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H3K9me3 maintenance on a human artificial chromosome is
required for segregation but not centromere epigenetic memory
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ABSTRACT
Most eukaryotic centromeres are located within heterochromatic
regions. Paradoxically, heterochromatin can also antagonize de novo
centromere formation, and some centromeres lack it altogether. In
order to investigate the importance of heterochromatin at centromeres,
we used epigenetic engineering of a synthetic alphoidtetO human
artificial chromosome (HAC), to which chimeric proteins can be
targeted. By tethering the JMJD2D demethylase (also known as
KDM4D), we removed heterochromatin mark H3K9me3 (histone 3
lysine 9 trimethylation) specifically from the HAC centromere. This
caused no short-term defects, but long-term tethering reduced HAC
centromere protein levels and triggeredHACmis-segregation.However,
centromeric CENP-A was maintained at a reduced level. Furthermore,
HAC centromere function was compatible with an alternative low-
H3K9me3, high-H3K27me3 chromatin signature, as long as residual
levels of H3K9me3 remained. When JMJD2D was released from the
HAC, H3K9me3 levels recovered over several days back to initial levels
along with CENP-A and CENP-C centromere levels, and mitotic
segregation fidelity. Our results suggest that a minimal level of
heterochromatin is required to stabilize mitotic centromere function but
not for maintaining centromere epigenetic memory, and that a
homeostatic pathway maintains heterochromatin at centromeres.

This article has an associated First Person interview with the first
authors of the paper.
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INTRODUCTION
Centromeres coordinate chromosome segregation during cell
division (Fukagawa and Earnshaw, 2014). In most eukaryotes, the

histone variant CENP-A replaces canonical H3 in a subset of
centromeric nucleosomes and forms an epigenetic mark for
centromere maintenance (Earnshaw and Migeon, 1985; Earnshaw
and Rothfield, 1985; Mendiburo et al., 2011; Vafa and Sullivan,
1997; Warburton et al., 1997). CENP-A is a platform for
constitutive centromere-associated network (CCAN) proteins,
which mediate assembly of the kinetochore, a multi-protein
complex that both mediates and regulates chromosome attachment
to spindle microtubules (Musacchio and Desai, 2017).

Centromeres in most species are located within large regions of
tandemly repeated DNA (Melters et al., 2013; Meraldi et al., 2006;
Plohl et al., 2008). In humans, these are Mb-long regions of
α-satellite DNA (Hayden et al., 2013; Willard, 1985). Repetitive
DNA is usually packaged into constitutive heterochromatin, a
transcriptionally silent chromatin state characterized by H3 lysine 9
trimethyl (H3K9me3) enrichment, low histone acetylation and
DNAmethylation (Almouzni and Probst, 2011; Heitz, 1929; Honda
et al., 2012; Lehnertz et al., 2003; Müller-Ott et al., 2014).
H3K9me3 is generated by the methyltransferases Suv39h1 and
Suv39h2 (Suv39h1/h2) (Krouwels et al., 2005; Lehnertz et al.,
2003), and acts as a docking site for other heterochromatin proteins,
including HP1 (also known as CBX5) (Bannister et al., 2001;
Eissenberg et al., 1990; Lachner et al., 2001), Suv4-20h1 and Suv4-
20h2 (also known as KMT5B and KMT5C, respectively) (Hahn
et al., 2013; Schotta et al., 2004), and Suv39h1/h2 itself (Melcher
et al., 2000; Wang et al., 2012). Additionally, heterochromatin has
been reported to recruit cohesin (Bernard et al., 2001; Chen et al.,
2012; Nonaka et al., 2002; Oliveira et al., 2014), which maintains
sister chromatid pairing until anaphase onset. In contrast with the
surrounding heterochromatin (Ohzeki et al., 2012; Scott et al., 2006;
Sullivan and Karpen, 2004), CENP-A-containing ‘centrochromatin’
is actively transcribed, accumulating RNA polymerase II and
associated transcriptional marks (Bergmann et al., 2010; Chan
et al., 2012; Chen et al., 2015; Choi et al., 2011; Grenfell et al., 2016;
Topp et al., 2004; Yan et al., 2006). This chromatin status is essential
for CENP-A replenishment at each cell cycle (Bergmann et al., 2010;
Bobkov et al., 2018; Nakano et al., 2008; Ohzeki et al., 2012).

