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Label2label: training a neural network to selectively restore cellular
structures in fluorescence microscopy
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ABSTRACT
Immunofluorescence microscopy is routinely used to visualise the
spatial distribution of proteins that dictates their cellular function.
However, unspecific antibody binding often results in high cytosolic
background signals, decreasing the image contrast of a target
structure. Recently, convolutional neural networks (CNNs) were
successfully employed for image restoration in immunofluorescence
microscopy, but current methods cannot correct for those
background signals. We report a new method that trains a CNN to
reduce unspecific signals in immunofluorescence images; we name
this method label2label (L2L). In L2L, a CNN is trained with image
pairs of two non-identical labels that target the same cellular structure.
We show that after L2L training a network predicts images with
significantly increased contrast of a target structure, which is further
improved after implementing a multiscale structural similarity loss
function. Here, our results suggest that sample differences in the
training data decrease hallucination effects that are observed
with other methods. We further assess the performance of a cycle
generative adversarial network, and show that a CNN can be trained
to separate structures in superposed immunofluorescence images
of two targets.

KEY WORDS: Convolutional neural networks, Content-aware image
restoration, Antibody labelling, Noise2noise, Cellular structures,
Fluorescence microscopy

INTRODUCTION
In recent years, deep learning has increasingly been used for image
processing in cell biology (Belthangady and Royer, 2019).
Specifically, convolutional neural networks (CNNs) with a U-Net
architecture (Ronneberger et al., 2015) are employed for various
tasks, from protein detection in transmission microscopy images
(Christiansen et al., 2018; Ounkomol et al., 2018) to image
segmentation of single cells (Falk et al., 2019) or specific cellular
structures (Caicedo et al., 2019).

Fluorescence microscopy is a commonly used technique in cell
biology for determining the spatial distribution and abundance of
target proteins in cells. It relies on the use of highly specific labels to
visualise the cellular components of interest. Fluorescent labels can
be chemical stains, antibody labelling or molecular labelling,
whereby cells are genetically altered to express fluorescent proteins
(Suzuki et al., 2007). In this work, we mainly focus on
immunofluorescence labelling in fixed cells.

Recently, CNNs were employed for content-aware image
restoration (CARE) of corrupted fluorescence images. By training
a U-Net with image pairs that were acquired with, for instance,
different laser powers or exposure times, it was shown that a network
was able to successfully restore denoised images of cell structures,
such as the plasma membrane or the nucleus (Ronneberger et al.,
2015; Weigert et al., 2018). CNNs were further used for the
upsampling of images that were detected below the Nyquist
sampling frequency (Weigert et al., 2018). Moreover, generative
adversarial networks (GANs) were trained to enhance image
resolution in immunofluorescence images, using, for example,
stimulated emission depletion (STED) microscopy to acquire the
training benchmarks (Goodfellow et al., 2014; Wang et al., 2019).

Both mentioned methods rely on clean benchmark images for
the network training, which can be challenging to acquire in
practice. Hence, semi-supervised/unsupervised deep learning-based
restoration methods have emerged. For instance, networks based
on the architecture of a cycle generative adversarial network
(CycleGAN) (Zhu et al., 2017) were employed to deconvolve
fluorescence images of microtubules, using unpaired high-
resolution images as reference (von Chamier et al., 2021) or
simulated low- and high-resolution images (Lim et al., 2020) for the
training. The CycleGAN architecture addresses the ‘hallucination
problem’, which is the introduction of artificial features in generated
images that is often observed when training a classical GAN (Zhu
et al., 2017). Here, a GAN is first trained to generate a higher quality
image based on a corrupted input. Then, the generated image is fed
into a second GAN that translates it back into the original image
(back translation), giving the network less freedom to make changes
to an input (Zhu et al., 2017; Lim et al., 2020). Other examples
include noise2void, an unsupervised method that removes camera
shot noise (Krull et al., 2019), and noise2noise (N2N) (Lehtinen
et al., 2018). For N2N, a CNN is trained with corrupted image
pairs of the same sample. Owing to the statistical nature of how
loss is minimised by the network during training with a deviation-
minimising loss function, it was shown that uncorrelated image
signals that follow, for example, Gaussian, Poisson or Bernoulli
noise are rejected, whereas correlating fluorescence signals in the
training data are recovered by this method (Lehtinen et al., 2018).

Although these restoration methods enhance the contrast in
immunofluorescence images by upsampling or denoising, they do
not correct for inherent cytosolic background signals in the
specimen itself, which, in immunofluorescence microscopy,
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originate from the cell label or labelling protocol. Unspecific
labelling by a stain or antibody binding, as well as internalisation
or residue dyes after the specimen preparation, can significantly
limit the image contrast of a target (Saper, 2009). The performance
of antibodies or stains vary for a number of reasons. Epitopes can
be altered in the target protein by the fixation step, effectively
changing the location or accessibility to the antibody (Miller and
Shakes, 1995). Also, unspecific antibody binding can be caused by
attractive intermolecular interaction, such as van der Waals or
hydrogen bonding interactions, or by binding to proteins with
similar epitopes, which overall results in an underlying cytosolic
background signal in images of cells (Wagner et al., 2011).

Label2label
We propose a new application of deep learning in fluorescence
microscopy in which a neural network is trained to significantly
reduce label-induced unspecific cytosolic signals in fluorescence
images of cellular structures. We call this method label2label (L2L).
For L2L, a CNN is trained with image pairs of cells that are dual-
labelled for the same distinct cellular structure of interest. L2L
utilises the varying performance of antibodies and stains in
immunofluorescence microscopy. We hypothesized that a CNN
trained with two images of a cellular structure that originate from
two non-identical labels would act content filter-like, whereby
fluorescence signals that systematically vary in the images are
rejected, whereas correlating structural signal is restored. Here,
the underlying principle of L2L is a so-called style transfer in which
a neural network is trained to merge the content in input images
with the style of reference images (Jing et al., 2020). As input
and benchmark images highly correlate, L2L is also comparable
to N2N. In both methods, a network is trained without clean
benchmark images; however, in L2L, differences between the
training images are not only originating from dynamic image
corruptions like noise, but also inherent sample (=label) differences.
Consequently, fluorescence signals from cytosolic protein and
unspecific binding that, in practice, lower structural contrast in
immunofluorescence images are retrieved in restorations after N2N
training, whereas a network reduces such signals after L2L training
when selecting appropriate training data.
L2L is also different to restoration methods with a noise2clean

approach in which a clean benchmark is required to train a network
(Goodfellow et al., 2014; Weigert et al., 2018; Wang et al., 2019).
For noise2clean, the training data are generated by acquiring two
images of the same label with, for example, different exposure time,
sampling density or frame averaging. Notably, training a network to
restore immunofluorescence images that are acquired with low
exposure time or sampling density is rarely feasible, as cell
specimens are fixed, and commercial antibodies are comparably
efficient and photostable, allowing the image acquisition with both
parameters optimised right away. Generating image pairs to train a
network to restore images acquired with low frame averaging,
however, is time-consuming, and further complicated by stage drift
and photobleaching, overall resulting in a low benefit-cost ratio.
More importantly, as in N2N, background signals originating from
the label are still present in the benchmark, and as such they also
cannot be corrected by this method.
For L2L, the image pairs for the network training can be acquired

simultaneously, under near-identical imaging conditions (see the
imaging sections in Materials and Methods). The images of one
fluorescent cell label are selected as training input, and the images of
the label that yields a higher contrast of the cellular structure are
used as a training benchmark. We selected the CSBDeep framework

for the training that is also known as CARE network (Weigert et al.,
2018). Moreover, we trained a CycleGAN with unpaired images to
assess whether, in principle, a network can also be trained with
immunofluorescence images that stem from two different datasets
(Zhu et al., 2017).

