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ABSTRACT

Bacterial cell division is initiated by the midcell assembly of polymers
of the tubulin-like GTPase FtsZ. The FtsZ ring (Z-ring) is a
discontinuous structure made of dynamic patches of FtsZ that
undergo treadmilling motion. Roughly a dozen additional essential
proteins are recruited to the division site by the dynamic Z-ring
scaffold and subsequently activate cell wall synthesis to drive
cell envelope constriction during division. In this Cell Science at a
Glance article and the accompanying poster, we summarize our
understanding of the assembly and activation of the bacterial cell
division machinery. We introduce polymerization properties of FtsZ
and discuss our current knowledge of divisome assembly and
activation. We further highlight the intimate relationship between
the structure and dynamics of FtsZ and the movement and activity
of cell wall synthases at the division site, before concluding with
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a perspective on the most important open questions on bacterial
cell division.
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Introduction

When observed by time-lapse microscopy, bacterial cell division
looks very simple. Start with one bacterium; end up with two. As
with most biological processes, however, things are more
complicated under the surface. To initiate division, bacteria need
to accomplish at least three tasks: mark the division site, recruit the
division machinery (the divisome), and activate cell wall synthesis
to drive constriction (see poster). Subsequent events, including
membrane fusion and cell wall hydrolysis, are required for
compartmentalization and physical separation of the cell into two
daughters. This Cell Science at a Glance article and poster will focus
on the initial stages of divisome assembly and constriction
activation. To mark the division plane, almost all bacteria use a
tubulin-like GTPase called FtsZ that polymerizes along the
circumference of the cytoplasmic membrane at the future division
site (Lowe and Amos, 1998; Bi and Lutkenhaus, 1991). Use of
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fluorescently labeled FtsZ has shown that FtsZ forms a ring-like
structure called the Z-ring (Ma et al., 1996) that directly and
indirectly recruits other division proteins to the midcell region
(Adams and Errington, 2009). The Z-ring is a moving target,
however, as recent studies have demonstrated that patches of FtsZ
filaments treadmill at the division site and direct the dynamic
movement of other division proteins (Bisson-Filho et al., 2017,
Monteiro et al., 2018; Perez et al., 2019; Yang et al., 2017).

Although division begins with FtsZ, and there is in vitro evidence
that FtsZ can deform membranes, the force generated by FtsZ alone
is insufficient to initiate constriction. Instead, the driving force for
constriction is thought to be cell wall synthesis (Coltharp et al., 2016;
Daley et al., 2016). The peptidoglycan (PG) cell wall in bacteria
comprises a meshwork of glycan strands crosslinked together
by short peptides, and provides shape and protection against
turgor pressure (Typas et al., 2011). The enzymes that polymerize
the glycan strands are called glycosyltransferases (GTases),
and the enzymes that crosslink the peptide side chains are
called transpeptidases (TPases). During division, FtsW and a
monofunctional penicillin-binding protein (Ftsl) are the primary
GTase and TPase, respectively (Adam et al., 1997; Tkeda et al., 1989;
Spratt, 1975; Taguchi et al., 2019). However, localization of these
enzymes to the division plane is not sufficient for PG synthesis and
constriction. Instead, these enzymes require activating signals to
trigger constriction (Lariviere etal., 2019; Rohs et al., 2018; Taguchi
et al., 2019; Tsang and Bernhardt, 2015).

This Cell Science at a Glance article will synthesize our current
understanding of the assembly, activation and dynamics of the
bacterial cytokinetic machinery for the initial stages of cell division.
We will pay particular attention to recent advances in understanding
the links between the FtsZ cytoskeleton, and the activity and
dynamics of the PG synthases that drive constriction.

FtsZ - the master regulator of bacterial division

FtsZ has three conserved domains: a polymerizing GTPase domain,
a C-terminal conserved (CTC) peptide through which membrane
anchors bind, and a disordered C-terminal linker (CTL) that
connects the GTPase domain to the CTC (Vaughan et al., 2004) (see
poster and Box 1). In addition, some organisms have a short
extension at the extreme C-terminus of FtsZ called the C-terminal
variable (CTV) region (Buske and Levin, 2012).

