In Figure R2A, the calculated 3S- and 5S-SSIM indices are shown between randomly selected 

training inputs and benchmarks for L2L training for each dataset, using different sizes for the 

Gaussian filter and the default weights. In Figure R2B, the results are shown for (left) the 

caveolae and (right) the tubulin dataset, using default, linearly decreasing or linearly increasing 

weights for the calculations (see also Table R1+R2). 
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Figure R2 – Calculated MS-SSIM indices for different sizes of the Gaussian filter 

The (top) 3S-SSIM and (bottom) 5S-SSIM indices were calculated between the images that were 

used as input and benchmark for L2L training for the particular dataset, or between the 

separate and superposed IF images of cells that were dual-labelled with a SYTOX stain and anti-

CD44 antibody, respectively. For that, 1,000 image patches were randomly selected from the 

training data. For the calculation, (A,B) default weights, (B) linearly decreasing, and (B) linearly 

increasing weights were used (see also Table R1+R2). 

 
We make the following observations: (1) For most datasets, the MS-SSIM index changes only 

slightly with filter size; here, indices calculated for the caveolae dataset show the highest filter 

size- dependency. (2) Only for the tubulin dataset, we observe an increase in index for higher 

filter sizes, while for all other datasets, this trend is reversed. (3) The trend for each dataset 

seems to be independent of the selected weights (see Figure R2, right). 

 
To answer the question, how much those parameters influence the predictions of a CNN after 

L2L training, we trained the CNN with a 3S-SSIM loss function, using different weights and filter 

sizes. We chose the tubulin and caveolae dataset as examples, since both showed the same 

weight-dependent trend in the respective 3S- and 5S-SSIM indices (compare Table R1+R2), and 

deviated most from the observed filter size-dependent trend across all datasets (see Figure R2). 

In Figure R3, we show the qualitative results of those trainings. 

 
For the tubulin dataset, we find that differences between the predictions are very minor (see 

Figure R3). For the caveolae dataset, a weak trend is observable: at smaller filter sizes, structures 

are restored slightly less blurry. However, caveolae that appear with low intensity in the input 

image are restored more successfully when using a higher filter size. 
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Figure R3 – Predictions of a CNN after L2L training, using a 3S-SSIM loss function with 
different sizes of the Gaussian filter and weights 

(A) Input (D1P6W, recognising the essential caveolae component CAVIN-1), corresponding 20-

frame average, and (B) benchmark image (4H312, recognising the essential caveolae component 

CAVEOLIN-1) for L2L training for the caveolae dataset. (C) Input (DM1A), corresponding 20-

frame average, and (D) benchmark image (YOL1/34) for L2L training with the tubulin dataset. 

(E,F) Restorations of a CNN after L2L training with a 3S-SSIM loss function, using a size of (left-

to-right) 3, 11 (=default) or 15 for the Gaussian filter, and weights that (top-to-bottom) follow 

the contrast sensitivity function (=default), linearly increase or linearly decrease with the 

iteration (image dimensions: 1.3 μm x 1.3 μm (caveolae)/ 5.8 μm x 5.8 μm (tubulin)). 

 
Since, overall, qualitative L2L results vary only slightly for different weights and filter sizes, and 

space is limited in the manuscript, we exclude these findings in the manuscript. However, we 

added the following explanation: 

 

New 

151-153 

Weights of the MS-SSIM loss function were selected such that they follow the 
contrast sensitivity function of the human visual system (Wang, Simoncelli and 
Bovik, 2003). 

 

old 

 
614-616 

For a L3S-SSIM, the weights were set to (0.2096, 0.4659, 0.3245), for a L5S-SSIM, 

the filter size for the Gaussian filter was set to 7; otherwise the suggested settings 
in [32] were used. 
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New 

612-615 

For a L3S-SSIM, the weights were set to (0.2096, 0.4659, 0.3245), for a L5S-SSIM, the 

size for the Gaussian filter was set to 7, which is the maximum possible filter size 
for the selected patch size; otherwise the suggested settings in (Wang, Simoncelli 
and Bovik, 2003) were used. 

 

Is there any way of using a priori information about the structure being imaged (such as the 

typical structure size, or dimensionality) to decide which value of M should be used in the L2L 

loss function? It was interesting to observe that M=5 yielded the best results for actin, tubulin, 

caveolae, and paxillin) which all exist on similar size scales, yet M=1 yielded the best result for 

the Sytox nuclear stain, which is a much larger structure that is also two dimensional in the 

image. 

 
Unfortunately, in our experience, selecting the right scale for a MS-SSIM loss function is only 

possible through trial. However, the results for our datasets that all target quite different 

cellular structures suggest: (a) a high-scale SSIM loss function is always advantageous to a single 

SSIM loss function; and (b) in cases where the to-filter-out signal deviates too little between the 

input and the benchmark, the more conservative L1 loss function might be a better choice to 

avoid the artificial accentuation of non- structural signal in the predictions (please see 2nd 

paragraph in discussion). 

 
Concern 2: Comparison with ‘classical’ denoising methods: Deep learning is clearly a very 

powerful technique for image processing, but it would be interesting to see how L2L and N2N 

compare to simpler techniques such as Gaussian smoothing (which could recreate the ‘in-

painting’ discussed by the authors) and a rolling ball background subtraction (which may 

recreate the cytosolic signal filter for the paxillin data). This is already shown to a small extent in 

the Gaussian-filtered images in SI Figure 5, but I would like to be thoroughly convinced that the 

image content in L2L-processed data is more useful than just applying a very simple filter that 

has no danger of inducing hallucination artefacts. I would like to see quality metrics for such 

non-deep learning methods shown alongside the L2L and N2N results. 

 

Thank you for raising this issue. We now include a comparison of L2L results to a number of 

classical image processing methods in new Figure S3 and Table S1 in the SI. 

