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ABSTRACT
Target of rapamycin (TOR) is a serine/threonine protein kinase
conserved in most eukaryote organisms. TOR assembles into two
multiprotein complexes (TORC1 and TORC2), which function as
regulators of cellular growth and homeostasis by serving as direct
transducers of extracellular biotic and abiotic signals, and, through
their participation in intrinsic feedback loops, respectively. TORC1,
the better-studied complex, is mainly involved in cell volume
homeostasis through regulating accumulation of proteins and other
macromolecules, while the functions of the lesser-studied TORC2 are

only now starting to emerge. In this Cell Science at a Glance article
and accompanying poster, we aim to highlight recent advances in our
understanding of TORC2 signalling, particularly those derived from
studies in yeast wherein TORC2 has emerged as a major regulator of
cell surface homeostasis.
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Introduction
Constant change of the environment is a threat to the maintenance of
metabolic homeostasis and requires all organisms to adapt in order
to survive and prosper. To these ends, organisms have evolved
finely tuned regulatory mechanisms allowing for growth in
favourable conditions, while enabling survival and restraint of
anabolic processes upon stressful conditions. In eukaryotes, much
of this regulation relies on the large target of rapamycin (TOR)
protein kinase. TOR assembles into two, highly conserved,
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multiprotein TOR complexes known as TORC1 and TORC2
(Loewith et al., 2002; Kim et al., 2002; Hara et al., 2002; Wedaman
et al., 2003; Jacinto et al., 2004; Sarbassov et al., 2004; Van Dam
et al., 2011; Tatebe and Shiozaki, 2017). These complexes are
broadly considered to be major regulators of cellular growth and
serve as direct transducers of extracellular biotic and abiotic
signals. In addition to this traditional view, there is growing
evidence that these complexes also act in feedback loops to
mediate various aspects of cellular and organismal homeostasis
(Eltschinger and Loewith, 2016). In accordance with this central
function, mammalian TOR (mTOR, also known as mechanistic
target of rapamycin) is implicated in an increasing number of
different human diseases, and has been a validated drug target
since the macrolide rapamycin was first approved as an
immunosuppressant more than 20 years ago (Liko and Hall,
2015). Given their central role in growth regulation, in addition to
their clinical relevance, studies aimed at understanding how the
TOR complexes are themselves regulated and the plethora of
growth-related processes they control, have been, and continue to
be, of high priority.
Despite sharing general architectural features, TORC1 and

TORC2 are spatially and functionally distinct (Eltschinger and
Loewith, 2016; Loewith and Hall, 2011; Loewith et al., 2002;
Wedaman et al., 2003). In yeast, TORC1, which localizes to
vacuolar and/or endosomal membranes (Hatakeyama and De
Virgilio, 2019; Berchtold and Walther, 2009; Sturgill et al.,
2008), contains two copies of either Tor1 or Tor2 (orthologues
of the single mTOR in mammals) and additionally two copies each
of lethal with Sec13 number 8 (Lst8; mLst8 in mammals),
kontroller of growth 1 (Kog1; Raptor in mammals) and TOR
complex one protein of 89 kDa (Tco89; no reported mammalian
orthologue). In contrast, TORC2 localizes to puncta at the plasma
membrane (Berchtold and Walther, 2009). This complex is built
exclusively on a dimer of Tor2 together with two copies each of
Lst8, adheres voraciously to Tor2 number 1 (Avo1; mSin1, also
known as MAPKAP1, in mammals), Avo2 (no reported
mammalian orthologue), Avo3 (Rictor in mammals) and binding
partner of Tor2 of 61 kDa (Bit61) and/or its paralog Bit2 (Protor1
or Protor2, also known as PRR5 and PRR5L, in mammals; see
poster).
The Tor1 or Tor2 subunit in TORC1, as well as mTOR in

mTORC1, can be bound by rapamycin, resulting in a loss of
phosphorylation of TORC1 (mTORC1) substrates. In contrast, Tor2
(mTOR) in TORC2 (mTORC2) cannot be bound by rapamycin and
the activities of these complexes are therefore unaffected by acute
rapamycin treatment. Correspondingly, rapamycin has been
instrumental in the dissection of TORC1 (mTORC1) signalling,
whereas the lack of an equivalent inhibitor has considerably
hampered the characterization of TORC2 (mTORC2) signalling. To
remedy this, chemical-genetic approaches that enable the acute and
specific inhibition of TORC2 in the model eukaryote Saccharomyces
cerevisiae have recently been developed – the fruits of some of these
labours are presented below.
Rather than mapping an exhaustive network of TORC2-related

pathways as recently detailed elsewhere (Roelants et al., 2017), this
Cell Science at a Glance article and accompanying poster aim to
highlight novel key concepts in the field, particularly those derived
from studies in yeast wherein TORC2 has emerged as a major
regulator of plasmamembrane (PM) homeostasis. In this regard, this
short review complements a recent Cell Science at a Glance article
on ‘Nutrient regulation of mTORC1 at a glance’ (Condon and
Sabatini, 2019).