The role of pericentric heterochromatin at centromeres is complex
and not fully understood. In some yeasts, mutations of
heterochromatin factors lead to chromosome segregation defects
probably linked to the role of heterochromatin in recruiting cohesin
(Allshire et al., 1995; Bernard et al., 2001; Ekwall et al., 1996;
Lewis et al., 2010; Nonaka et al., 2002; Smith et al., 2011).
Knockout mice for Suv39h1/h2 exhibit chromosomal instability
(Koch et al., 2008; Peters et al., 2001), and HP1 depletion causes
chromosome mis-segregation in human, chicken and fly cells
(Fukagawa et al., 2004; Inoue et al., 2008; Serrano et al., 2009).
Reduced pericentromeric heterochromatin has been linked to poor
Aurora B recruitment, resulting in increased chromosome mis-

Handling Editor: David Glover
Received 10 December 2019; Accepted 11 June 2020

1Wellcome Trust Centre for Cell Biology, Edinburgh, UK. 2Graduate School of
Frontier Biosciences, Osaka University, Osaka, Japan. 3Kazusa DNA Research
Institute, Kisarazu, Japan. 4Cell Biology Unit, Institute of InnovativeResearch, Tokyo
Institute of Technology, Yokohama, Japan. 5National Cancer Institute, National
Institutes of Health, Bethesda, USA.
*These authors contributed equally to this work

‡Author for correspondence (bill.earnshaw@ed.ac.uk)

N.M.C.M., 0000-0003-3953-9313; F.C.S., 0000-0003-1120-1695; E.P., 0000-
0002-1958-5411; N.Y.K., 0000-0001-9951-8333; H.K., 0000-0003-0854-083X; T.F.,
0000-0001-8564-6852; W.C.E., 0000-0002-7191-0621

This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is properly attributed.

1

© 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs242610. doi:10.1242/jcs.242610

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://doi.org/10.1242/jcs.251124
https://doi.org/10.1242/jcs.251124
https://jcs.biologists.org/content/editor-bios/#glover
mailto:bill.earnshaw@ed.ac.uk
http://orcid.org/0000-0003-3953-9313
http://orcid.org/0000-0003-1120-1695
http://orcid.org/0000-0002-1958-5411
http://orcid.org/0000-0002-1958-5411
http://orcid.org/0000-0001-9951-8333
http://orcid.org/0000-0003-0854-083X
http://orcid.org/0000-0001-8564-6852
http://orcid.org/0000-0002-7191-0621


segregation (Molina et al., 2016b). Additionally, ectopic de novo
nucleation of heterochromatin in fission yeast (Kagansky et al.,
2009) and fruit flies (Olszak et al., 2011) can itself promote CENP-
A accumulation and functional kinetochore assembly.
Paradoxically, heterochromatin can inactivate established

centromeres, and prevents de novo centromere formation on
human artificial chromosomes (HACs) (Cardinale et al., 2009;
Nakano et al., 2008; Ohzeki et al., 2012). In fission yeast, deletion of
flanking insulator loci allows neighbouring heterochromatin to invade
the CENP-A-containing central core region, and this inactivates
centromeres (Scott et al., 2007). Functional (neo)centromeres in
human, chicken and fission yeast cells can also be found in non-
heterochromatic regions (Alonso et al., 2010; Brown et al., 2014;
Saffery et al., 2003; Shang et al., 2010, 2013). Furthermore, inactive
centromeres in chromosome fusions can in some cases be reactivated
by increasing local acetylation (Nakano et al., 2003; Ohzeki et al.,
2012) which counteracts heterochromatin.
These conflicting observations suggest that centrochromatin may

be incompatible with pericentromeric heterochromatin, and that
some form of boundary must exist between the two domains
(Martins et al., 2016; Molina et al., 2016a; Ohzeki et al., 2016; Scott
et al., 2006). Since it is the CENP-A-containing centrochromatin
that assembles the kinetochore, this raises the question of
whether the flanking heterochromatin is required for kinetochore
function at all.
We have investigated this question by targeting the H3K9

demethylase JMJD2D (also known as KDM4D) to the centromere
of the synthetic artificial chromosome in human cells (Nakano et al.,
2008). Our results reveal that heterochromatin is required for
maintenance of normal CENP-A levels and accurate chromosome
segregation, but not for stable maintenance of a basal level of
CENP-A at centromeres. We also reveal for the first time the
existence of a homeostatic mechanism in human cells that can
restore normal H3K9me3 and CENP-A levels to centromeres from
which they have been depleted.