 
We have also changed the manuscript as follows: 

 

old 

 
252-253 

Also, both methods outperform the corresponding 20-frame average image (see 
Figure 2A (top) and SI Figure 2). 

new 241-

243 

Here, both methods outperform the corresponding 20-frame average image (see 
Fig. 2A (top) and Fig. S2D,F), and classical image processing methods like a Gaussian 
or top- hat filter (see Fig. S3 and Table S1). 

 

old 

 
467-468 

Here, the systematic recovery of specific structure by the network can make L2L 
superior to classical image processing methods. 

New 

458-460 

Notably, the systematic recovery of specific structure and the adaptability of L2L to 
images of a multitude of targets potentially makes L2L superior to classical image 
processing methods (as shown in Fig. S3 and Table S1). 
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New 

646-654 

Image processing and analysis was conducted in Python utilising the following 
functions/libraries in default if not stated otherwise. To compare L2L with classical 
image processing methods (see Fig. S3 and Table S1), the following steps were 
undertaken for images of actin/tubulin/caveolae/PXN: Gaussian filters were applied 
with a sigma of 2/2/3/2 using ndimage.gaussian_filter in scipy (Virtanen et al., 2020); 

 

 
methods 

for rolling-ball background (BG) subtraction, subtract_background_rolling_ball from 
https://github.com/mbalatsko/opencv-rolling-ball was used with a radius of 
20/10/5/5; top-hat filters were applied with a filter size of 11/25/13/17, and 
Contrast Limited Adaptive Histogram Equalization (CLAHE) was conducted with a 
grid size of 11/7/7/7, using getStructuringElement(cv2.MORPH_RECT) or 
createCLAHE, respectively, from open-cv (Bradski, 2000). 

 

On a related point, what is the interplay between contrast increase/denoising and image 

resolution (as this is a disadvantage of just using a Gaussian filter, for example)? And does the 

order of the MS- SSIM make a difference to resolution? I mainly ask this because in the 

microtubule data that is validated with the STED imaging (Figure 2A, lower row), the 

microtubule diameters appear thinner in the L2L 3S-SSIM image than the L1 image. 

 
Thank you for this comment! We indeed observed an increase in resolution in the predictions 

after N2N and L2L training after using a MS-SSIM loss function. To quantify this effect, we 

extracted the FWHMs of 20 line profiles in the raw, predicted and processed images (see new 

Figure S4). We changed the text as follows: 

 

old 

 
262-265 

A loss function-dependent trend is observable for both methods: using a LMS-SSIM 
instead of a L1, the CNN learns (with decreasing M) to restore microtubules with 

higher contrast, especially when trained with images of two non-identical labels 
(see SI Figure 2). 

new  

252-257 

A loss function-dependent trend is observable for both methods: using a LMS-SSIM 
instead of a L1, the CNN learns (with decreasing M) to restore microtubules with 

increased sharpness, especially when trained with images of two non-identical 
labels (see Fig. S2E). This effect is quantifiable; extracted full width at half 
maxima (FWHMs) of line profiles across single microtubules in the images show 
that results obtained in L2L results are closest to microtubule diameters detected 
with STED microscopy (see Fig. S4C). 

 

new  

423-426 

Further, the sharpening of structure with L2L after using a MS-SSIM loss function for 
the training – while advantageous for images of tubulin (see Fig. S4C) for which we 
know that the true microtubule diameter is not resolved with confocal microscopy – 
may be less desirable in images of other cell structures. 

 

New 

655-657 

methods 

The FWHM was derived from 20 randomly selected line profiles across single 
microtubules in images of tubulin, by averaging the line profile across 20 px and 
determining the Gaussian fit with scipy (Virtanen et al., 2020) (see Fig. S4C). 

 
Concern 3: Image artefacts: I have a concern with the data in the lower row of Figure 2A that all 

three deep learning methods appear to be collapsing structures onto one another (artificial 

sharpening) – this is most visible on the triangle-shaped crossing halfway up the image on the 

right-hand side, and on the two parallel microtubules running diagonally across the top left. It is 

really useful to have the STED validation here, as otherwise this sort of artefact would not be 

https://github.com/mbalatsko/opencv-rolling-ball
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obvious. In terms of biological information, although the input image clearly looks awful, I 

wonder whether this is still actually as reliable than the denoised data (e.g. if I had to manually 

trace the microtubules in both the input and L2L 3S-SSIM images, I think I would get results that 

I was equally confident in from both). When the authors mention hallucinations in images, it 

would be good to annotate examples of these either directly on the images or in a 

supplementary figure (to avoid obscuring the main figures too much). Examples are mentioned in 

lines 209-212 and lines 283-285, and it would be useful to guide the reader a little more here, 

especially if they are unfamiliar with looking at deep learning-generated images. 

 

Thank you for this comment. We have made a few changes to the Figures and manuscript that 

aim to address this issue. 

 
We have included a new Figure S4A+B that shows an example of those collapsing structures the 

Reviewer has mentioned. We changed the main text as follows: 

 

old 

 
257-259 

The closer microtubules are packed in the cell, the less likely is the successful 
recovery of separate structure by the CNN as evident by comparing the results of 
both methods with the corresponding STED image (see Figure 2A (bottom)). 

new  

247-249 

The closer microtubules are packed in the cell, the less likely is the successful 
recovery of separate structure by the CNN as evident by comparing the results of 
both methods with the corresponding STED image (see also Fig. S4A,B). 

 
We annotated ROIs that show hallucination effects in Figure S1A-C and made the following 

change to the text: 

 

old 

 
206-208 

On the other hand, the restored images after training the CNN with a LMS-SSIM 
exhibit cell structures with increasing sharpness, and erroneous predictions by the 
network occur (with lower M). 

new  

196-198 

On the other hand, images after training the CNN with a LMS-SSIM exhibit cell 

structures with increased sharpness, and erroneous predictions by the network 
occur (with lower M) (see annotated ROIs in Fig. S2A-C). 

 
Regarding post-processing/tracing microtubules in the images please see also our answer to 

comment 6. 