The GTPase domain of FtsZ is required for polymerization
and, like tubulin, the nucleotide-bound state influences the
polymerization dynamics and structure of FtsZ filaments
(Bramhill and Thompson, 1994; Erickson et al., 1996; Mukherjee
and Lutkenhaus, 1994). In the presence of GTP and divalent cations,
FtsZ spontaneously assembles into polymers in vitro (Bramhill and
Thompson, 1994; Erickson et al., 1996; Mukherjee and
Lutkenhaus, 1994). Once in a filament, FtsZ is competent to
hydrolyze GTP, and nucleotide hydrolysis serves to favor
depolymerization and to take the FtsZ filament from a more
straight to a more curved conformation (Erickson et al., 1996) (see
poster). Mutations or chemical perturbations that slow the GTP
hydrolysis rate of FtsZ stabilize the polymer in vitro and in cells; as a
consequence, the completion of constriction is slowed or prevented
(Bisson-Filho et al., 2017; Monteiro et al., 2018; Perez et al., 2019;
Stricker et al., 2002; Yang et al., 2017). FtsZ assembly in vitro
occurs when it is above a critical concentration of ~1 uM, and
assembly is cooperative (Mukherjee and Lutkenhaus, 1998, 1999;
Romberg et al., 2001). Recent structural work has demonstrated that
the FtsZ monomer undergoes a conformational change from closed
to open upon polymerization, which provides an explanation for the

Box 1. Contribution of the C-terminal linker of FtsZ to
polymer structure, dynamics and function

Although the GTPase domain is the primary determinant of FtsZ
assembly, the C-terminus of FtsZ has recently been demonstrated to
impact FtsZ function and polymerization. The CTL is a disordered region
that connects the GTPase domain and the CTC (see poster) and is highly
variable in sequence and length across species (Vaughan et al., 2004).
E. coliand B. subtilis are each tolerant of changes in the CTL sequence,
but it must be disordered and close in length to the native CTL to function
in division, implying a role as a flexible link to the membrane (Buske and
Levin, 2013; Gardner et al., 2013). C. crescentus cells that produce FtsZ
lacking its CTL (ACTL) exhibit dominant lethal cell bulging and lysis
(Sundararajan et al., 2015), and B. subtilis cells producing ACTL rapidly
lyse (Buske and Levin, 2013), suggesting downstream effects on PG
metabolism. FtsZ variants bearing alterations to or deletion of the CTL
have altered polymerization properties in vitro and altered filament
superstructure in cells. C. crescentus ACTL forms hyperstable filament
bundles in vitro and large non-ring assemblies in cells, implicating the
CTL in regulating lateral interactions and polymer stability (Sundararajan
and Goley, 2017; Sundararajan et al., 2015, 2018; Barrows et al., 2020).
B. subtilis ACTL forms large extended bundles in cells, and in vitro the
CTL impacts B. subtilis FtsZ interfilament spacing, suggesting a
conserved role for the CTL in impacting FtsZ polymer superstructure
(Buske and Levin, 2013; Huecas et al., 2017). The phenotypic outcomes
of deleting or altering the CTL implicate this domain in regulation of PG
metabolism (Buske and Levin, 2013; Gardner et al., 2013; Sundararajan
etal., 2015). In addition to the CTL, the CTV of B. subtilis FtsZ is sufficient
to induce lateral interactions in vitro that are important for formation of the
Z-ring and, therefore, division in that organism (Buske and Levin, 2012).

cooperative nature of FtsZ polymerization and the ability of
filaments to treadmill (Wagstaff et al., 2017) (see poster).

In vitro under physiological pH and salt conditions, FtsZ forms
mostly single protofilaments that are ~120-200 nm long (Erickson
et al.,, 2010; Romberg et al., 2001). Multiple FtsZ filaments can
associate laterally into thicker bundles in vitro depending on the
presence of crowding agents or binding partners, salt concentration
and pH (Erickson et al., 1996; Huang et al., 2013). However, the
structure(s) of FtsZ filaments in cells is not fully resolved. When
imaged by electron cryotomography in vivo, FtsZ filaments appear
to be of a width that reflects that of a single monomer, are ~100 nm
long and are at a stereotypical distance of ~16 nm from the
membrane (Li et al., 2007; Szwedziak et al., 2014; Yao et al., 2017).
Super-resolution light microscopy of labeled Z-rings highlights
loose filament clusters distributed around the division plane in a
discontinuous structure that extends ~50-100 nm radially into the
cell (Fu et al., 2010; Holden et al., 2014; Strauss et al., 2012).
Although bundling of FtsZ is reported under a variety of conditions
in vitro, thick bundles of FtsZ have not been observed in wild-type
bacteria, and induction of stable, large-scale bundling in vivo
can lead to detrimental phenotypic changes (Buske and Levin,
2013; Durand-Heredia et al., 2012; Sundararajan et al., 2015;
Barrows et al., 2020). However, mutation of residues that are
implicated in lateral interactions between FtsZ filaments disrupts
division, suggesting that transient lateral interactions are important
to division progression (Guan et al., 2018). The CTL that connects
the GTPase and CTC domain appears to have a major role in
modulating lateral interactions (see Box 1).