TORC2 structure
Low-resolution (Gaubitz et al., 2015) and moderate-resolution
structures of yeast and mammalian TORC2 (Karuppasamy et al.,
2017; Stuttfeld et al., 2018; Chen et al., 2018) have been published
in the past few years, providing insights into the function of its
various subunits. Comparison with TORC1 structures (Aylett et al.,
2016; Yang et al., 2016; 2017; Chao and Avruch, 2019) (see poster),
shows that the two complexes share a common architecture of a 3D
rhombohedron that is nucleated around a Tor–Lst8 core dimer that
delineates a central cavity of unknown function. This cavity is much
larger in mTORC1 compared to mTORC2. Avo3 (Rictor), the
TORC2-defining subunit, binds to the HEAT repeats in TOR that
are also involved in TOR dimerization. Kog1 (Raptor), the TORC1-
defining subunit occupies the same space in mTORC1, explaining
the mutual exclusivity of these two proteins in their respective TOR
complex (Karuppasamy et al., 2017; Chen et al., 2018; Stuttfeld
et al., 2018). Avo3 has an important scaffolding function since its
depletion triggers the disassembly of TORC2 (Wullschleger et al.,
2005). It also contributes to the PM localization of TORC2
(Martinez Marshall et al., 2019). Avo1 possesses a PH domain that
is able to bind various phosphoinositides and has been reported to
tether TORC2 to the PM (Berchtold and Walther, 2009). The
conserved-region-in-the-middle (CRIM) domain of Avo1, although
mobile, and thus poorly resolved in EM images, can be extensively
cross-linked to Lst8 in chemical crosslinking experiments (Gaubitz
et al., 2015), positioning it in proximity to the TORC2 active site
cleft (Karuppasamy et al., 2017). These unique features are
consistent with a role for Avo1 in coupling an appropriate PM
localization to substrate recruitment and signalling output of the
complex. Higher-resolution TORC2 structures are desired as these
would help elucidate the functions of the enigmatic Bit61 and Bit2
(Protor) subunits and potentially the various orientations of Avo1/
mSin1. Nevertheless, the current structures have been informative,
not only to visualize overall architecture but also to design of
TORC2 inhibitors.

Chemical-genetic tools to acutely inhibit TORC2 signalling
Upon its cell entry, rapamycin first forms a complex with the proline
isomerase FKBP12 (also known as Fpr1) and subsequently engages
with the FKBP12-rapamycin binding (FRB) domain of Tor; this
inhibits downstream signalling by restricting access of substrate to
the active sites (Yang et al., 2013). Missense mutation leading to an
amino acid substitution in the FRB domain (e.g. in the TOR1-1
allele in which Ser1972 is changed to Arg), prevents rapamycin
binding and confers dominant resistance to the drug (Kunz et al.,
1993; Helliwell et al., 1994; Heitman et al., 1991; Cafferkey et al.,
1993). In TORC2, a density attributed to Avo3 occludes the FRB
domain of Tor2, explaining why this complex is insensitive to
rapamycin (Gaubitz et al., 2015; Karuppasamy et al., 2017).
Strikingly, C-terminal truncation of Avo3 yields a TORC2 variant
that is sensitive to rapamycin. Combining this Avo3 truncation with
the rapamycin-resistant TOR1-1 allele yields a yeast strain in which
only TORC2 activity is acutely inhibited by rapamycin (Gaubitz
et al., 2015). Alternatively, but still exploiting the fact that Tor1 can
nucleate only TORC1 and not TORC2, in yeast cells expressing
Tor1 with an amino acid substitution in the ATP-binding pocket of
Tor1, Met2282 to Thr, binding of ATP-competitive inhibitors, such
as NVP-BHS345 or CMB4563, is prevented, allowing for the
specific inhibition of TORC2 with these molecules (Rispal et al.,
2015; Bourgoint et al., 2018). These orthogonal approaches to
specifically and acutely inhibit TORC2 promise to be useful tools to
further characterize TORC2 signalling in yeast.
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TORC2 is a key regulator of PM tension
The punctate nanodomains in which TORC2 resides are called
plasma membrane compartments containing TORC2 (MCTs;
Berchtold and Walther, 2009). Coherent with its subcellular
localization, and as comprehensively reviewed recently (Roelants
et al., 2017), TORC2, through activation of its main substrates, the
protein kinase A, G and C (AGC)-family kinase Ypk1 and its
paralog Ypk2 (Kamada et al., 2005; Niles and Powers, 2012;
Leskoske et al., 2017), regulates a growing list of downstream
effectors, the ensemble of which control virtually every aspect of
PM homeostasis. This list includes processes such as sphingolipid
biosynthesis (Aronova et al., 2008; Beeler et al., 1998; Muir et al.,
2014; Roelants et al., 2011) sterol recycling (Roelants et al., 2017),
membrane trafficking – of which endocytosis is the best
characterized (Alvaro et al., 2016; Roelants et al., 2017;
Bourgoint et al., 2018; Riggi et al., 2019), PM bilayer asymmetry
(Roelants et al., 2010) and osmoregulation (Lee et al., 2012; Muir
et al., 2015) (see poster; Roelants et al., 2017). Collectively, these
distal effectors of TORC2 contribute to the maintenance of a
particular property of the PM, its line tension.
Concrete evidence for TORC2-mediated regulation of PM