 
Concern 4: Implementation/deployment of algorithm: Is the code freely available for people 

to download and use on their own data? Would any of the trained networks here be directly 

applicable to someone else’s data, or should new networks be trained for each use instance? If 

the code is not available, or would not be practical to be used directly on fresh data from other 

sources, I personally think it is acceptable to just say that the work here is a useful proof of 

principle (as the manuscript is currently presented I am not sure if this is something that I can 

instantly use myself or not). If this method is already intended to be used by researchers, then 

there should also be guidance on which loss function is best to use – should this be a purely 

metric-based decision as shown in Table 1, or more subjective and based on the user’s 

judgement (e.g. as in lines 335-337, also discussed in lines 435-436)? 

 
Thank you for raising this point. The CARE network that we used for the N2N/L2L training in this 

work is actively maintained on github and includes multiple examples how to use the code. We 

included the link in the methods. Using it for the readers own data would simply require the 

implementation of a MS-SSIM loss function into this framework which is available in Tensorflow. 

Since fluorescence images can vary a lot regarding image noise, resolution, sample quality, etc., 
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we do not recommend using our trained network for different images. 

 
We changed the text as follows to address the concern: 
 

old 

 
166-169 

We show that by introducing systematic sample differences in the training data a 
CNN can be successfully trained to reject not only image noise but also diffuse, 
label- dependent cytosolic signals in IF images that, in practice, decrease the 
contrast of a target structure. 

new  

158-161 

We show proof-of-principle that by introducing systematic sample differences in the 
training data a CNN can be successfully trained to reject not only image noise but 
also diffuse, label-dependent cytosolic signals in IF images. Both can decrease the 
contrast of a target structure significantly in practice. 

 

Comment 1: The description of CycleGANs (lines 60-62) is a little confusing, especially for a 

biological audience (e.g. what is back-translation?) 

 

We thank the Reviewer for highlighting this, and we have reworded this section to make this 

argument more clearly. Please see below: 

 

Old 

60-62 

CycleGANs allow the training with unaligned image pairs, addressing the 
“hallucination problem”, - the introduction of artificial features in the generated 
images, - when training a classical GAN with unpaired data by implementing an 
additional training instance in which a second GAN is employed for back-translation 
[11,13]. 

new 57-62 The CycleGAN architecture addresses the "hallucination problem” which is the 
introduction of artificial features in generated images that is often observed when 
training a classical GAN (Zhu et al., 2017). Here, a GAN is first trained to generate a 
higher quality image based on a corrupted input. Then, the generated image is fed 
into a second GAN that translates it back into the original image (back-translation), 
giving the network less freedom to make changes to an input (Zhu et al., 2017; Lim 
et al., 2020). 

 

Comment 2: In the description of noise2clean (lines 95-99) it might be worth also highlighting 

reference 8 by the name ‘CARE’, as I think this is the name by which most people know it as. 

 
Thank you for highlighting this issue. We made the following changes to reference other work 

and explain this more clearly: 

 

old  

95-97 

L2L is also different to restoration methods with a noise2clean approach where a 
clean benchmark is required to train a network [8]. 

new 96-97 L2L is also different to restoration methods with a noise2clean approach where a 
clean benchmark is required to train a network (Goodfellow et al., 2014; Weigert et 
al., 2018; Wang et al., 2019). 

 

old 

 
106-107 

We selected the CSBDeep framework for the training that was previously used for 
CARE of noisy or under-sampled fluorescence images [8]. 
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new  

110-111 

We selected the CSBDeep framework for the training that is also known as CARE 
network (Weigert et al., 2018). 

 

Also, I did not quite follow the argument against using noise2clean in IF data with non-dynamic 

specimens and high photon counts. 

 
We thank the Reviewer for highlighting this. We have reworded this section to hopefully make 

the argument clearer. Please see below: 

 

old  

98-99 

For noise2clean, the training data is generated by acquiring two images of the same 
label with, for example, varying exposure time, frame averaging or sampling 
density. Notably, this approach is rarely feasible in IF microscopy where cell 
specimens are fixed, and commercially available markers are efficient and 
comparably photo-stable, allowing the acquisition of images with high photon 
counts. Further, generating the necessary image pairs for the network training is 
time-consuming and significantly complicated by stage drift, overall resulting in a 
low benefit-cost ratio. 

new  

97-105 

For noise2clean, the training data is generated by acquiring two images of the same 
label with, for example, different exposure time, sampling density or frame 
averaging. Notably, training a network to restore IF images that are acquired with 
low exposure time or sampling density is rarely feasible, since cell specimens are 
fixed, and commercial antibodies are comparably efficient and photo-stable, 
allowing the image acquisition with both parameters optimised right away. 
Generating image pairs to train a network to restore images acquired with low frame 
averaging, however, is time- consuming, and further complicated by stage drift and 
photo-bleaching, overall resulting in a low benefit-cost ratio. 

 
Comment 3: In Table 1, evaluation metrics such as NRMSE can sometimes be a bit misleading 

because of good matching between large regions of background which dominate an image, 

rather than the structure itself. 

 
We thank the Reviewer for this comment. We noticed this issue as well. For that reason, we only 

calculated those metrics for image patches that were generated with the "create_patches" 

function of the CARE/CSBDeep Framework. This function disregards background areas in the raw 

images. We amended the caption of Table 1 to clarify this to the reader. 

 

old 

 
caption for 
Table 1 

Average metrics were calculated between the respective training inputs or restored 
images of the input, respectively, (…) and the corresponding training benchmarks, 
using the image patch pairs that were excluded from the training for the validation 
(see Table 2). 

new 

 
caption for 
Table 1 

Average metrics were calculated between the respective training inputs or restored 
images of the input, respectively, (…) and the corresponding training benchmarks. 
For that, the image patches that were used for the validation during the training 
were utilised that were created from non-background areas in the raw images (see 
Table 2). 

 

SSIM lends itself to creating a map of similarity via its sliding window implementation – would it 

be possible for one of the datasets to show such a map (in addition to the RMS map as in Figure 

1) given the emphasis on using MS-SSIM? 
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We thank the Reviewer for this helpful suggestion. We now include RMS and SSIM maps between 

the input and predicted images after L2L training for all datasets in new Figure S1. We made the 

following changes to the text: 

 

old 

 
198-200 

With L2L, high intensity punctate regions are selectively filtered out as evident in 
the RMS maps between the raw images of AC-15 and the L2L results (see Figure 1D 
(right)). 