In addition to its intrinsic polymerization properties, FtsZ has a
host of interacting proteins that can modulate its assembly (Huang
et al., 2013). Importantly, these include inhibitors of FtsZ that
spatially and/or temporally regulate Z-ring assembly and proteins
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that contribute to formation of a focused Z-ring at the midcell region
(see poster). In most well-studied organisms, spatial regulation
of Z-ring assembly is primarily mediated by negative regulators of
FtsZ polymerization. The Min proteins function in Escherichia coli
(de Boer et al., 1989) and Bacillus subtilis (Levin et al.,
1992) to inhibit FtsZ polymerization near the cell poles, and a
functionally analogous protein called MipZ fulfills a similar
function in o-proteobacteria (Thanbichler and Shapiro, 2006;
Toro-Nahuelpan et al., 2019), with the ultimate result being the
accurate placement of the Z-ring at the midcell. Additional negative
(e.g. nucleoid occlusion factors; Bernhardt and De Boer, 2005; Wu
and Errington, 2004) or positive (e.g. Zaps; Durand-Heredia et al.,
2011, 2012; Gueiros-Filho and Losick, 2002; Marteyn et al., 2014)
regulators of FtsZ polymerization and organization serve with Min
proteins or MipZ to coordinate Z-ring assembly in time and space
(see poster). As FtsZ is studied in additional organisms, novel modes
ofregulation are being recognized — for example, the primary role of
positive regulation of Z-ring placement by PomX, PomY and PomZ
in Myxococcus xanthus (Schumacher et al., 2017) or by MapZ in
Streptococcus pneumoniae (Fleurie et al., 2014; Massidda et al.,
2014). Collectively, intrinsic and extrinsic factors promote the
nucleotide-dependent assembly of FtsZ into a dynamic Z-ring to
establish the future division site.

Assembly and activation of the divisome

Although central to the process, FtsZ is not the only protein required
for cell division; there are roughly a dozen conserved proteins that are
required at the midcell for constriction (see poster). Once the Z-ring
assembles, the remainder of the divisome is recruited in a roughly
sequential manner. In E. coli and B. subtilis, the process occurs
in a two-step fashion, with direct FtsZ interactors localizing first
and other division components localizing in a second step (Aarsman
et al., 2005; Gamba et al., 2009). In Caulobacter crescentus, cell
synchronization experiments enabled the classification of divisome
assembly into a series of seven functional modules (Goley et al.,
2011). Across bacteria, the earliest arrivals to the division plane help
to assemble a focused midcell Z-ring (Aarsman et al., 2005; Fleurie
etal.,2015; Gamba et al., 2009; Goley et al., 2011; Schumacheret al.,
2017). A subsequent wave (or waves) of protein recruitment brings
factors in as their functions are required. Divisome components that
localize just prior to initiation of constriction (FtsN in E. coli, FtsW in
C. crescentus and Mur] in Staphylococcus aureus) have been
proposed to trigger constriction through activation of cytokinetic cell
wall synthesis (Aarsman et al., 2005; Goley et al., 2011; Monteiro
et al., 2018) (see poster).

Simply localizing PG synthases to the midcell is not sufficient for
constriction to begin, which implies a requirement for regulatory
input into constriction activation. This makes sense, as improper
timing of constriction could have drastic consequences for the cell.
The GTPase FtsW requires its partner TPase Ftsl to act as a PG
polymerase in vitro, suggesting that it is inactive until engaged in a
complex (Taguchi et al., 2019). Moreover, the fully assembled
divisome in C. crescentus can be held in an inactive state by SidA or
DidA, small protein inhibitors of constriction that bind the late
divisome proteins FtsW and/or FtsN upon DNA damage (Modell
etal., 2011, 2014). Mutations in FtsW or FtsI that bypass inhibition
by SidA and DidA hyperactivate these PG synthases such that the
cells constrict faster than wild type (Lambert et al., 2018; Lariviere
et al., 2019; Modell et al., 2014). Similarly, hyperactivating
mutations in the divisome proteins FtsL and FtsB were described
in E. coli to cause premature initiation of constriction and/or cell
shortening (Liu et al, 2015; Tsang and Bernhardt, 2015).