tension was recently enabled through the development of a novel
mechanosensitive probe, named Flipper-TR® (Riggi et al., 2018).
Flipper-TR® is a lipophilic small-molecule that intercalates into the
PM of living cells where its fluorescent lifetime reports on relative
changes in PM tension (Colom et al., 2018). Using this probe, we
demonstrated that specific inhibition of TORC2 through the
rapamycin-based chemical-genetic approach described above
leads to a dramatic increase in PM tension, whereas
hyperactivation of downstream signalling, in cells expressing a
hyperactive allele of YPK1, results in constitutively low membrane
tension (Riggi et al., 2018). PM tension homeostasis is incredibly
important for all eukaryote cells, with the most obvious example of
this importance being cell lysis if tension becomes too high.
However, appropriate tension must also be maintained for other
reasons. For instance, too much tension will block membrane-
deforming events such as endocytosis (Riggi et al., 2019), whereas
too little tension will not only impact membrane trafficking, but also
all the enzymatic and signalling activities of the plethora of
membrane-associated proteins that require defined membrane
properties for their optimal function. The conservation of such a
role of mTORC2 in membrane tension homeostasis in larger
eukaryotes is anticipated, but has not yet been explicitly
demonstrated (see below).
The role of TORC2 in PM tension homeostasis was not initially

obvious. The first described output of TORC2 signalling was the
cell-cycle-dependent polarization of the actin cytoskeleton, which
directs the secretory apparatus towards the bud (Schmidt et al.,
1996), thus enabling its increase in mass, volume and surface area.
TORC2 is linked to the actin cytoskeleton through multiple
crosstalks with the cell wall integrity (CWI) MAPK pathway,
both directly as TORC2 phosphorylates the sole protein kinase C
(PKC) orthologue in yeast, Pkc1 (Levin et al., 1990; Nomura and
Inoue, 2015), and, indirectly through the Ypk1-mediated inhibition of
the flippase kinase paralogs (Fpk1 and Fpk2) and the downstream
aminophospholipid flippase-dependent control of phosphatidylserine
distribution at the PM (Roelants et al., 2010). In turn, this influences
the localization and activity of the small GTPase Rho1 and/or of its
guanine-nucleotide exchange factor (GEF) Rom2 (Hatakeyama et al.,
2017). This signalling is bidirectional, as Slt2, the MAPK of the CWI
pathway, can reciprocally phosphorylate the Avo2 subunit of TORC2,
resulting in TORC2 inhibition (Leskoske et al., 2018) (see poster).

Generally speaking, it is becoming more and more difficult to
envision TORC2 signalling independently of the global cellular
signalling landscape. Indeed, a co-requisite for TORC2-mediated
activation of Ypk1 is the phosphorylation of its activation loop by
one of the Pkh paralogs, Pkh1 or Pkh2 (Roelants et al., 2002). As
these kinases are regulated by ceramides (Friant et al., 2001; Luo
et al., 2008), this constitutes an additional entry point for
sphingolipid-derived signals into TORC2 downstream signalling
(see poster). Such an intricate network of connected and partially
redundant pathways ensures an efficient and coordinated cellular
response to changes in both environmental and internal conditions;
but, what are the molecular events that directly regulate TORC2?