New 

188-190 

The RMS maps between the raw images of AC-15 and the L2L results reveal a 
selective removal of high intensity punctate regions (see Fig. 1D (right); for further 
maps see Fig. S1 in the Supplementary Information). 

 
Comment 4: Is there a difference if you switch the input and benchmark images in training, or is 

the method somewhat commutative? If there is a difference, and the two labels are not of 

markedly different quality (as appears the case at least for the microtubules data), could this 

switching be used as an additional data augmentation? In my experience, many different 

markers/antibodies for the same structure have been similarly mediocre (i.e. it wouldn’t be clear 

which to use as the benchmark). 

 
We thank the Reviewer for this suggestion. We tried this by training the networks for different 

scenarios (label 1/2 as input/benchmark, label 2/1 as input/benchmark, label 1+2/2+1 as 

input/benchmark). In no scenario did we obtain better results than we have shown in our 

manuscript. While, qualitatively, some label pairs do look similar (e.g. tubulin), we did calculate 

different RMS and Michelson contrast values for all label pairs, and we do think these contrast 

values are a good indicator how best to train a CNN for L2L. 

 
To address this issue, we added the following into the discussion: 

 

New 

466-469 

We found that the calculated RMS and Michelson contrast values for images of two 
labels were good indicators to assign labels to "input" and "benchmark". Here, 
training a CNN with the reverse order or pairing the labels in both directions 
resulted in either worse or comparable prediction success. 

 

Comment 5: I did not understand lines 424-426, sorry (what is a non-dynamic image corruption?) 
 

We have now changed the phrasing of this part of our manuscript, and we hope that this clarifies 

the issue. 

 

old 

 
424-426 

Also, artefacts were introduced that likely originated from non-dynamic image 
corruptions by the imaging system that were present in both noise realisations of a 
sample (see Figure 2C and SI Figure 3B). 

new 411-

414 

Also, some N2N results exhibited artefacts that might originate from static image 
corruptions introduced by the imaging system itself, which then would be present in 
both noise realisations of a sample (see Fig. 2C and Fig. S5B). 

 
Comment 6: To show that L2L is useful, it would be good to actually demonstrate the 

binarization discussed in lines 466-467 in a Supplementary Figure, comparing L2L with just e.g. a 

big Gaussian blur or threshold. This would be the cherry on the cake to demonstrate how L2L 

can be used to help downstream analysis rather than just make more visually appealing images. 

 
Thank you for making this suggestion! We now include the new Figure S8 in which we show for 

an example image pair of each dataset how L2L compares to a Gaussian blur and N2N to 

generate a distance map or binary image. We modified/added to the text as follows: 
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old 

 
465-467 

Instead, L2L could serve as image pre-processing step to extract the binary 
information about the location of a specific structure in a cell image. 

new  

456-458 

Instead, L2L could serve as image pre-processing step to extract the binary 
information about the location of a structure in the cell (see examples in Fig. S8). 

 

new  

658-666 

methods 

To generate distance maps or binarised images (see Figure S8), the following pre- 
processing steps were undertaken using above mentioned functions: for images of 
actin, a rolling-ball BG subtraction (radius=10), a top-hat filter (filter size=7) and 
CLAHE (tile size 11) were applied; for images of tubulin, a rolling-ball BG 
subtraction (radius=10) and a top-hat filter (filter size=11) were applied; for 
images of caveolae, a Gaussian filter (sigma=0.75) and a rolling-ball BG subtraction 
(radius=5) were applied; for images of PXN, a rolling-ball BG subtraction (radius=5) 
was applied. Lastly, objects below a size of 20 px (caveolae)/50 px (all else) were 

removed. Binary images were generated using the 75th/60th/93th/90th percentile 
as threshold for images of actin/tubulin/caveolae/PXN. Distance maps were 
generated using scipy (Virtanen et al., 2020). 

 
 

Our response to comments from reviewer 2: 

 

Advance Summary and Potential Significance to Field: 
 

The key advance or contribution of this paper is that the authors demonstrate a new application 

of standard CNN models which can help assist or accelerate quantitative cell biology findings. 

 
Comments for the Author: 

 

In general, I think the paper is well written and indeed demonstrates a new application of a CNN 

in helping accelerate quantitative cell biology study. 

 

We thank the Reviewer for the kind feedback. 

 
But, I do have two major concerns, which in my opinion must be addressed before publication. 

 
Major concern 1: The paper's claim on what the model is actually doing is not accurate, and 

need some re-wording. The paper claims that "..., but current image restoration methods cannot 

correct for background signals originating from the label. Here, we report a new method to train 

a CNN as content filter for non-specific signals in fluorescence images that does not require a 

clean benchmark, using dual-labelling to generate the training data". But, there is no strong 

evident showing the proposed L2L model actually correct the background signals originating from 

labels and only filter out the target content. What the L2L model actually does is simply a "style 

transfer", namely transferring the image from one type of signals or styles to another, via the 

training using dual-labelling images. For example, the paper mentions that "While the phalloidin 

stain labels almost exclusively the actin filaments, images of the antibody (AC-15) exhibit a high 

background signal in the cell body. This background signal likely originates from unspecific 

binding and/or binding to cytosolic protein by the AB, resulting in high intensity punctate regions 

as observed in the cell cytoplasm". We can see that the model is simply transferring one type of 

signal (AC-15) with high background signal to another type of signals (phalloidin) with much less 

background signals. The background signals or noise still exist, but just transformed from one 

type of background signal to another. I would suggest just to avoid explicitly claiming filtering 

out the structure signal or correcting background signals, instead saying something like 

transferring one label to another to make the structure more visible or something similar. 
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Thank you very much for making this valid point. We agree that the principle of L2L is the style 

transfer from one label to the other. However, we would make the argument that our results do 

not only show a style transfer after L2L training. For instance, image noise is not transferred but 

removed by a CNN after L2L training, and intensity fluctuations visible in the reference images for 

the tubulin dataset (see Figure S2D-F) are not translated in the predictions – following the 

principle of N2N where non- predictable signals are removed by a CNN. Further, images used as 

benchmark for L2L training are predicted with higher structural contrast by a trained CNN also 

(see Figure 3D and Figure S8B,D,F,H), although they already match the target style. This is 

different to the results obtained with the CycleGAN where, as the Reviewer points out, noise is 

transferred from "one style to the other" and not removed. 