To establish and evaluate our method, we generated image data
across four different distinct cellular structures: the actin
cytoskeleton (Dugina et al., 2009; Suarez and Kovar, 2016); the
microtubule network (Nogales, 2000; Pellegrini and Budman,
2005); and discrete plasma membrane structures, namely caveolae
(Rausch and Hansen, 2020) and focal adhesions (Martino et al.,
2018). The ability of a CNN to selectively restore distinct cellular
structures in immunofluorescence images after training with
carefully selected data was further assessed by training a CNN as
separator of two markers in superposed immunofluorescence
images. Here, images were acquired of fixed cells that were dual-
labelled with a nuclear marker and an antibody against the plasma
membrane protein CD44 (Ilangumaran et al., 2010).

Loss functions for training a convolutional neural network
We trained a CNN with different loss functions with the aim of
restoring cell images with enhanced structural contrast. A CNN,
which can be described as a function gθwith its model parameters θ,
is trained to minimise the error between two images based on a loss
function L:

argmin
q

XT

t¼1

LðgqðxtÞ; ytÞ; ð1Þ

with gθ(xt) as the predicted image for the input xt, yt as the
benchmark and T as the number of input-benchmark image pairs
that are used for the training (Lehtinen et al., 2018).

Common loss functions are the least absolute deviation loss
function L1 and the least square deviation loss function L2 (Zhao
et al., 2016; Lehtinen et al., 2018):

L1ðŷt; ytÞ ¼
1

N

XN

n¼1

jŷt;n � yt;nj; ð2Þ

L2ð ŷt; ytÞ ¼
1

N

XN

n¼1

ðŷt;n � yt;nÞ2; ð3Þ

where ŷt (=gθ(xt)) is the predicted image and N the total pixel
number.

Because L2 is minimal if it equals the mean value of the
observations, it was used for N2N in cases in which the image
corruption resembles, for example, Gaussian noise whose mean is
zero (Lehtinen et al., 2018). L1 is the loss function of the CSBDeep
framework in default configuration (for non-probabilistic training).
As for both, L1 and L2, loss is calculated on a pixel-to-pixel basis
during the network training, predicted images are often of low
quality for a human observer (Larsen et al., 2016; Zhao et al., 2016).

To better take into account the properties of the human visual
system, a multiscale structural similarity (MS-SSIM) index was
proposed as an alternative to compare the similarity between two
images (Wang et al., 2003, 2004). It follows:

MS � SSIMð pÞ ¼ ðlM ð pÞÞgM
YM

j¼1

ðcjð pÞÞgj ðsjð pÞÞgj ; ð4Þ

with the exponent γj as the weight for the individual scale

j ðP
M

j¼1
gj ¼ 1Þ, and measures that compare the luminance (lM),
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contrast (cj) and structure (sj) between two images that are functions
of the local statistics of a pixel p (for a detailed explanation see
Wang et al., 2003, 2004). For the calculation, a low-pass filter is
applied to the image patches after each iteration (if M>1), followed
by downsampling by a factor of 2, making the MS-SSIM index
sensitive to differing viewing conditions.
The MS-SSIM index exhibits values between (−1, 1) where

−1/0/1 imply a negative/no/positive correlation between the images.
To satisfy Eqn 1, for an MS-SSIM loss function (LMS-SSIM) follows
(Zhao et al., 2016):

LMS�SSIM ðŷt; ytÞ ¼ 1� 1

N

XN

n¼1

MS � SSIMðŷt;n; yt;nÞ: ð5Þ

We hypothesized that a CNN would restore images with higher
structural contrast after L2L training with a LMS-SSIM instead of a
‘classical’ L1. To test this hypothesis, we trained a CNN with
different loss functions [L1, LSSIM (M=1), L3S-SSIM (M=3), L5S-SSIM
(M=5)]. Weights of the MS-SSIM loss function were selected such
that they follow the contrast sensitivity function of the human visual
system (Wang et al., 2003). The results were compared to the
denoising method N2N. For N2N training, the same settings were
applied, but the network was trained with two noise realisations
of the same label instead. The aim of this work is to compare
two deep learning-based restoration methods that improve the
contrast of cellular structures in fluorescence images, do not require
clean benchmark data and have requirements for the training
data generation that are feasible in standard immunofluorescence

microscopy. We show proof-of-principle that by introducing
systematic sample differences in the training data a CNN can be
successfully trained to reject not only image noise but also diffuse
label-dependent cytosolic signals in immunofluorescence images.
Both can decrease the contrast of a target structure significantly in
practice.

RESULTS
Label2label for reducing depolymerised β-actin in images
of HeLa cells
Image pairs were acquired of fixed HeLa cells (N=68) that were dual
labelled with the monoclonal anti-β-actin antibody AC-15 and a
phalloidin stain (see Materials and Methods). Fig. 1A shows an
example confocal image pair of a fixed cell. Phalloidin almost
exclusively labelled the actin filaments, but images of the antibody
(AC-15) showed an additional high background signal in the cell
body. This background signal likely originates from unspecific
binding and/or binding to cytosolic protein by the antibodies,
resulting in high intensity punctate regions, as observed in the cell
cytoplasm. Notably, a 20-frame average image of AC-15 exhibited
less image noise, but cytosolic background signal was still present,
significantly lowering the contrast of the actin filaments (Fig. 1C).
The difference in image contrast between both labels is quantifiable
by calculating the mean Michelson and root mean square (RMS)
contrast for each label (Peli, 1990). For that, we applied a Gaussian
filter (sigma=2) to the images, normalised them to their 1st/99th
percentile and derived the sample intensities assuming that the 10%
brightest image pixels represented the sample. For the cell images of

Fig. 1. Qualitative L2L and N2N results for images of actin. (A) Confocal image pair of a fixed HeLa cell that was dual labelled with the anti-β-actin antibody
AC-15 and a phalloidin stain, which was excluded from the CNN training. Scale bar: 20 µm. (B) Reconstructed image of AC-15 by a CNN after L2L training with
images of AC-15/phalloidin as training input/benchmark, using an L3S-SSIM loss function. (C) Original and processed images of AC-15 for two ROIs (6 µm×6 µm).
From left to right: raw image, restored images after N2N and L2L training with an L1 and L3S-SSIM loss function, respectively, and a 20-frame average. (D) The
corresponding image of phalloidin and the RMS map between the raw and the predicted image of AC-15 by the network after L2L training.
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AC-15/phalloidin, mean Michelson contrast values of 0.44±0.08/
0.96±0.04 and mean±s.d. RMS contrast values of 0.15±0.03/0.19
±0.01 were calculated. Consequently, images of AC-15 were used
as input and images of the phalloidin stain were used as a
benchmark for L2L training. For N2N, two noise realisations of AC-
15, acquired through sequential imaging, were used as training data.
Fig. 1B shows the restoration of an image of AC-15 in a HeLa cell

(Fig. 1A, left) by a CNN after L2L training with a L3S-SSIM (see
‘Training the CNN’ section in Materials and Methods). A trained
CNN reduced cytoplasmic signal throughout the cell body in the
restoration, and the relative signal of filamentous actin labelled with
AC-15 increased. In Fig. 1C, for two regions of interest (ROIs), the
original cell image of AC-15 and the prediction by a CNN after N2N
and L2L training with a L1 and L3S-SSIM, respectively, are shown.
Although noise was reduced in the N2N result, making it optically
similar to a 20-frame average, the contrast of the actin filaments was
still low due to the high background signal. In the L2L results,
however, not only image noise was removed, but also the contrast of
filamentous signal was clearly enhanced, even compared to the
training benchmark (phalloidin) (Fig. 1D, left). The RMS maps
between the raw images of AC-15 and the L2L results revealed a
selective removal of high intensity punctate regions [Fig. 1D (right);
for further maps see Fig. S1].
In Fig. S2A-C, the qualitative N2N and L2L results are shown for

images of AC-15 dependent on the training loss function (L1,
L5S-SSIM, L3S-SSIM or LSSIM), including the corresponding
benchmarks (phalloidin) for L2L and 20-frame average images of
both labels to better assess the network performance. For both
methods, using an L1 for the training leads in comparison to more
conservative predictions, in which, with L2L, non-filamentous
signal was reduced by the network but actin filaments appeared
relatively blurry. On the other hand, predictions by a CNN after

training with a LMS-SSIM showed cell structures with increased
sharpness, and erroneous predictions by the network occurred (with
lowerM ) (see annotated ROIs in Fig. S2A-C). Hallucination effects
were substantially more pronounced in N2N results. Here, punctuate
regions in the cell cytoplasm appeared with artificial contrast in
restored images of AC-15, and actin filaments with low contrast in
the input image were restored with intensity fluctuations along the
structure. For L2L, these artefacts were barely observed when using
an LMS-SSIM for the training.