Collectively, these observations imply the presence of inactive
and active states of the PG synthases that promote constriction.

The most advanced — but still incomplete — model for constriction
activation is derived from genetic studies in E. coli and includes a
number of broadly conserved divisome components. In this model,
the activating signal is proposed to initiate with FtsA, an actin
homolog and conserved membrane anchor for FtsZ. Specifically,
FtsA is thought to relay information about divisome assembly status
by converting from an ‘off” to an ‘on’ state through a mechanism
that may involve FtsA transitioning from polymeric to monomeric
state (Pichoff et al., 2012, 2015) (see poster). Although FtsA has
been demonstrated to polymerize in vitro (Krupka et al., 2017;
Szwedziak et al., 2012), its physiological polymerization state is not
clear. Regardless of the mechanism, FtsA is proposed to be in a
constriction activation pathway that includes FtsN and the complex
formed by FtsQ, FtsL and FtsB (FtsQLB) (Liu et al., 2015; Pichoff
etal., 2018). Variants of FtsA and FtsN identified in E. coli are also
able to bypass loss of an essential, but y-proteobacteria-specific,
membrane anchor for FtsZ called ZipA that is thought to modulate
interactions between FtsA, FtsZ and downstream signaling
proteins like FtsN (Geissler et al., 2003; Pichoff et al., 2012,
2015; Schoenemann et al., 2018) (see poster). FtsN, which contains
a sporulation-related repeat (SPOR) domain responsible for
recognizing denuded glycans (the result of amidase activity)
(Yahashiri et al., 2015), could direct the FtsW—FtsI PG synthetic
complex (FtsWI) to locations where new PG material should be
incorporated. FtsN has also been proposed through genetic studies to
relay the polymerization status of FtsA downstream to FtsQLB (Liu
etal.,2015; Pichoffetal., 2012; Tsang and Bernhardt, 2015). FtsQLB
is a multimeric complex that is genetically implicated in activating
FtsWI (Liu et al., 2015; Tsang and Bernhardt, 2015), though the
details of'its role in activation of FtsWI are unknown. Finally, FtsK,
a bifunctional protein involved in division and chromosome
segregation, is also genetically implicated in activation of
constriction through its N-terminal domain (Dubarry et al., 2010).
Such a role for FtsK could link chromosome segregation to PG
synthase activation to ensure DNA is not trapped as the cell
envelope constricts.

Although many of the proteins implicated in constriction activation
in E. coli are broadly conserved, the divisome has also diversified
across bacteria. This includes the incorporation of less broadly
conserved participants in constriction activation that are, nevertheless,
essential in their cognate organisms, such as ZipA in E. coli. In
C. crescentus, recent work identified an activating signal that
originates from a Z-ring-associated protein that is found only in o-
proteobacteria. In that organism, an essential, direct binding partner of
FtsZ called FzIA participates in activation of the downstream PG
synthases (Goley etal., 2010; Lariviere etal., 2018, 2019) (see poster).
Although fzI4 is normally essential for division, hyper-activating
mutations in fts W and/or fsI allow deletion of fzl4, indicating that the
essential function of FzIA is to activate FtsWI (Lambert et al., 2018;
Lariviere et al., 2019). Many of the proteins described in the E. coli
activation pathway are present in C. crescentus; it is therefore likely
that FzIA ultimately signals through FtsA, FtsK, FtsN and/or FtsQLB.
We suspect that other bacteria similarly modulate a conserved core
constriction activation pathway to suit their needs. Consistent with this
prediction, in Staphylococcus aureus the Murl lipid II flippase is
proposed to trigger constriction, and its recruitment to the division site
relies on the DivIB-DivIC—FtsL complex (the FtsQLB homologs in
this organism) (Monteiro et al., 2018). In summary, the initiation of
constriction during bacterial division requires assembly of the
polymeric FtsZ ring, sequential recruitment of other divisome
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proteins and a poorly understood constriction activation step that
promotes PG synthesis to drive constriction.