 

We hope that the following changes made to the text address the concern: 
 

old  

81-94 

We propose a new application of DL in fluorescence microscopy where a neural 
network is trained as content filter of label-induced unspecific cytosolic signals in 
fluorescence images of cellular structures. We call this method label2label (L2L). 
For L2L, a CNN is trained with image pairs of cells that were dual-labelled for the 
same distinct cellular structure of interest. L2L utilises the varying performance of 
antibodies and stains in IF microscopy. We hypothesized that a CNN trained with two 
images of a cellular structure that originate from two non-identical labels and 
therefore exhibit sample differences would act as a content filter - where 
fluorescence signals that systematically vary in the images are rejected, while 
correlating, structural signal is restored. Therefore, L2L is different to N2N. In both 
methods a network is trained without clean benchmark images, but in L2L 
differences between the training input and benchmark images are not only 
originating from dynamic image corruptions like noise, but also inherent sample 
(=label) differences. Consequently, fluorescence signals from cytosolic protein and 
unspecific binding that, in practice, lower structural contrast in IF images are 
retrieved in restorations after N2N training, whereas a network acts as filter of such 
image content after L2L training when selecting appropriate training data. 

new 80-95 We propose a new application of DL in fluorescence microscopy where a neural 
network is trained to significantly reduce label-induced unspecific cytosolic signals 
in fluorescence images of cellular structures. We call this method label2label (L2L). 
For L2L, a CNN is trained with image pairs of cells that are dual-labelled for the 
same distinct cellular structure of interest. L2L utilises the varying performance of 
antibodies and stains in IF microscopy. We hypothesized that a CNN trained with two 
images of a cellular structure that originate from two non-identical labels would act 
content filter- like - where fluorescence signals that systematically vary in the 
images are rejected, while correlating, structural signal is restored. Here, the 
underlying principle of L2L is a so-called style transfer where a neural network is 
trained to merge the content in input images with the style of reference images 
(Jing et al., 2020). Since input and benchmark images highly correlate, L2L is also 
comparable to N2N. In both methods a network is trained without clean benchmark 
images, however, in L2L differences between the training images are not only 
originating from dynamic image corruptions like noise, but also inherent sample 
(=label) differences. Consequently, fluorescence signals from cytosolic protein and 
unspecific binding that, in practice, lower structural contrast in IF images are 
retrieved in restorations after N2N training, whereas a network reduces such signals 
after L2L training when selecting appropriate training data. 

 

old 

 
198-200 

With L2L, high intensity punctate regions are selectively filtered out as evident in 
the RMS maps between the raw images of AC-15 and the L2L results (see Figure 1D 
(right)). 
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new  

188-190 

The RMS maps between the raw images of AC-15 and the L2L results reveal a 
selective removal of high intensity punctate regions (see Fig. 1D (right); for further 
maps see Fig. S1 in the Supplementary Information). 

old 

 
204-206 

For both methods, using a L1 for the training leads in comparison to more 

conservative predictions, where, with L2L, non-filamentous signal is filtered out by 
the network, but actin filaments appear relatively blurry. 

 

new  

193-196 

For both methods, using a L1 for the training leads in comparison to more 

conservative predictions, where, with L2L, non-filamentous signal is reduced by the 
network, but actin filaments appear relatively blurry. 

 

old 

 
276-277 

We find that the CNN performance as content filter for caveolae after N2N and L2L 
training is highly dependent on the training loss function (see Figure 2C). 

new  

268-269 

We find that the CNN performance after N2N and L2L training is highly dependent 
on the training loss function (see Fig. 2C). 

 

old 

 
280-283 

Here, cytosolic background signal in the image is successfully filtered out by the 
network after L2L training, resulting in restorations with higher sample-to-
background ratios than the corresponding 20-frame average STED images of both 
labels (see Figure 2 and SI Figure 3). 

new 272-

275 

Here, cytosolic background signal in the image is clearly reduced by the network 
after L2L training, resulting in restorations with higher sample-to-background ratios 
than in corresponding 20-frame average STED images of both labels (see Fig. 2 and 
Fig. S5A- C). 

 

old 

 
321-323 

To test if an artificial network can also be trained as content filter with unpaired 
L2L data, a CycleGAN was trained and its performance was compared to the CNN. 

new  

312-314 

To test if an artificial network can also be trained with unpaired L2L data, a 
CycleGAN was trained and its performance was compared to the CNN. 

 

old 

 
340-342 

In addition, we find that the trained CNN acts as content filter of cytosolic 
background signal in the training benchmark (Y113) with an enhanced signal-to-
background ratio, although these images were not used as input for L2L training (see 
Figure 3D). 

new  

332-334 

In addition, we find that the trained CNN reduces cytosolic background signal in the 
training benchmark (Y113) as well, although these images were not used as input for 
L2L training (see Fig. 3D). 
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old 

 
344-346 

Lastly, the ability of a CNN to filter out cell features in IF images based on their 
spatial intensity distribution was tested by training a network to separate 
superposed confocal images of two different cellular targets. 

new  

336-337 

Lastly, the ability of a CNN to transfer style between IF images with correlating 
structural signal was tested by training a network to separate superposed confocal 
images of two different cellular targets. 

 

old 

 
390-391 

We show that a CNN can be successfully trained to filter out unspecific, label-
induced fluorescence signals (…). 

new  

382-383 

We show that a CNN can be successfully trained to reduce unspecific, label-induced 
fluorescence signals (…). 