To further evaluate the network performance after L2L training,
the average peak signal-to-noise ratio (PSNR), normalised root-
mean square error (NRMSE) and MS-SSIM indices (M=1, 3 and 5)
were calculated for the raw or predicted images of AC-15, and the
corresponding images of phalloidin, dependent on the training loss
function. For that, validation image patches that were excluded from
the training data were used (see the ‘Training the CNN’ section in
Materials and Methods). All calculated metrics indicated an
increased correlation between the restorations and the benchmark
(phalloidin) compared to the original image (see Table 1). Notably,
using an L5S-SSIM for the training narrowly yielded the best PSNR
and NRMSE.

L2L to enhance the structural contrast in images of the
microtubule network and caveolae
To further study L2L as a method to increase image contrast of
distinct cellular structures, fluorescence image pairs were acquired
of the microtubule network that has a distinct branched spatial
distribution in cells, and caveolae that are 60-100 nm large
invaginations in the plasma membrane (Bates et al., 2007; Khater
et al., 2018). For the former, fixed MeT5A cells were dual labelled
with two monoclonal antibodies against α-tubulin (DM1A raised in
mouse and YOL1/34 raised in rat), and confocal image pairs (N=51)

Table 1. Loss function-dependent evaluation of L2L for images of different cellular structures

PSNR
(dB)

NRMSE MS-SSIM PSNR
(dB)

NRMSE MS-SSIM

M=5 M=3 M=1 M=5 M=3 M=1

Actin cytoskeleton Microtubule network
Input 16.67 0.150 0.434 0.331 0.150 17.20 0.140 0.540 0.359 0.135
L1 19.76 0.107 0.635 0.531 0.314 16.88 0.146 0.415 0.271 0.103
L5S-SSIM 20.08 0.103 0.673 0.565 0.339 18.37 0.123 0.660 0.475 0.203
L3S-SSIM 20.07 0.103 0.672 0.567 0.343 18.23 0.125 0.652 0.469 0.200
LSSIM 19.91 0.105 0.662 0.561 0.340 18.03 0.128 0.648 0.468 0.199

Caveolae PXN
Input 14.91 0.181 0.156 0.110 0.049 18.73 0.118 0.455 0.337 0.152
L1 14.79 0.184 0.136 0.114 0.052 19.78 0.107 0.465 0.339 0.135
L5S-SSIM 15.26 0.175 0.216 0.207 0.131 21.27 0.091 0.605 0.497 0.329
L3S-SSIM 15.19 0.176 0.200 0.196 0.129 21.20 0.092 0.600 0.496 0.330
LSSIM 14.88 0.182 0.175 0.186 0.111 21.13 0.093 0.592 0.489 0.328

SYTOX CD44
Input 15.03 0.192 0.553 0.499 0.309 20.99 0.114 0.816 0.825 0.715
L1 36.15 0.019 0.943 0.932 0.898 30.05 0.034 0.942 0.916 0.841
L5S-SSIM 36.34 0.019 0.958 0.945 0.904 27.80 0.046 0.950 0.921 0.838
L3S-SSIM 36.27 0.019 0.958 0.947 0.910 28.23 0.044 0.950 0.924 0.845
LSSIM 36.56 0.019 0.954 0.945 0.914 28.83 0.040 0.944 0.921 0.849

Evaluation after training a CNN with image pairs of HeLa cells that were dual labelled with an anti-actin antibody (input) and a phalloidin stain (benchmark) (see
‘Actin cytoskeleton’), of MeT5A cells that were labelled with the anti-α-tubulin antibodies DM1A (input) and YOL1/34 (benchmark) (see ‘Microtubule network’),
of MeT5A cells that were labelled with antibodies against CAVIN-1 (D1P6W; input) and caveolin-1 (CAV1) (4H312; benchmark) (see ‘Caveolae’), and of MeT5A,
HeLa and U2OS cells that were dual labelled with the anti-PXN antibodies 5H11 (input) and Y113 (benchmark) (see ‘PXN’). Calculated metrics are also shown
after training a CNN to separate markers in superposed images of cells that were labelled with the nuclear marker SYTOX and an anti-CD44 antibody. Average
metrics were calculated between the respective training inputs or restored images of the input after training the network with an L1, L5S-SSIM, L3S-SSIM or LSSIM loss
function, and the corresponding training benchmarks. To achieve this, the validation image patches were used that were created from non-background areas in
the raw images (see Table 2). Metrics for the caveolae dataset were calculated after applying aGaussian filter (sigma=1.5) due to high image noise in the dataset.
The best value for each column is shown in bold.
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were generated. To train a CNN as a content filter for caveolae,
STED image pairs (N=60) were acquired of fixed MeT5A cells that
were dual labelled with antibodies against the two essential caveolae
components CAVIN-1 (D1P6W) and caveolin-1 (CAV1; 4H312)
(Hansen and Nichols, 2010). For the tubulin dataset, we calculated
mean±s.d. Michelson contrast values of 0.45±0.14/0.9±0.05 and
mean±s.d. RMS contrast values of 0.13±0.03/0.17±0.02 for
DM1A/YOL1/34; for the caveolae dataset, these values were 0.27
±0.05/0.98±0.02 and 0.13±0.02/0.22±0.02 for D1P6W/4H312 (see
previous section; for the caveolae dataset, the 1% brightest pixels in
the image were regarded as a sample). Hence, for L2L training,
images of DM1A and D1P6W were used as input, and images of
YOL1/34 and 4H312were used as a benchmark to train the CNN for
the respective target structure.
In images of cells labelled with YOL1/34, intensity fluctuations

along the microtubules were observed that likely originate from

inhomogeneous binding or selective binding to specific epitopes of
polymerised tubulin; this was not observable for the clone DM1A
(compare 20-frame average images in Fig. S2D,F). Microtubules
appear overall sharper in images of YOL1/34 compared to DM1A,
with a lower ‘haze’ in the cytoplasm. This haze might be caused by
unspecific binding, binding to cytosolic tubulin and/or out-of-focus
signal. Notably, the optical resolution in images of DM1A labelled
with the secondary antibody Alexa Fluor 633 was lower than in
images of YOL1/34, which was conjugated to Alexa Fluor 488.

In Fig. 2A, the results after N2N and L2L training with the
tubulin dataset are displayed for two ROIs and loss functions (L1
and L3S-SSIM). Restorations are shown of a representative training
input (top) and an image of the same cell specimen, which was
acquired with a different microscope that allowed additional STED
imaging (bottom) (see the imaging section in Materials and
Methods). STED images exhibit a circa 3× enhanced resolution

Table 2. Training settings

Dataset Actin Tubulin Caveolae PXN SYTOX plus CD44

Input marker AC-15 DM1A D1P6W 5H11 Superposed‡

Benchmark marker Phalloidin YOL1/34 4H312 Y113 SYTOX/CD44‡

Number of raw image pairs 68+272* 51+204* 60+240* 77+308* 58
Size of raw images (4096 pixels)2 (4096 pixels)2 (7730 pixels)2 (4096 pixels)2 (2608 pixels)2

Percentiles for normalisation 1/99.9 1/99.9 2/99.5 1/99.9 2/99.8
Number of validation/training patches (128 pixels)2 13,926/125,338 10,445/94,003 18,432/165,888 15,770/141,926 11,878/106,906
Learning rate 2×10−4 2×10−4 1×10−5 2×10−4 2×10−5

Batch size/steps per epoch/epoch number 32/100/400 32/100/500 16/500/100 32/100/500 32/1000/250

*augmented images, ‡ two channel images.
Overview of the training data and settings in the CSBDeep framework for L2L training.