TORC2 is itself regulated by PM tension
It has recently become clear that TORC2 activity not only regulates
PM tension, but is itself acutely regulated by PM tension; increased
tension – confirmed with the Flipper-TR® probe – activates
TORC2, while decreased tension leads to TORC2 inhibition
(Berchtold et al., 2012; Riggi et al., 2018). This demonstrates that
TORC2 guards against changes in PM tension by operating in a
homeostatic feedback loop. But how are biophysical changes in
membrane tension converted into biochemical signals that regulate
TORC2? Part of the answer to this question may be found in the
several direct TORC2 regulators that have been proposed in recent
years and which are discussed below. These include the BAR- and
PH-domain-containing paralogs Slm1 and Slm2 (Audhya et al.,
2004), the phosphoinositide phosphatidylinositol (4,5)-bisphosphate
[PI(4,5)P2] and reactive oxygen species (ROS), as well as several
different small GTPases (Saci et al., 2011; Hatano et al., 2015; Senoo
et al., 2019; Locke and Thorner, 2019b).

Slm1 and Slm2
During exponential growth, Slm1 and Slm2 are approximately
equally partitioned between MCTs and invaginated domains of the
PM called eisosomes. An acute increase in PM tension, triggered by
various orthogonal approaches, such as hypotonic shock, blockage
of sphingolipid biosynthesis or physical pulling of the PM, triggers
a delocalization of Slm1 and/or Slm2 from eisosomes and an
activation of TORC2 signalling, albeit through a still poorly
characterized mechanism (Berchtold et al., 2012) (see poster). A
role for the Slm proteins in TORC2 function, and in particular in
Ypk1 recruitment to the PM, has also been independently reported
by others (Niles and Powers, 2012). Eisosomes may represent a
fungal equivalent to caveolae, analogous PM invaginations in
mammalian cells, which have been postulated to function as
tension-sensitive membrane reservoirs (Simunovic et al., 2015;
Parton, 2018; Zahumensky and Malinsky, 2019). The putative
F-BAR domain of Slm1 and/or Slm2 may sense membrane
curvature at the eisosome, which would be diminished or lost
upon increased tension of the PM; this could potentially trigger the
dissociation of Slm1 and/or Slm2 from eisosomes and their
subsequent accumulation in MCTs and activation of TORC2.
Although unproven, this model has some support from studies in
Schizosaccharomyces pombe spheroplasts, where eisosome-
associated Pil1 clusters have been observed to disassemble upon
hypo-osmotic shock (Kabeche et al., 2015).

PI(4,5)P2
Surprisingly, loss of membrane tension can also be sensed through a
different mechanism that is independent of Slm1 and/or Slm2
(Riggi et al., 2018). Acute loss of membrane tension that is triggered
by hypertonic shock or treatment with palmitoylcarnitine, a human
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metabolite (absent from yeast), which integrates into the yeast PM,
causes a spontaneous phase separation of pre-existing PI(4,5)P2 into
domains that sequester and inactivate TORC2 (Riggi et al., 2018)
(see poster). Why TORC2 that is sequestered into these PI(4,5)P2-
enriched domains is inactive remains to be determined, but this
could be related to the inactive polymer TORC1 has been shown to
form upon nutrient depletion (Prouteau et al., 2017). It is important
to note that PI(4,5)P2 is thus both necessary for TORC2 localization
to the PM (Berchtold and Walther, 2009) as well as for its
inactivation in response to a drop in PM tension (Riggi et al., 2018).
Based on the observation that deletion of the PH domain of Avo1