 

old 

 
402-403 

The network performance as content filter was dependent on the level of 
correlation between the images of the two labels and the training loss functions. 

new  

391-392 

The network performance is dependent on the level of correlation between the 
images of the two labels and the training loss functions. 

 

old 

 
409-411 

Here, the to-filter-out signal deviated sufficiently between the images, allowing the 
network to clearly distinguish to the cellular structure that correlated for both 
labels during L2L training. 

new  

398-399 

Here, unspecific background signals differed sufficiently between the images of 
both labels. 

 

old 

 
446-448 

As expected, the evaluation of repeated 8/10-fold cross-validations (…) showed that 
using a high number of image pairs to train the CNN as content filter is advisable 
(see Figure 5). 

new  

438-440 

As expected, the evaluation of repeated 8/10-fold cross-validations (…) showed that 
using a high number of image pairs to train a CNN for the style transfer between two 
labels is advisable (see Fig. 5). 
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old 

 
496-506 

We present a new DL-based image restoration method for images of cellular structures 
that utilises the varying performance of labels in immunofluorescence microscopy. 
We show that by training a CNN that was developed for CARE, with images of two 
non- identical labels that target the same cellular structure but exhibit systematic 
sample differences, the network learns to selectively restore the correlating signal 
in the images. Like other methods, L2L relies on the convention of the network to 
under- estimate inherently unpredictable signal. However, with L2L, not only image 
noise but also label-induced fluorescence signal in the cell specimen can be removed 
in the images after selecting appropriate training data. The ability to correct images 
for unspecific binding, inhomogeneous labelling of a structure or binding to cytosolic 
protein makes L2L, to our knowledge, unique in comparison to other deep learning- 
based image restoration methods that are currently used in cell biology. 

new  

493-502 

We present a new DL-based image restoration method for images of cellular structures 
that utilises the varying performance of labels in IF microscopy; we call this method 
L2L. With L2L, we show that by training a CNN for a style transfer between two non- 
identical labels of a shared target, the network can be systematically trained to 
reduce 

 

 unspecific cytosolic background signals and enhance structural contrast in IF images. 
Like other methods, L2L relies on the convention of the network to under-estimate 
inherently unpredictable signal. However, with L2L, not only image noise but also 
label- induced fluorescence signals in the cell specimen can be reduced in the 
images after selecting appropriate training data. The ability to significantly lower 
unspecific binding, inhomogeneous labelling of a structure or binding to cytosolic 
protein in IF images makes L2L, to our knowledge, unique in comparison to other 
DL-based image restoration methods that are currently used in cell biology. 

 

Major concern 2: Are all structures able to be imaged via dual-labelling images? If not, I think 

this needs to clearly noted in the paper and more importantly claimed as one disadvantage over 

other methods like N2N which has no such requirement. 

 
We thank the reviewer for this comment. The image pairs of all structures for the network 

trainings in our work were generated via dual-labelling of the cellular structure. The sample 

preparation is relatively straightforward thanks to secondary antibody labelling and a number of 

commercially available antibody combinations. However, not all label pairs are suitable to 

generate training data for L2L (there has to be an observable difference in both images), while 

for N2N (noisy) images of any label can be used to train a CNN. Therefore, we add the following 

to the manuscript: 

 

new  

463-466 

However, contrary to N2N, L2L requires the sample preparation with two markers 
that exhibit systematic differences in the respective images to allow training for a 
useful style transfer between labels. Therefore, not all label pairs of a target 
structure are suitable to generate the necessary training data. 

 
Minor concern 1: why CycleGAN is only tested on FA structures? 

 

In the paper, we only show the results for the PXN dataset since they are the best datasets 

highlighting the advantages obtained using the L2L datasets when training a CycleGAN with 

unpaired image patches. We recognise that the other results are of interest for the reader as 

well, these are now added as Figure S6. We also made the following changes to the text: 
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old 

 
107-110 

Moreover, for one dataset, we trained a CycleGAN with unpaired images of the two 
labels to assess if, in principle, a network can also be trained as content filter using 
IF images that stem from two different datasets [11]. 

New 

111-113 

Moreover, we trained a CycleGAN with unpaired images to assess if, in principle, a 
network can also be trained with IF images that stem from two different datasets 
(Zhu et al., 2017). 

 

new  

314-315 

Further results for other datasets are shown in Fig. S7. 

 

old  
471-477 

Further, the use of unpaired training data was explored by training a CycleGAN with 
the unaligned images of the label pairs generated in this work (see Figure 3A+C and 
Figure S6). While the restored images of a CycleGAN after L2L training showed a 
decrease in background signal, which in the PXN dataset originated from cytosolic 
protein, the results were not comparable to the restorations obtained after training 
a CNN. We found that, since the generator network in the CycleGAN is trained to 
fool a discriminator based on a noisy benchmark (Y113), artefacts were introduced 
by the CycleGAN. This might be avoidable when training with cleaner reference 
images in the future. 

new  

470-476 

We also trained a CycleGAN with unaligned label pairs of a target structure (see 
Fig. 3A,C and Fig. S7). While the generated images of a trained CycleGAN exhibited 
reduced unspecific cytosolic signals, it was outperformed by a trained CNN. Since 
the generator in the CycleGAN is trained to fool a discriminator based on noisy 
benchmarks, either little to no change to the input image was observed 
(tubulin/caveolae) or artefacts were introduced (actin/PXN) by the network to 
match the style of the reference image. Prior denoising of the images via Gaussian 
filtering led to slightly better results (see Fig. S7). A higher performance might be 
achieved with cleaner reference images. 

 

old 

 
641-645 

The CycleGAN was trained with unaligned images of the PXN dataset (…). Training 
was conducted with a batch size of 4, an epoch number of 4 (3 with linear decay of 
the learning rate) and a scaling factor of 0.0005 for the network initialization. 

new  

639-644 

methods 

The CycleGAN was trained with unaligned images of the actin, tubulin, caveolae 
and PXN dataset (…). Training was conducted with a batch size of 4, an epoch 
number of 4/10 (3/9 with linear decay of the learning rate) for the PXN/other 
dataset(s) and a scaling factor of 0.0005 for the network initialization. 