Fig. 2. Loss function-dependent L2L and N2N results for images of the microtubule network and caveolae. (A-D) Confocal images of MeT5A cells that
were dual labelled with the anti-tubulin antibodies DM1A (A) and YOL1/34 (B), and STED images of MeT5A cells that were dual labelled with the anti-CAVIN-1
antibody D1P6W (C) and the anti-CAV1 antibody 4H312 (D). (A,C) From left to right: raw image of a representative training input, reconstructed images after N2N
and L2L training with an L1 or L3S-SSIM loss function, and a corresponding 20-frame average or high resolution STED image. (B,D) Representative training
benchmarks for L2L training are displayed. Images shown were excluded from the network training. Scale bars: 1 µm (A,B); 200 nm (C,D).
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compared to the standard confocal image and are therefore a better
reference for assessing the restoration performance of a CNN for
this sample in ROIs in which microtubules are densely packed
(Bates et al., 2007). Comparing the restorations by a CNN after
‘classical’ N2N training with an L1 with the L2L result after
employing an L3S−SSIM for the training, a clear improvement of the
contrast of the microtubule network with L2L was observed
(Fig. 2A). Here, both methods outperformed the corresponding 20-
frame average image (Fig. 2A, top; Fig. S2D,F) and classical image
processing methods, such as a Gaussian or top-hat filter (Fig. S3,
Table S1). The restoration of the cell image of DM1A that was
acquired with a different imaging setup than the training input
exhibited a slightly less homogeneous intensity distribution along
the microtubules, likely due to the changed image noise (compare
Fig. 2A, left). For N2N and L2L, the restoration success is
dependent on the tubule density in the image. The closer
microtubules are packed in the cell, the less likely the successful
recovery of separate structure by the CNN, as evident by comparing
the results of both methods with the corresponding STED image
(see also Fig. S4A,B). Notably, the intensity fluctuations along the
cellular structure in the benchmark (YOL1/34) for L2L do not result
in artefacts in restorations of the input (DM1A). Further N2N and
L2L results for representative training inputs are shown in Fig. S2E,
after using an L1, L5S-SSIM, L3S-SSIM or LSSIM for the training. A loss
function-dependent trend was observable for both methods: using
an LMS-SSIM instead of an L1, the CNN learned (with decreasing M )
to restore microtubules with increased sharpness, especially when
trained with images of two non-identical labels (Fig. S2E). This
effect was quantifiable; extracted full width at half maxima
(FWHMs) of line profiles across single microtubules in the
images showed that results obtained with L2L were closest to the
microtubule diameters detected with STED microscopy (Fig. S4C).
The STED image pairs that we acquired of cells that were dual-

labelled for CAVIN-1 (D1P6W) and CAV1 (4H312) showed a low
signal-to-noise ratio, further amplified by the pre-processing step
that was undertaken to prevent artefacts that we observed when
training with the nearly binary raw data (see ‘Data augmentation and
pre-processing’ in Materials and Methods; Fig. 2C,D). Moreover,
the correlation of the fluorescence signal originating from caveolae
structure was relatively low between the training input (D1P6W)
and benchmark (4H312) for some image pairs (Fig. S5A,C). This
was also indicated by the calculated mean PSNR, NRMSE and MS-
SSIM indices for both images, which suggested the lowest
correlation among the L2L datasets that were generated in this
work (compare Table 1). It posed the question as to whether a CNN
would be prone to introduce artificial structure after L2L training
with this dataset.
We found that the CNN performance after N2N and L2L training

was highly dependent on the training loss function (Fig. 2C). Using
an L1, in both methods, a trained CNN only learned to restore
structures in high signal-to-noise regions in the input image
(compare Fig. 2C, top and bottom). However, when the training
loss function was replaced with an L3S-SSIM, the recovery of
structural signal by the CNN from the noisy input (DM1A) was
much enhanced for N2N and L2L. Here, cytosolic background
signal in the image was clearly reduced by the network after L2L
training, resulting in restorations with higher sample-to-background
ratios than in corresponding 20-frame average STED images of both
labels (Fig. 2; Fig. S5A-C). For N2N, on the other hand, significant
hallucination effects were observed after using an L3S-SSIM for the
training, with unspecific cytosolic signals often recovered as
structure-like content (Fig. 2C, top). These artificial features got

more pronounced when using the loss function with a small number
of iterations (M ) (compare N2N results for LSSIM and L5S-SSIM in
Fig. S5B). Moreover, weak stripe-like artefacts were introduced by
the network after N2N training (Fig. 2C). Although caveolae
structures appeared slightly sharper than in the L2L results, the level
of sharpness that was observed in the N2N result was not verifiable
in the 20-frame average image (Fig. 2C, bottom).

Again, the network performancewas evaluated after L2L training
with different loss functions by calculating the average PSNR,
NRMSE and MS-SSIM indices (Table 1). For both datasets, the
calculated metrics indicated that the correlation between
reconstructed and benchmark image was highest after training
with an L5S-SSIM. For the tubulin dataset, a decrease in the correlation
between the restored image of DM1A and the benchmark (YOL1/
34) after training with a L1 was observed.

Training networks to reduce cytosolic content in images of
PXN with paired and unpaired images
We also trained a CNN with image pairs of two non-identical labels
against the focal adhesion protein paxillin (PXN) (Martino et al.,
2018), with the aim to reduce immunofluorescence signal in the
images that stems from cytosolic protein. Image pairs of fixed
MeT5A (N=47), HeLa (N=17) and U2OS (N=13) cells, dual
labelled with the monoclonal anti-PXN antibodies 5H11 and Y113,
were acquired. As expected, the raw immunofluorescence images of
both antibodies showed correlating focal adhesion structures in the
cells but also a diffuse signal throughout the cell body that differed
in relative intensity to the focal adhesion signal between the two
clones (compare Fig. 3A, left, and Fig. 3B). For all cell lines, we
observed the same trend; the images of antibody Y113 showed a
higher focal adhesion-to-cytosolic signal ratio than images of 5H11.
To determine whether the cytoplasmic signal originated from
clone-dependent binding to protein in the cytosol or unspecific
binding, short hairpin (sh)RNA-mediated PXN knockdownMeT5A
cells were generated (see ‘Generation and verification
of knockdown PXN MeT5A cells’ in Materials and Methods).
The knockdown was confirmed via a qPCR analysis that showed
a knockdown efficiency of >70% on mRNA level. Additionally,
PXN protein levels were substantially lower in the shRNA PXN
cells, as analysed by western blotting (Fig. S6A,B). For both
antibodies, the immunofluorescence signal of PXN was reduced
in images of fixed shPXN cells in both the focal adhesions and
in the cytoplasm (Fig. S6C). Hence, the cytoplasmic signal that
is observed in images of both clones is largely not caused by
unspecific binding. Instead, the different relative cytosolic content
in cell images of 5H11 and Y113 indicates a differing accessibility
of the respective binding sites for both clones for protein that
is cytosolic or bound to focal adhesions, and that cytosolic PXN
likely functions as a readily available replenishable buffer for focal
adhesion-localised PXN.