The dance of the divisome - dynamics of FtsZ and PG
synthases

Cell division is a dynamic process, with the shape of the cell
changing dramatically as constriction progresses. Perhaps
unsurprisingly, the components of the divisome are also highly
dynamic both before and during constriction. Early observations
using fluorescence recovery after photobleaching indicated that
FtsZ turns over rapidly within the Z-ring, with half-times of
recovery for fluorescently tagged FtsZ on the order of tens of
seconds (Anderson et al., 2004; Stricker et al., 2002). Subsequently,
work in several bacterial systems including E. coli (Yang et al.,
2017), B. subtilis (Bisson-Filho et al., 2017), S. aureus (Monteiro
et al., 2018) and S. pneumoniae (Perez et al., 2019) demonstrated
that FtsZ treadmills circumferentially around the division plane.
That is, FtsZ patches appear to move directionally around the
circumference of the cell, but individual monomers are stationary
for their lifetime within the patch (Bisson-Filho et al., 2017; Perez
et al., 2019; Yang et al., 2017). The apparent movement of FtsZ is
mediated by net addition of FtsZ to one end of each patch and net
loss from the other (see poster). The velocity of FtsZ treadmilling, at
~30 nm/s on average, is remarkably consistent across species and is
dependent on the GTPase activity of FtsZ (Bisson-Filho et al., 2017,
Perez et al., 2019; Yang et al., 2017). Diminished FtsZ GTPase
activity correlates with slower treadmilling speeds (Bisson-Filho
etal., 2017; Perez et al., 2019; Yang et al., 2017). Conversely, FtsZ
treadmilling is independent of PG synthesis; treatment of cells with
PG synthesis inhibitors had no effect on treadmilling velocity
(Bisson-Filho et al., 2017; Perez et al., 2019; Yang et al., 2017). At
least in B. subtilis, the membrane anchor FtsA also moves along
with FtsZ filaments (Bisson-Filho et al., 2017).

What is the purpose of FtsZ treadmilling? Two possibilities have
gained recent experimental support. The first is that FtsZ
treadmilling helps to organize divisome complexes, including the
PG synthases, around the division plane for evenly distributed PG
synthesis and constriction. Tracking of single molecules of PG
synthases in the divisome in diverse species revealed that they move
directionally around the division plane (Bisson-Filho et al., 2017;
Yang et al., 2017) (see poster). In E. coli and B. subtilis, movement
of the PG synthases is dependent upon FtsZ treadmilling, with the
rates of movement correlating with treadmilling speed of FtsZ
(Bisson-Filho et al., 2017; Yang et al., 2017). In E. coli, changing
the treadmilling velocity of FtsZ did not change the rate of
constriction, but changed the spatial distribution of PG synthesis
such that septa were distorted when treadmilling was slowed (Yang
et al.,, 2017). Collectively, these observations indicate that
treadmilling FtsZ is important for the spatial distribution of PG
synthesis during constriction. A second possibility, with support in
B. subtilis, is that FtsZ treadmilling provides input into the activity
of PG synthases. In that organism, changing treadmilling velocity
causes a change in the rate of PG metabolism and subsequent
constriction (Bisson-Filho et al., 2017). Genetic evidence
implicating FtsA and FtsZ in regulation of PG metabolic activity
is also consistent with the idea that FtsZ actively modulates PG
metabolism, in addition to acting as a dynamic scaffold (Buske and
Levin, 2013; Gardner et al., 2013; Mura et al., 2017; Sundararajan
et al., 2015; Barrows et al., 2020; Varma and Young, 2004).
Whether the differences in the relationship between FtsZ
treadmilling and PG synthase activity reported in different
bacterial species are due to technical or biological differences

remains to be resolved (see Box 2). Nevertheless, it is clear that FtsZ
polymer dynamics are linked to divisome dynamics and/or function
across diverse bacterial species.