 

Minor concern 2: I would highly recommend to show some not quite successful ROI in the 

predictions. For example, in Figure 1, I can clearly see some not quite good ROI in the 

predictions, but the zoom- in areas are more like good ROI examples. 

 
Thank you for this comment. Part of this concern was also shared with Reviewer 1. We have 

copied our answer below. 

 
We have included a new Figure S4A+B that shows an example of collapsing microtubule 

structures in the predictions in comparison that the high resolution STED image. We changed the 

main text as follows: 
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old 

 
257-259 

The closer microtubules are packed in the cell, the less likely is the successful 
recovery of separate structure by the CNN as evident by comparing the results of both 
methods with the corresponding STED image (see Figure 2A (bottom)). 

new 247-

249 

The closer microtubules are packed in the cell, the less likely is the successful 
recovery of separate structure by the CNN as evident by comparing the results of both 
methods with the corresponding STED image (see Fig. 2A (bottom) and Fig. S4A,B). 

 

Further, we annotated ROIs that show hallucination effects in Figure S2A-C and made the 

following change to the text: 

 

old 

 
206-208 

On the other hand, the restored images after training the CNN with a LMS-SSIM 

exhibit cell structures with increasing sharpness, and erroneous predictions by the 
network occur (with lower M). 

new 196-

198 

On the other hand, predictions by a CNN after training with a LMS-SSIM exhibit cell 
structures with increased sharpness, and erroneous predictions by the network occur 
(with lower M) (see annotated ROIs in Fig. S2A-C). 

 

Minor concern 3: I would highly recommend to do another type of validation. Specially, I would 

recommend to do segmentation on the cleaner images and the predictions, as well as the noisier 

images to show that after restoration the images can be better segmented to permit more 

accurate downstream quantitative analysis. For example, for the actin example, segmentation 

from AC-15 can be hard, but segmentation from Phalloidion might be much easier so that the 

actual topology of the actin structures can be better identified. It would be good to show the 

segmentation from prediction is comparable to segmentation from Phalloidion and better 

permits accurate downstream analysis comparing to AC-15. 

 

Thank you for making this suggestion. Part of this concern was also shared with Reviewer 1. We 

have copied our answer below. 

We now include the new Figure S8 in which we show for an example image pair of each dataset 

how L2L compares to a Gaussian blur and N2N to generate a distance map or binary image. We 

modified/added to the text as follows: 

 

old 

 
465-467 

Instead, L2L could serve as image pre-processing step to extract the binary information 
about the location of a specific structure in a cell image. 

New  

456-458 

Instead, L2L could serve as image pre-processing step to extract the binary information 
about the location of a structure in the cell (see examples in Fig. S8). 
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new  

658-666 

methods 

To generate distance maps or binarised images (see Figure S8), the following pre- 
processing steps were undertaken using above mentioned functions: for images of 
actin, a rolling-ball BG subtraction (radius=10), a top-hat filter (filter size=7) and 
CLAHE (tile size 11) were applied; for images of tubulin, a rolling-ball BG 
subtraction (radius=10) and a top-hat filter (filter size=11) were applied; for images 
of caveolae, a Gaussian filter (sigma=0.75) and a rolling-ball BG subtraction 
(radius=5) were applied; for images of PXN, a rolling-ball BG subtraction (radius=5) 
was applied. Lastly, objects below a size of 20 px (caveolae)/50 px (all else) were 

removed. Binary images were generated using the 75th/60th/93th/90th percentile 
as threshold for images of actin/tubulin/caveolae/PXN. Distance maps were 
generated using scipy (Virtanen et al., 2020). 

 

Other changes made to the article: 

 

1. Merging of (old) SI Figures 1+2 and 3+5 to (new) Figures S2 and S5 

2. Added running title (32 characters): 

 

new 

title page 

Title: Label2label: Training a neural network to selectively restore cellular structures 
in fluorescence microscopy 

Running Title: Label2label 

 

3. Cut key words to meet limit (6): 

 

old 

title page 

Key words: image content filter, fluorescence microscopy, antibody labelling, deep 
learning, convolutional neural networks, content-aware image restoration, 
noise2noise, cellular structures, focal adhesions, actin cytoskeleton, microtubule 
network, caveolae 

new 

title page 

Key words: convolutional neural networks, content-aware image restoration, 

antibody labelling, noise2noise, cellular structures, fluorescence microscopy 

 

4. Added summary statement: 

 

new 

title page 

Label2label is a new deep learning-based image restoration method that reduces 
cytosolic background signals in immunofluorescence images of cellular structures. 
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5. Cuts to abstract to meet word limit (180): 

 

Abstract 
after 
changes 
 

 
title page 

Immunofluorescence (IF) microscopy is routinely used to visualise the spatial 
distribution of proteins that dictates their cellular function. However, unspecific 
antibody binding often results in high cytosolic background signals, decreasing the 
image contrast of a target structure. Recently, convolutional neural networks (CNNs) 
were successfully employed for image restoration in IF microscopy, but current 
methods cannot correct for those background signals. We report a new method that 
trains a CNN to reduce unspecific signals in IF images; we name this method 
label2label (L2L). In L2L, a CNN is trained with image pairs of two non-identical 
labels that target the same cellular structure. We show that after L2L training a 
network predicts images with significantly increased contrast of a target structure, 
which is further improved after implementing a multi-scale structural similarity loss 
function. Here, our results suggest that sample differences in the training data 
decrease hallucination effects that are observed with other methods. We further 
assess the performance of a cycle generative adversarial network, and show that a 
CNN can be trained to separate structures in superposed IF images of two targets. 

 

6. Cuts to manuscript to meet word limit (8000): 

 

old  

62-64 

Other examples include noise2void, an unsupervised method that removes camera 
shot noise (Krull, Buchholz and Jug, 2019), DivNoising, where a variational autoencoder 
is trained to restore a distribution of denoised images based on a noise model (Prakash, 
Krull and Jug, 2020), and noise2noise (N2N) (Lehtinen et al., 2018). 