All cell lines were prepared and imaged under the same conditions,
and were used indistinguishably to generate the training data (see
‘Training the CNN’ section in Materials and Methods). For the cell
images of 5H11/Y113 (N=77), mean Michelson contrast values of
0.57±0.07/0.99±0.01, and mean±s.d. RMS contrast values of 0.15
±0.01/0.18±0.02 were calculated. Cell images of 5H11/Y113 were
used as input/benchmark to train a network to decrease cytosolic
signal in images of focal adhesions. To test whether an artificial
network can also be trained with unpaired L2L data, a CycleGAN
was trained and its performance was compared to the CNN (see
‘Training the CycleGAN’ in Materials and Methods). Further results
for other datasets are shown in Fig. S7.
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In Fig. 3A, the restorations of a representative training input
(5H11) by a CNN (using an L1) and a CycleGAN are shown after
L2L training with aligned and unaligned images, respectively. Both
networks learned to reduce cytosolic content in images of 5H11 and
selectively recovered focal adhesion structure, but the CNN
outperformed the CycleGAN for this task. In the generated image
of the CycleGAN, high intensity areas in the cell cytoplasm that did
not stem from focal adhesions were, in part, still present in the
predicted images with a tendency to translate intensity fluctuations
in the input as weak structure (Fig. 3C, bottom). A similar effect was
observed after training a CNN with an LMS-SSIM with N2N data
(Fig. S5E). Here, intensity fluctuations in the cytosol were, as
observed with the caveolae dataset (see previous section),
artificially accentuated in the restorations, which became more
pronounced with a small M, leading to very different qualitative
N2N results after using an L1 and an LSSIM. These artefacts were
much less pronounced in the L2L results (Fig. S5E).
Contrary to the results of the evaluation (Table 1) that, again,

indicated the highest network performance after using an L5S-SSIM,
subjectively, training the CNN with an L1 led to the best L2L results
overall. Cytosolic signal was significantly lowered in the
restorations after L2L training compared to the 20-frame average
image or N2N result, and focal adhesions were selectively recovered
and appeared with increased contrast (Fig. 3C). Also, the trained
CNN in-painted focal adhesion structures that were
inhomogeneously labelled (see white arrowheads in Fig. 3C). In
addition, we found that the trained CNN reduced cytosolic

background signal in the training benchmark (Y113), although
these images were not used as input for L2L training (Fig. 3D).

Training a CNN to separate cellular structures in superposed
images
Lastly, the ability of a CNN to transfer style between
immunofluorescence images with correlating structural signal was
tested by training a network to separate superposed confocal images
of two different cellular targets. For that, fixed MeT5A cells were
stained with the nuclear marker SYTOX Green and labelled with an
antibody against CD44, a plasma membrane protein. Then, image
pairs (N=58) were acquired of both markers (superposed) and of
each marker separately (see the imaging section in Materials and
Methods). The spatial distribution in the cell of both targets partly
overlapped in the images but the targets were structurally
distinguishable, with the nucleus appearing with high intensity in
the cell centre and CD44 distributed at the periphery of the cell
(Fig. 4A). The CNN was trained with the superposed image of both
the nucleus and the plasma membrane as training input in a two
channel image, and the separate cell images of SYTOX and CD44,
respectively, as training benchmark (see ‘Training the CNN’ in
Materials and Methods). The qualitative results in Fig. 4 for an
example image pair show that a CNN separated the nucleus and
plasma membrane marker in the input image successfully after the
training. Noticeably, similar to N2N, image jitter and noise that were
present in the input image were removed by the network in the
restorations (Fig. 4B). However, the CNN slightly blurred structure

Fig. 3. Network architecture-dependent L2L results for images of PXN. Confocal images of a HeLa cell dual labelled with the two anti-PXN antibodies 5H11
and Y113, which were used as training input and benchmark for L2L training. (A) From left to right: raw image of 5H11, the restored images by a CNN/CycleGAN
after L2L training with paired/unpaired images, and the corresponding image of Y113 (B). Scale bar: 20 µm. (C) Training results for two ROIs (6 µm×6 µm). From
left to right: input (5H11), the restored images by a CNN after N2N and L2L training with an L1 loss function, the restored image by a CycleGAN, and a 20-frame
average. (D) Corresponding benchmark images (Y113) for L2L training and its predictions by a CNN after L2L training as outlined above. ACNN that was trained
with L2L data in-paints focal adhesions (see white arrowheads) and reduces cytosolic protein (see ROI number 2) for both the training input and benchmark.
Images shown were excluded from the network training.
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in the restorations, and overlapping structures in the nuclear area
were mostly, but not fully, recovered in the images of CD44. A loss
function-dependent evaluation of the network performance showed
no clear trend as to which loss function was best suited to train the
CNN as a separator of the two structures (Table 1).

Testing the robustness of L2L
The robustness of L2L training was evaluated for the
actin (Ntot=68), tubulin (Ntot=51), caveolae (Ntot=60) and PXN
(Ntot=77) datasets by analysing howmuch the network performance
was impacted by using specific image pairs for the training data
generation. To carry this out, repeated cross validations were
conducted with randomly selected image pairs N from the total
dataset (Ntot). For the actin and PXN dataset, we conducted 8-fold
cross validations with N=8, 16, 32 and 64; for the tubulin and
caveolae dataset, we conducted 10-fold cross validations with
N=10, 30 and 50. We increased the number of repetitions for small
N, and the epoch number for the training was linearly adapted to N
to prevent overfitting (see ‘Training the CNN’ in Materials and
Methods; Table 3). The difference between this approach and the
default validation in the CSBDeep framework is that in the latter the
validation is conducted via a train/test split of the training data,
which is generated from all raw image pairs. This way, image
patches generated from a specific image pair appear in both, the test

(validation) and the training data, making it impossible to assess
how much the network performance depends on whether a specific
image pair is used for the training.

The mean relative change of the NRMSE and 5S-SSIM indices
between the input and the restored image (both versus the training
benchmark) is displayed in Fig. 5. Each data point represents the
mean value of a cross validation dependent on N. A Gaussian filter
(sigma=1.5) was applied to images of caveolae prior to the
calculations, as noise levels were so high in the raw input images
that no trend was observable for unprocessed data. The results for
nearly all datasets showed a similar trend: even when using a small
N, the structural similarity to the benchmark increased for restored
images compared to the input. However, the calculated ΔNRMSE
and Δ5S-SSIM were dependent on the particular images that are
used for the training – indicated by a wide distribution for small N.
This could indicate that certain acquired image data are better suited
for training the network, or easier to predict for the network. As
expected, on average, the highest performance was achieved using a
high N. Although the results for Δ5S-SSIM indicate that with N>30
or 32 the network performance was relatively consistent for all
datasets, the ΔNRMSE improved continuously with increasing N.
Here, the trend of ΔNRMSE deviated for the caveolae dataset for
which, altogether, only slight changes were observed between
different N, without a clear trend.

Fig. 4. Qualitative results after training a CNN to separate cellular structures in superposed images of a nuclear stain and an antibody against a plasma
membrane protein. (A) Training input and benchmark images of a MeT5A cell that was dual labelled with the nuclear stain SYTOX Green and an anti-CD44
antibody, and corresponding reconstructions after training a CNN with an L3S-SSIM. Scale bar: 10 µm. The image pairs were obtained via sequential imaging by
changing the excitation wavelength. (B) Qualitative result for an ROI (5 µm×5 µm). Prediction success is dependent on the level of superposition of both labels.
Structures appear slightly blurry in the restorations compared to the benchmark, but image noise and jitter are reduced. The images shown were excluded from
the training.