Conclusions and perspectives
Bacterial cell division requires regulated polymerization of FtsZ
into a dynamic cytokinetic ring that recruits roughly a dozen other
division proteins, ultimately leading to activation of cell wall
synthesis for constriction. The Z ring and other components of the
divisome are highly dynamic, and these dynamics are apparently
critical for efficient and accurate division. These recent exciting
advances in understanding bacterial cell division have spurned new
or renewed interest in old questions. With respect to activation of PG
synthesis for constriction, it is not clear what is being sensed to
license constriction initiation. Is it clearance of the chromosomal
termini from the division plane, accumulation of a limiting
component of the divisome or the substrate for PG synthesis, or
changes in the assembly properties of FtsZ or FtsA? Once sensed,
how are signals relayed between components of the division
machinery to cause activation of FtsW and FtsI? Who are the players
and how do they communicate with each other?

We are only at the beginning of understanding the relationship
between FtsZ and both the movement and activity of the rest of the
divisome. In E. coli (Yang et al., 2017) and B. subtilis (Bisson-Filho

Box 2. FtsZ treadmilling and PG synthase movement

across species

Although FtsZ treadmilling and PG synthase movement or activity have
been observed in four bacterial species to date, each species is reported
to exhibit distinct properties from the others with respect to relationship
between FtsZ treadmilling and movement or activity of PG synthases. In
both E. coli and B. subtilis, FtsZ treadmilling velocity directly correlates
with the rate of movement of the TPase Ftsl (Bisson-Filho et al., 2017;
Yang et al., 2017). However, there are key differences in the link between
FtsZ dynamics and PG synthase activity. When FtsZ treadmilling is
reduced in E. coli, the rate of PG incorporation is unchanged but the
slowed movement of Ftsl results in distorted, asymmetric septa (Yang
et al., 2017). In contrast, in B. subtilis, PG synthase movement and
activity correlates with FtsZ treadmilling — whether treadmilling velocity is
decreased through mutation of FtsZ or increased by expression of an
FtsZ inhibitor (Bisson-Filho et al., 2017). As FtsZ treadmilling velocity
changes, the rates of PG incorporation and subsequent cell constriction
change correspondingly.

S. aureus does not appear to fully follow the examples set above. FtsZ
treadmilling and PG synthase activity appear to be correlated until the
initiation of constriction. Specifically, pharmacological inhibition of FtsZ
treadmilling prevents division if applied in the early stages of the cell
cycle. However, if the cell has accumulated MurJ — the lipid Il flippase
and proposed division trigger in S. aureus — at the midcell prior to
application of the inhibitor of FtsZ treadmilling, then the cell can carry out
constriction independently of FtsZ movement (Monteiro et al., 2018).
S. pneumoniae presents the most divergent picture of the link between
FtsZ dynamics and PG synthases to date, in that the two processes
appear to be independent of each other in that organism. PG synthases
move at a slower speed than FtsZ and their speed is dependent on lipid Il
PG precursor availability rather than FtsZ treadmilling speed (Perez
et al.,, 2019). Consistent with the FtsZ-independence of PG synthase
movement, the PG synthesis rate during division in S. pneumoniae is
also independent of FtsZ treadmilling rate, similar to what is seen in
E. coli (Perez et al., 2019; Yang et al., 2017). Given the early stages in
our understanding of divisome dynamics in any system, we cannot yet
definitely say whether each of the species-specific differences reported
are the result of biological diversification or arise from technical
differences between studies.
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et al., 2017), the PG synthases rely on FtsZ treadmilling for their
movement (see poster and Box 2). However, FtsZ and PG synthases
have not been shown to directly interact, implying that PG synthase
dynamics rely on additional molecules in the pathway. What are the
protein—protein and protein—envelope interactions that control
the dynamics of PG synthases and other divisome proteins? Does
the divisome move as a whole or are there subcomplexes
independently moving within it? Are processively moving PG
synthase molecules actively synthesizing PG or are they being
passively distributed? Is there more than one motile population
representing different activation states of the divisome?

Although we are likely years away from a complete reconstitution
of the divisome and its activity in vitro, there are short-term
advancements that will shed light on the mechanisms of division.
Continued technical advances in imaging, such as techniques
allowing imaging of the divisome in cross-section or monitoring
dynamics of multiple divisome components in the same cells by
single-molecule tracking, will allow us to define division dynamics
with greater precision and higher throughput. PG synthesis assays
in vitro with reconstituted division components will demonstrate
which divisome components activate or inhibit PG synthesis, and
the order in which they provide their signals. Finally, continuing to
study the mechanisms of cell division across diverse bacterial
species will distinguish the conserved core mechanisms of division
and identify the myriad ways bacteria adapt these mechanisms to
replicate with distinct morphologies and in diverse niches.
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