 

new 62-64 Other examples include noise2void, an unsupervised method that removes camera 
shot noise (Krull, Buchholz and Jug, 2019), and noise2noise (N2N) (Lehtinen et al., 
2018). 
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Old 
 

 
111-130 

To establish and evaluate our method we generated image data across four different 
distinct cellular structures: the actin cytoskeleton, the microtubule network, and 
discrete plasma membrane structures, namely caveolae and focal adhesions. Actin is a 
conserved protein in eukaryotic cells that plays a major role in cellular functions like 
cell migration, cell motility or sustaining the cell shape (Dominguez and Holmes, 
2011; Vedula et al., 2017). It exists in two states: as globular (G-) actin in its 
monomeric form, or polymerised as filamentous (F-) actin (Suarez and Kovar, 2016). 
Evidence suggests that different actin isomers vary in function and localisation; they 
appear, for example, in stress fibres, circular bundles, cell-cell contacts or the cell 
cortex (Dugina et al., 2009). Microtubules are fundamental cytoskeletal polymeric 
structures in all eukaryotic cells that, amongst others, impact cell transport, cellular 
signalling via cilia and cell division (Nogales, 2000). The inhibition and promotion of 
microtubule assembly has been shown to promote mitotic arrest which makes 
microtubules a prominent target in cancer therapy research (Pellegrini and Budman, 
2005). Caveolae are plasma membrane invaginations composed of heterooligomeric 
CAVEOLIN and CAVIN protein complexes, and are abundant in many mammalian cell 
types (Hansen and Nichols, 2010; Khater et al., 2018). Caveolae are multifunctional 
organelles that are implicated in transcytosis, lipid homeostasis and cellular 
signalling (Rausch and Hansen, 2020). Focal adhesions (FAs) are cellular membrane-
associated multi-protein component biomechanical structures. FAs are integral in the 
ability for most cells to sense and respond to the extracellular matrix and physical 
changes in the cellular microenvironment (Martino et al., 2018; Rausch and Hansen, 
2020). The ability of a CNN to selectively restore distinct cellular structures in IF 
images after training with carefully selected image data was further assessed by 
training a CNN as separator of two markers in superposed IF images. For that, images 
were acquired of fixed cells that were dual-labelled with a nuclear marker and an 
antibody against the plasma membrane protein CD44 (see last results section). 

new  

114-121 

To establish and evaluate our method we generated image data across four different 
distinct cellular structures: the actin cytoskeleton (Dugina et al., 2009; Suarez and 
Kovar, 2016), the microtubule network (Nogales, 2000; Pellegrini and Budman, 2005), 
and discrete plasma membrane structures, namely caveolae (Rausch and Hansen, 
2020) and focal adhesions (Martino et al., 2018). The ability of a CNN to selectively 
restore distinct cellular structures in IF images after training with carefully selected 
data was further assessed by training a CNN as separator of two markers in superposed 
IF images. Here, images were acquired of fixed cells that were dual-labelled with a 
nuclear marker and an antibody against the plasma membrane protein CD44 
(Ilangumaran, Borisch and Hoessli, 2010). 

 

old 

137-139 

The most commonly used deviation-minimising estimators are the least absolute 

deviation loss function L1 (or LAD) and the least square deviation loss function L2 (…) 

where 𝑦̂𝑡 (=gθ(xt)) is the predicted image and N the total pixel number in the image. 

 

new  

128-130 

Common loss functions are the least absolute deviation loss function L1 or the least 

square deviation loss function L2 (…) where 𝑦̂𝑡 (=gθ(xt)) is the predicted image and N 

the total pixel number. 
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old 
 

 
150-156 

To calculate the MS-SSIM index, a low-pass filter is applied to the image patches 
after each iteration (if M>1), followed by down-sampling by a factor of 2. This 
approach makes the MS-SSIM index sensitive to differing viewing conditions, such as 
differing perceived resolution from the point of observation. 

The MS-SSIM index exhibits values between (-1, 1) where 0 implies no structural 
similarity and -1/1 a negative/positive correlation between two images. Since a CNN 

aims at minimising loss during training, for a MS-SSIM loss function (LMS-SSIM) follows 

(…). 

new 143-

148 

For the calculation, a low-pass filter is applied to the image patches after each 
iteration (if M>1), followed by down-sampling by a factor of 2, making the MS-SSIM 
index sensitive to differing viewing conditions. 

The MS-SSIM index exhibits values between (-1, 1) where -1/0/1 imply a negative/no/a 

positive correlation between the images. To satisfy Eqn. 1, for a MS-SSIM loss function 

(LMS-SSIM) follows (…). 

 

old 

160-163 

For N2N training, the same pre-processing steps and network settings were applied, 
but two noise realisations of the same label were used as training input and benchmark 

instead. We wondered if using a LMS-SSIM instead of a L1 for N2N training would train 

a CNN to restore images not only with reduced image noise but also increased 
structural contrast. 

new  

153-155 

For N2N training, the same settings were applied, but the network was trained with 
two noise realisations of the same label instead. 

 

old 

480-483 

The use of CNNs as content filter in IF microscopy could increase possibilities for 
multiplex imaging in the future. For example, CNNs could be employed to separate two 
or more markers in cell images that were acquired with microscopy setups that have a 
limited number of excitations sources or detectors. 

new 479-

481 

Our results show that CNNs could be utilised in the future to separate the fluorescence 
signals from multiple markers in microscopy images that were acquired with imaging 
setups that have a limited number of excitations sources or detectors. 

 

old 

487-489 

For that, the image pairs for the network training can be generated post-image 
acquisition in vitro, by fixing the cells and labelling with a higher performing 
antibody against the target structure. 

new 484-

486 

Training data can be generated post-image acquisition in vitro, by fixing the cells and 
labelling with a higher performing antibody against the target structure. 
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after changes 
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