is lethal, but can be rescued by its replacement with another PM-
targeting domain (the CAAX box), Avo1 has been generally
assumed to mediate the anchoring of TORC2 to the PM though an
interaction with PI(4,5)P2 (Berchtold andWalther, 2009). However,
a recent study proposes a different model, in which the N-terminal
armadillo repeats of Avo3 anchor TORC2 to the PM independently
of PI(4,5)P2, either through a direct interaction with negatively
charged head groups of PM phospholipids, or indirectly through a
yet unidentified PM protein (Martinez-Marshall et al., 2019). This
work confirmed the importance of PI(4,5)P2 for TORC2 activity,
possibly through eisosome formation and/or the recruitment of
Slm1 and/or Slm2 to the PM (Martinez-Mashall et al., 2019).
Alternatively, PI(4,5)P2 could act as a positive allosteric activator by
alleviating a potential occlusion of the active site of Tor2 by the PH
domain of Avo1 (Liu et al., 2015; Yuan and Guan, 2015). In
contrast, as noted above, a local accumulation of PI(4,5)P2, which
occurs upon a decrease in PM tension, has been shown to correlate
with TORC2 inhibition (Riggi et al., 2018). Although details remain
to be clarified, these results suggest a new role for PI(4,5)P2 as an
allosteric regulator of TORC2, thereby integrating various cues at
the PM and acting either in a positive or negative manner,
depending on the global input. This is intriguing in light of the fact
that TOR itself is the founding member of the atypical
phosphatidylinositol kinase related kinases (PIKKs) family,
protein kinases that possess a curious resemblance to lipid kinases
(Keith and Schreiber, 1995). Perhaps, during evolution, PIKKs
stopped using phosphoinositides as substrates and instead began to
use them as allosteric regulators.
Collectively, the studies demonstrating that TORC2 functions in a

feedback loop to maintain PM tension homeostasis call to attention a
broader, often underexplored issue, that is, the importance of physical
cues in cell signalling. The discovery of the mode-of-action of
palmitoylcarnitine, which induces a decrease in PM tension through
intercalation within the bilayer, further suggests that the PM, and
perhaps other membranes as well, may be targeted by small
molecules for therapeutic gain (Loewith et al., 2019).

ROS
As is the case for PM tension, TORC2 may also function in a
feedback loop to regulate redox homeostasis. TORC2, via Ypk1,
regulates the generation of ROS through two effector branches,
which, respectively, lead to the vacuole via Fpk1 and Fpk2, and
mitochondria via protein kinase A (PKA) (Niles et al., 2014) (see
poster). In turn, ROS levels appear to regulate the localization of
Slm1 and Slm2 and, consequently, TORC2 activity (Niles et al.,
2014; Niles and Powers, 2014). Tracking the targets of ROS
signalling is notoriously difficult, but some progress has been made.
For example, TORC2-mediated regulation of mitochondrial
oxidative stress modulates calcineurin activity through the Ca2+

channel regulatory protein Mid1 (Vlahakis et al., 2016).
Calcineurin, in turn, counters TORC2 signalling (see poster) by

dephosphorylating the Ypk1-mediated phosphorylation of the
ceramide synthase enzymes Lac1 and Lag1 (Aronova et al., 2008)
and by dephosphorylating Slm1 and Slm2 (Bultynck et al., 2006;
Mulet et al., 2006; Tabuchi et al., 2006). TORC2-mediated
maintenance of redox homeostasis, and its potential conservation
in larger eukaryotes, are intriguing topics for future studies.

Glucose and GTPases
Nutrient signalling to TORC1 is now well established, and recent
studies suggest that TORC2 signalling is also responsive to
nutrients, in particular glucose. Indeed, cells compromised in
TORC2 signalling cannot properly couple their growth rate to
nutrient availability (Lucena et al., 2018). Probing this
phenomenon, the Kellogg group has described roles for Elm1, the
yeast homolog of the Lkb1 tumour suppressor kinase (also known
as STK11), and type 2A protein phosphatases in coupling carbon-
source cues to TORC2 activity (Alcaide-Gavilán et al., 2018).
Although the molecular details remain to be discerned, this
signalling pathway appears to provide a mechanism to link
growth rate to membrane expansion and cell size.

TORC2 activity in the fission yeast S. pombe also appears to be
regulated by glucose-derived signals (Hatano et al., 2015). In this
case, glucose signalling to TORC2 is mediated by the Rab family
GTPase Rhy1. In the presence of glucose, Rhy1 is loaded with GTP
and binds to TORC2, which enhances TORC2-mediated
phosphorylation of the Ypk1 ortholog Gad8 (Hatano et al., 2015).
Subsequently, Rab5 in budding yeast was also found to activate
TORC2, curiously, as part of a feed-forward pathway for sustained
upregulation of TORC2–Ypk1 signalling (Locke and Thorner,
2019a). Specifically, Ypk1 phosphorylates and activates Muk1, one
of the two GEFs for Rab5, which in turn acts as an activator of
TORC2 (see poster). In this work, an elegant model is suggested, in
which Ypk1 acts as a coincidence detector to localize a maximal
activity of TORC2 in close vicinity to early endosomes, both
sensing and modulating the rate of vesicle trafficking (Locke and
Thorner, 2019a).