Table 3. Settings for repeated cross validations

Dataset
Actin (N=68)/PXN (N=77)
8-fold cross validations

Tubulin (N=51)/Caveolae (N=60)
10-fold cross validations

Number of repetitions 10 5 3 2 8 3 2
Total number of raw image pairs 8 16 32 64 10 30 50
Loss function L3S-SSIM/L1 L3S-SSIM
Learning rate/batch size/steps per epoch 5×10−4/32/150 5×10−4/1×10−5/32/150
Epoch number 20 40 60 120 20 60 100

Overview of the settings in the CSBDeep framework that were used for repeated 8-fold or tenfold cross validations, training the network for L2L with the different
datasets.
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DISCUSSION
We show that a CNN can be successfully trained to reduce
unspecific label-induced fluorescence signals detected in the cell
cytoplasm in immunofluorescence images of cellular structures,
requiring images of two non-identical labels of a target for the
training that exhibit systematic sample differences. L2L is different
to restoration methods that use images of the same label as training
data, e.g. N2N. After N2N training a CNN restores all signals
originating from the label without distinction, whereas a CNN
systematically learns to lower non-structural signals after L2L
training. We found that a network trained with L2L data restores
images with high contrast of the target structure, even compared to
the training benchmark or its high frame average image (see, for
example, Fig. 2A,C). Such a CNN further improved the images that
were used as the benchmark for the training (Fig. 3D; Fig. S8).
The network performance is dependent on the level of correlation

between the images of the two labels and the training loss functions.
Using a single-scale SSIM loss function for the training increased
the likelihood of hallucination effects in restored images after L2L
training, especially for the PXN dataset in which cytosolic content
in the cell body was not entirely without structure and present in
both training input and output. However, an LMS-SSIM was better
suited for training a network to restore sharp cellular structures.
Notably, the restorations increasingly (withM ) converged to results
obtained with an L1 (Fig. S2, Fig. S5). For images of actin, tubulin
and caveolae we determined that the best results were obtained after
using an L3S-SSIM. Here, unspecific background signals differed
sufficiently between the images of both labels. For the PXN dataset,
an L1 was more suitable for training a CNN to recover focal
adhesions only, likely due to the correlating cytosolic signal in the
training images, albeit both at different relative intensity to the focal
adhesion signal (Fig. 3A,B).
Thus far, most deep learning-based image restoration methods

have relied on image pairs of the same label that were acquired under
different imaging conditions. Here, our N2N results suggest that

powerful loss functions, such as the LMS-SSIM, are only of limited use
(e.g. the N2N results in Fig. S5B,E). Using an LMS-SSIM for N2N
training led to a significantly higher occurrence of artefacts
compared to L2L, in which cytosolic non-structural content (as
present in the training input for the actin, caveolae and PXN
datasets) was restored with accentuated artificial contrast. However,
the qualitative N2N and L2L results for the caveolae dataset indicate
that a CNN picks up structure much more efficiently in very noisy
images when using an L3S-SSIM instead of an L1 for the training
(Fig. 2C). But using two STED images of the same label (D1P6W)
as training data caused the network to hallucinate significantly when
using an LMS-SSIM, with cytosolic background signals recovered as
structure. Also, some N2N results exhibited artefacts that might
originate from static image corruptions introduced by the imaging
system itself, which then would be present in both noise realisations
of a sample (Fig. 2C; Fig. S5B). A clear improvement between the
restored images after N2N training with an L1 and an L3S-SSIM,
respectively, is only observed for the tubulin dataset, in which the
background signal appears very unspecific in images of the tubulin
marker (DM1A) (Fig. 2A).

Although clean benchmark data are not required for L2L and
N2N training, in images of structures that are not sufficiently
resolved by the imaging technique, either a posteriori knowledge
about the structure or clean reference data are required to assess the
qualitative performance of a trained CNN. This was especially
noticeable in cell images of tubulin, in which the fine microtubule
network is not fully resolved with confocal microscopy (Fig. 2A,B).
We observed erroneous predictions by a CNN in image regions
where the microtubule network was densely packed after both N2N
and L2L training. Further, the sharpening of structure with L2L after
using an MS-SSIM loss function for the training – although
advantageous for images of tubulin (Fig. S4C) for which we know
that the true microtubule diameter is not resolved with confocal
microscopy – may be less desirable in images of other cell
structures.

Fig. 5. Repeated cross validation for L2L training. The mean relative change (input/benchmark versus restoration/benchmark) of the NRMSE and 5S-SSIM
index after L2L training with image pairs of different cellular structures. Boxes represent 25th and 75th percentiles with median, whiskers represent standard
deviations. The image pairs for the trainings were generated of cells that were dual labelled for the actin cytoskeleton (Ntot=68), tubulin (Ntot=51), caveolae
(Ntot=60) or PXN (Ntot=77), dependent on the number of raw image pairs that were randomly selected from the total dataset for the cross validation. Each data
point is the mean value for an eightfold (actin and PXN) or tenfold (tubulin and caveolae) cross validation that was repeated for small image pair numbers.
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We found that metrics such as the PSNR and NRMSE are
inadequate to forecast which loss function yields the best
restorations by a CNN after L2L training, and this is exacerbated
by the unavailability of clean reference images of the respective
target structure. For instance, the calculated metrics for the L2L
results for all datasets barely deviated for different LMS-SSIM,
although, qualitatively, differences in the restorations were observed
(Table 1). Additionally, although the calculated SSIM indices
indicate scarcely any correlation between the input and benchmark,
with values around 0.05-0.15 for all L2L datasets, the correlation
was higher according to the 5S-SSIM indices (by a factor of ∼3).
Therefore, a high-scale SSIM index might be more suitable for
detecting correlation in fluorescence images of cellular structure
than other metrics, likely because microscopy images are the
convolved signal of a sample volume rather than the strict two-
dimensional depiction of a sample at a specific section. This
observation fits with the MS-SSIM index theory (Wang et al.,
2003).
As expected, the evaluation of repeated eightfold/tenfold cross

validations (dependent on the number of raw image pairs that were
used to generate the training data) showed that using a high number
of image pairs to train a CNN for the style transfer between two
labels is advisable (Fig. 5). The mean PSNR and 5S-SSIM index
significantly increased even after L2L training with a small number
of image pairs, but the results were dependent on the selected image
pairs. Although the evaluation would be more meaningful if each
cross validation had been conducted with unique image pairs
instead of image pairs but that were randomly selected from a finite
dataset, the results indicate that a network converges to the optimal
result of a particular dataset during training (Fig. 5).
Initially, it was unclear whether the difference in the training data

would increase hallucinations by a CNN after L2L training. For
instance, in the caveolae dataset, the sample differences between
input and output were quite significant (compare Fig. S5A,C), and
inhomogeneous labelling of the microtubule structure by the anti-
tubulin antibody YOL1/34 (benchmark) was not visible in the
training input (DM1A) (compare Fig. S2D,F). Yet, we could not
observe that the CNN introduced artificial structure in the restored
images after L2L training that resembled either trend. Instead, our
results suggest that sample differences can be advantageous when
training with an LMS-SSIM to lower the occurrence of hallucination
effects observed after N2N training. However, an in-painting effect
was observed for L2L, primarily in restorations of AC-15 (actin;
Fig. 1C,D) and 5H11 (PXN; see Fig. 3C,D). Consequently, L2L can
be used to correct images for inhomogeneous binding of a stain or
antibody but restorations cannot be used to quantify the distribution
of a target protein in a cell. Instead, L2L could serve as an image pre-
processing step to extract the binary information about the location
of a structure in the cell (see examples in Fig. S8). Notably, the
systematic recovery of specific structure and the adaptability of L2L
to images of a multitude of targets potentially makes L2L superior
to classical image processing methods (as shown in Fig. S3 and
Table S1).
Training data for L2L can be generated with one imaging setup

using two detectors simultaneously, which makes the images
independent of stage drift and sample dynamics, and is time
efficient. However, contrary to N2N, L2L requires sample
preparation with two markers that exhibit systematic differences in
the respective images to allow training for a useful style transfer
between labels. Therefore, not all label pairs of a target structure are
suitable for generating the necessary training data.We found that the
calculated RMS and Michelson contrast values for images of two

labels were good indicators for assigning labels to ‘input’ and
‘benchmark’. Here, training a CNNwith the reverse order or pairing
the labels in both directions resulted in either worse or comparable
prediction success.

We also trained a CycleGAN with unaligned label pairs of a
target structure (Fig. 3A,C; Fig. S7). Although the generated images
of a trained CycleGAN exhibited reduced unspecific cytosolic
signals, it was outperformed by a trained CNN. As the generator in
the CycleGAN is trained to fool a discriminator based on noisy
benchmarks, either little to no change to the input image was
observed (tubulin/caveolae) or artefacts were introduced (actin/
PXN) by the network to match the style of the reference image. Prior
denoising of the images via Gaussian filtering led to slightly better
results (Fig. S7). A higher performance might be achieved with
cleaner reference images.

The ability of a CNN to selectively restore specific cell structure
is also highlighted in this work by training a CNN to separate a
nuclear marker and a plasma membrane protein label in superposed
immunofluorescence images (Fig. 4). Our results show that CNNs
could be used in the future to separate the fluorescence signals from
multiple markers in microscopy images that were acquired with
imaging setups that have a limited number of excitation sources or
detectors. L2L could also be applied in multiplex imaging
experiments if antibodies are not selected based on performance
but compatibility issues between the species in which they are
raised. Moreover, L2L could be considered for post-processing in
live-cell imaging, in which high-performance labels are rare.
Training data can be generated post image acquisition in vitro by
fixing the cells and labelling with a higher performing antibody
against the target structure. Our results for the caveolae dataset
suggest that training a CNN with L2L data might be particularly
advantageous to restore noisy images, as it allows the
implementation of an MS-SSIM loss function without introducing
artefacts that we otherwise observed after training with images of
the same label (Fig. 2C; Fig. S5B). Here, L2L results exhibit a high
structure-to-background signal ratio, clearly outperforming high-
frame average images that were acquired with the STED
microscope.

In conclusion, we present a new deep learning-based image
restoration method for images of cellular structures that utilises the
varying performance of labels in immunofluorescence microscopy;
we call this method L2L.With L2L, we show that by training a CNN
for a style transfer between two non-identical labels of a shared
target, the network can be systematically trained to reduce
unspecific cytosolic background signals and enhance structural
contrast in immunofluorescence images. Like other methods, L2L
relies on the convention of the network to underestimate inherently
unpredictable signal. However, with L2L, not only image noise but
also label-induced fluorescence signals in the cell specimen can be
reduced in the images after selecting appropriate training data. The
ability to significantly lower unspecific binding, inhomogeneous
labelling of a structure or binding to cytosolic protein in
immunofluorescence images makes L2L, to our knowledge,
unique in comparison to other deep learning-based image
restoration methods that are currently used in cell biology.

MATERIALS AND METHODS
Cell culture
For imaging, the humanmesothelial cell lineMeT5A (ATCCCRL-9444), the
adenocarcinoma cervical cancer cell line HeLa and the human osteosarcoma
cell line U2OSwere used. HeLa cells were a gift fromMargaret Cunningham
andU2OS cells were a gift fromKathrynMcIntosh (both Strathclyde Institute

10

RESEARCH ARTICLE Journal of Cell Science (2022) 135, jcs258994. doi:10.1242/jcs.258994

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.258994
https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.258994
https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.258994
https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.258994
https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.258994
https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.258994
https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.258994
https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.258994


of Pharmacy and Biomedical Sciences, Glasgow, UK). MeT5A cells were
cultured in RPMI-1640 medium (Corning), supplemented with 10% (v/v)
fetal bovine serum (FBS) (Labtech), 100 μg/ml penicillin-streptomycin
(Gibco), 1 mM sodium pyruvate (Gibco), 2 mM L-glutamine (Gibco)
and 2 mM HEPES buffer solution (Gibco). HeLa and U2OS cells were
cultured in Dulbecco’s modified Eagle medium (DMEM) plus GlutaMAX
medium (Gibco) supplemented with 10% (v/v) FBS and 100 μg/ml
penicillin-streptomycin. Human embryonic kidney cells HEK293T were
grown in DMEM supplemented with 100 μg/ml penicillin-streptomycin and
2 mM L-glutamine. All cells were kept at 37°C/5% CO2 in a humidified
atmosphere.

Generation and verification of knockdown paxillin MeT5A cells
Knockdown of MeT5A cells was achieved by a shRNA-mediated
knockdown using pKLO.1 vectors coding for shRNAs targeting paxillin
(TRC N0000123137) or control. HEK293T cells were used for virus
generation, and the virus was harvested, filtered and added to polybrene-
treated MeT5A cells. The retroviral transduction of MeT5A cells was
followed by puromycin selection. Stable knockdown cell lines were verified
by qPCR (mRNA abundance) and western blots (protein abundance). For
western blotting, cell lysates were prepared in reducing lysis buffer, boiled
for 10 min and separated on conventional homemade SDS gels, and
developed onto Medical Blue Sensitive X-Ray Film (Scientific Laboratory
Supplies). The PXN specific antibody Y113 was used (rabbit; ab32084,
Abcam). Ponceau staining of the PVDF membrane was carried out to
establish equal loading. For qPCR (RT-qPCR), mRNA was extracted from
cells using an RNeasy Plus Mini kit (Qiagen). cDNAwas generated using a
High-Capacity cDNA Reverse Transcriptase kit (Applied Biosystems).
qPCR was performed on 1 ng of cDNA using Brilliant III Ultra-Fast SYBR
Green QPCR Master Mix (Agilent Technologies) and an Applied
Biosystems QuantStudio 5 Real-Time PCR System. Expression of
paxillin was analysed and normalized to hypoxanthine-guanine
phosphoribosyltransferase (HPRT1) levels. qPCR data originate from five
independent biological replicates, plotted in Prism (GraphPad) and analysed
using Mann–Whitney.

Sample preparation for immunofluorescence microscopy
If not stated otherwise, cells were plated onto #1.5 coverslips a day prior to
fixation, then fixed with 4% paraformaldehyde for 15 min at 37°C, followed
by a permeabilisation step with 2.5% FBS and 0.3% Triton X-100 in PBS
for 30 min at room temperature (Rausch and Hansen, 2019). HeLa cells that
were labelled for actin were fixed 6 h after plating. The following antibodies
or stains were used to generate cell specimens dual labelled for the same
target structure: monoclonal anti-β-actin antibody AC-15 conjugated to
Alexa Fluor 488 (1:250; mouse; ab6277, Abcam) and the phalloidin-
Atto 565 stain (1:100; 94072, Sigma-Aldrich) to visualise the actin
cytoskeleton in MeT5As; monoclonal antibodies YOL1/34 conjugated to
Alexa Fluor 488 (1:500; rat; ab195883, Abcam) and DM1A (1:250; mouse;
T6199, Sigma-Aldrich) for α-tubulin labelling in MeT5As; monoclonal
antibodies 4H312 (CAV1) (1:200; mouse; sc-70516, Santa Cruz
Biotechnology) and D1P6W (CAVIN-1) (1:200; rabbit; 69036, Cell
Signaling Technology) for labelling caveolae in MeT5As; and
monoclonal antibodies Y113 (1:250; rabbit; ab32084, Abcam) and 5H11
(1:500; mouse; MA5-13356, Life Technologies) for PXN labelling in
MeT5A, U2OS and HeLa cells. Further, fixed MeT5A cells were labelled
with a nuclear SYTOX Green marker (S7020, Life Technologies) and a
monoclonal anti-CD44 antibody (1:100; rat; MA4400, Life Technologies).
The following secondary antibodies were used: anti-rabbit IgG Alexa Fluor
488 (1:200; donkey; A-21206, Life Technologies) to conjugate Y113; anti-
rat IgG Alexa Fluor 555 (1:100; goat; A-21434, Life Technologies) to
conjugate the antibody against CD44; anti-mouse IgG Alexa Fluor 594
(1:200; goat; A32742, Life Technologies) to conjugate 4H312; anti-mouse
IgG Alexa Fluor 633 (1:200; goat; A-11001, Life Technologies) to
conjugate DM1A and 5H11; and anti-rabbit IgG Atto 647N (1:200; goat;
40839, Sigma-Aldrich) to conjugate D1P6W. All immunofluorescence
samples were mounted in ProLong Glass Antifade Mountant (Life
Technologies) onto microscope slides.