How Rab5 GTPases activate TORC2 will be an important
question for future studies. Interestingly, Rab5 is not the only
GTPase that interacts with TORC2. The Dictyostelium discoideum
Avo1 ortholog, RIP3, was first discovered as a Ras-interacting
protein (Lee et al., 1999), and the interaction of Ras-GTP with
TORC2 is important for chemoattractant-induced cell migration
(Lee et al., 2005; Senoo et al., 2019). Ras has also been found to
activate TORC2 in mammals and this activation contributes to Ras-
dependent neoplasia (Kovalski et al., 2019). Finally, Rac1 has also
been reported to control cell growth by regulating the activities of
both mTORC1 and mTORC2 (Saci et al., 2011). Indeed, given the
well-documented regulation of mTORC1 by Rag and Rheb
GTPases (Durán and Hall, 2012), it perhaps should not come as a
surprise that TORC2 is similarly regulated by multiple GTPases.

And in metazoans?
TOR signalling is robustly conserved from yeast to humans;
however, our knowledge of mTORC2 still presents some gaps. In
particular, the subcellular localization of mTORC2 is heavily
debated – it has been reported to localize to the PM, lysosomes, ER,
mitochondria, ER–mitochondria membrane junctions and
ribosomes (Betz and Hall, 2013; Arias et al., 2015; Zinzalla et al.,
2011; Boulbés et al., 2011; Liu et al., 2015). An activity-based
probe recently located active mTORC2 at the PM, and to a lesser
extent at mitochondria and a subset of endosomes (Ebner et al.,
2017). Not taking into account technical limitations, differences
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between cell types or responses to various upstream cues could at
least partially account for the reported discrepancies.
A localization of mTORC2 to the PM would be consistent with a

conserved role in the maintenance of PM homeostasis, and indeed,
some data support the idea that mTORC2 activity is regulated by
PM tension (Kippenberger et al., 2005). Membrane stretch has been
reported to trigger mTORC2-dependent phosphorylation of Akt,
and, in striking resemblance to the role played by eisosomes in
yeast, stretch-mediated activation was shown to involve caveolae
(Sedding et al., 2005; Zhang et al., 2007). PM tension has
additionally been shown to act through phospholipase D2 (PLD2)
and mTORC2 to limit actin network assembly during neutrophil
migration (Diz-Muñoz et al., 2016). Collectively, these
observations support the notion that mTORC2, like yeast TORC2,
plays a role in PM homeostasis, a hypothesis to be confirmed or
refuted through future studies.

Conclusions and perspectives
Classically, mTORC2 is thought to function primarily as an effector
of phosphoinositide 3-kinase (PI3K) signalling, which is activated
by growth factors such as insulin (Sarbassov et al., 2005; Guertin
et al., 2006). However, such signalling pathways are absent in lower
eukaryotes, suggesting that TORC2 possesses a more primordial
function. From recent work in yeast elaborated above, we would
argue that this function would be to maintain PM homeostasis.
Genetic studies have implicated mTORC2 in a number of human

pathologies, ranging from diabetes to cancer (Liu and Sabatini,
2020), for example, as a Ras effector, as mentioned above (Kovalski
et al., 2019). Consequently, finding drugs to inhibit or modulate
mTORC2 activity is of major interest. Interestingly, a molecule that
blocks the incorporation of Rictor into mTORC2 was recently
identified and this drug was shown to have potential in pre-clinical
glioblastoma models (Benavides-Serrato et al., 2017). It will be
exciting to see if this molecule, or derivatives thereof, live up to this
initial promise. Alternatively, our work with palmitoylcarnitine
suggests that small molecules may be developed to target the
biophysical properties of the PM as a means to modulate mTORC2
activity for therapeutic gain (Loewith et al., 2019). It should be
noted, however, that some studies have suggested that mTORC2
inhibition may present undesired consequences. For example,
chronic treatment with rapamycin, which ultimately prevents
assembly of nascent mTOR into mTORC2, was associated with
impaired glucose tolerance in mice due to loss of mTORC2 activity
(Lamming et al., 2012, 2014). Clearly, more needs to be learned
about mTORC2 signalling before attempts are made to target it for
therapeutic gain.
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