Imaging
Confocal microscopy
Image pairs of the immunofluorescence sample labelled for the actin
cytoskeleton, tubulin and PXN, as well as SYTOX Green and CD44, were
taken using a commercial confocal laser scanning microscope (Leica TCS
SP8, Leica Microsystems), using a HC PL Apo 63×/1.4 N.A. CS2 objective
with no digital zoom (for image sizes see Table 2). To acquire data for L2L
training, both markers in the individual sample were imaged simultaneously
using the two in-built photomultiplier detectors, each equipped with a
prism-based tunable spectral filter. Each field of view was imaged twice to
acquire the two noise realisations of the samples that were used for N2N
training of a CNN. The sample dual labelled for actin was excited with a
488 nm and 552 nm laser line, and the two spectral detectors were set to
detect light between 495-540 and 560-700 nm. The samples dual labelled
for tubulin and PXN were excited with a 488 nm and 638 nm laser line, and
the two spectral detectors were set to detect light between 495-620 nm and
645-750 nm. The immunofluorescence sample labelled for SYTOX Green
and CD44 was imaged by setting the spectral range of the detector to 560-
660 nm. Separate images of SYTOX and CD44 were acquired by exciting
the sample with a 488 and 552 nm laser line, respectively. A corresponding
superposed image of both markers was acquired by exciting the sample with
both lasers simultaneously.

Stimulated emission depletion microscopy
Fixed MeT5A cells dual labelled for tubulin were further imaged with a
Leica SP8 TCS 3X STEDmicroscope, using a Leica HC PLAPO 100×/1.40
Oil STED WHITE objective (15506378, Leica). The sample was excited
with a supercontinuum white light laser at 488 nm and 633 nm for confocal
imaging, and at 633 nm for STED imaging. For confocal imaging, two
Leica photomultiplier tube detectors were set to detect light between 498-
600 nm and 643-743 nm. For STED imaging, a Leica HyD hybrid detector
was set to detect light between 643-743 nm. STED depletion was performed
using a Leica 775 nm depletion laser set to 50% with time gating from
0.3-8 ns. Pairs of confocal and STED images were acquired with a 15 nm
pixel size. Sequential STED image pairs of the cell specimen labelled for
caveolae were acquired by first exciting the sample at 646 nm and detecting
light between 656-750 nm, then exciting at 591 nm and using a spectral
range of 601-650 nm for the detection. The depletion laser power was
set to 100% with time gating from 0.3-8 ns, and the pixel size was set to
10 nm.

Image drift correction
Fluorescence images that were taken sequentially were corrected for
stage drift by estimating the extent of the displacement between the
images. A total of 100 image pairs of size 60×60 pixels were generated for
each image in a temporal image stack, after applying a Gaussian filter
(sigma=2) and using the first detected image as benchmark. For that, the
create_patches function from the CSBDeep framework was used, which
cuts random image patch pairs in non-background areas of the image. For
each created image patch, the SSIM index (filter size=11, sigma=1.5) was
calculated by shuffling the uncorrected image patch relative to the
benchmark patch by 5 pixels in all directions, effectively cutting both into
50×50-pixel patches. The shuffling vector that, on average, yielded the
highest structural similarity between both images was selected as optimal
position for the sequential image, and the images were cropped
accordingly.

Data augmentation and pre-processing
Images were augmented to create more training data. To achieve this, the
images were interpolated, using the zooming factors 0.5, 0.75, 1.25 and 1.5
(0.8, 0.9, 1.1 and 1.2 for the caveolae dataset), and then randomly rotated by
0°, 90°, 180° or 270°. STED images for the caveolae dataset were pre-
processed by adding Poisson noise to broaden the image histogram that, due
to being acquired with hybrid detectors, was nearly binary in the raw
images, resulting in poor results for the network training. Prior to the
training patch generation in the CSBDeep framework, a percentile
normalisation was conducted (Table 2).
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Training the CNN
For N2N and L2L training, the CSBDeep framework was used, which is a
CNNwith U-Net architecture (Ronneberger et al., 2015) that was developed
for CARE in fluorescence microscopy (Weigert et al., 2018). The CSBDeep
framework (version 0.6.0) was downloaded from GitHub and used with its
default settings unless stated otherwise (https://github.com/CSBDeep/
CSBDeep).

In the CSBDeep framework, training patches were generated randomly
from the raw images after pre-processing (see previous section). Half of the
training patches were generated from the raw images, and the other half from
augmented images. Validation data were generated via a 90/10 train/test
split, and the training and validation loss were monitored to rule out
overfitting.

A least absolute deviation loss function (L1) and different multiscale
SSIM loss functions were used for the training [LSSIM (M=1), L3S-SSIM
(M=3), L5S-SSIM (M=5)]. For an L3S-SSIM, the weights were set to 0.2096,
0.4659 and 0.3245, and for a L5S-SSIM, the size for the Gaussian filter was
set to 7, which is the maximum possible filter size for the selected patch
size; otherwise the suggested settings by Wang et al. (2003) were used.

The settings that were applied for the L2L training are shown in Table 2.
The same settings were used to train the network for N2N, but the training
data were generated from two sequential images of the respective antibody.
To train the CNN as a separator of two cellular markers (the SYTOX Green
stain and a CD44 antibody) in superposed immunofluorescence images, the
CSBDeep Framework was trained with two channel images, where the input
consisted of the superposed image in both channels, and the separately
acquired images of SYTOX and CD44 as the output channels (see Table 2,
right).

To further evaluate L2L, repeated eightfold or tenfold cross validations
were conducted on the datasets using the settings outlined in Table 3. The
selection of the raw image pairs from the total dataset for each cross
validation and the fold allocation were conducted randomly in Python. The
image pairs for each training were generated as described above, including
the pre-processing, and disabling the train/test split in the CSBDeep
Framework. The relative change of the NRMSE and 5S-SSIM indices were
calculated between input/benchmark and prediction/benchmark for the test
images of each fold, deriving an average for each cross validation (Fig. 5).

Training the CycleGAN
The implementation of a CycleGAN in Pytorch was downloaded from
GitHub and, if not stated otherwise, trained with the default parameters
(https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) (Zhu et al.,
2017). The CycleGAN was trained with unaligned images of the
actin, tubulin, caveolae and PXN datasets that were pre-processed as
outlined in the previous sections (see also Table 2), using a least squares
GAN with a ResNet-9 generator architecture and a 70×70 PatchGAN
discriminator architecture. Training was conducted with a batch size of 4, an
epoch number of 4/10 (3/9 with linear decay of the learning rate) for the
PXN/other dataset(s) and a scaling factor of 0.0005 for the network
initialization.

Image processing and analysis
Image processing and analysis was conducted in Python using the following
functions/libraries in default, if not stated otherwise. To compare L2L with
classical image processing methods (Fig. S3, Table S1), the following steps
were undertaken for images of actin/tubulin/caveolae/PXN: Gaussian filters
were applied with a sigma of 2/2/3/2 using ndimage.gaussian_filter in scipy
(Virtanen et al., 2020); for rolling-ball background subtraction,
subtract_background_rolling_ball from https://github.com/mbalatsko/
opencv-rolling-ball was used with a radius of 20/10/5/5; top-hat filters
were applied with a filter size of 11/25/13/17; and contrast limited adaptive
histogram equalization (CLAHE) was conducted with a grid size of 11/7/7/
7, using getStructuringElement(cv2.MORPH_RECT) or createCLAHE,
respectively, from OpenCV (Bradski, 2000).

The FWHM was derived from 20 randomly selected line profiles across
single microtubules in images of tubulin, by averaging the line profile across
20 pixels and determining the Gaussian fit with scipy (Virtanen et al., 2020)
(Fig. S4C).

To generate distance maps or binarised images (Fig. S8), the following
pre-processing steps were undertaken using above mentioned functions: for
images of actin, a rolling-ball background subtraction (radius=10), a top-hat
filter (filter size=7) and CLAHE (tile size 11) were applied; for images of
tubulin, a rolling-ball background subtraction (radius=10) and a top-hat
filter (filter size=11) were applied; for images of caveolae, a Gaussian filter
(sigma=0.75) and a rolling-ball background subtraction (radius=5) were
applied; and for images of PXN, a rolling-ball background subtraction
(radius=5) was applied. Lastly, objects below a size of 20 pixels (caveolae)/
50 pixels (all else) were removed. Binary images were generated using the
75th/60th/93th/90th percentile as threshold for images of actin/tubulin/
caveolae/PXN. Distance maps were generated using scipy (Virtanen et al.,
2020).
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