RESULTS
Using an HAC for chromatin engineering
Most studies of heterochromatin factors have employed constitutive
gene targeting, chemical inhibitors or RNAi approaches. These
affect all heterochromatin-rich loci, not just the centromere, so
pleiotropic effects cannot be excluded. Furthermore, sustained mis-
segregation of chromosomes carrying essential genes can lead to
cell death, hampering long-term analysis. To address these issues
and explore more deeply the relationship between constitutive
heterochromatin and the core centromere, we used a synthetic
alphoidtetO HAC, a non-essential chromosome based on a dimeric
array of centromeric α-satellite DNA repeats containing TetO sites
to which we can directly tether TetR–EYFP fusion proteins
(Fig. 1A) (Nakano et al., 2008; Ohzeki et al., 2012). Tethering of
specific chromatin-modifying enzymes and complexes allows us to
alter the chromatin state on the HAC centromeric repeats without
affecting any other chromosomes. The tethering can be
conditionally controlled by adding doxycycline, which inhibits
TetR binding to the TetO sites on the HAC. Here, we used this
targeting approach to specifically deplete heterochromatin from the
HAC centromere and to study its long-term response.

JMJD2D removes heterochromatin marks from the
alphoidtetO HAC
We used the demethylase JMJD2D to deplete constitutive
heterochromatin from the HAC centromere (Fig. 1A,B). JMJD2D

can specifically demethylate lysine 9 of histone H3 (H3K9)
(Krishnan and Trievel, 2013; Shin and Janknecht, 2007). We have
previously shown that JMJD2D tethering to all human
pericentromeres causes chromosome mis-segregation and affects
kinetochore proteins (Molina et al., 2016b). To study the response of
the HAC centromere to H3K9me3 removal, we expressed the
chimeric fusion protein TetR–EYFP–JMJD2D for 2 days in HeLa-
OHAC-2-4 cells, which contain one copy of the HAC (Tachiwana
et al., 2013). TetR–EYFP–JMJD2D bound to the HAC, efficiently
removing heterochromatin markers H3K9me3 and HP1α (which
bindsH3K9me3) (Fig. 1C–F). To confirm that any effects we observe
on the HAC are specific to the removal of H3K9me3, we generated a
JMJD2DD195A mutant, which has been reported to be catalytically
inactive (Couture et al., 2007; Molina et al., 2016b). Tethering of this
chimeric protein caused a mild decrease in HAC H3K9me3 levels
(Fig. 1C,E) and also some reduction in HAC HP1α (Fig. 1D,F).

HAC heterochromatin depletion for 2 days had mild or no effects
on the levels of CCAN proteins CENP-A (Fig. 1C,D,G) or CENP-C
(Fig. 1D,H). Therefore, while JMJD2D can efficiently remove
canonical heterochromatin markers from the HAC, this has little
short-term effect on the maintenance of core centromere proteins.
Thus, heterochromatin is not directly required for ongoing
centromere stability.

H3K9me3-depleted centromeres recover to their initial state
following removal of JMJD2D
In order to understand the long-term effects of heterochromatin loss
from the HAC centromere, we generated several HAC-containing
stable cell lines expressing the TetR–EYFP fusion chimeras tested
above. These cell lines were selected and maintained in the presence
of doxycycline, to minimise binding of the TetR–EYFP protein.
Doxycycline was subsequently washed out to start each
experimental time-course.

In addition to a control HAC cell line expressing TetR–EYFP
(dubbed EYFP-only), we isolated two HAC cell lines expressing
wild-type TetR–EYFP–JMJD2D. One of these, JMJD2DK9Hi, has
basal HAC H3K9me3 levels that are comparable to those in the
control cell line (Fig. 2A,B). The other, which we called
JMJD2DK9Low, had surprisingly low initial levels of HAC
H3K9me3, even without TetR–JMJD2D tethering (Fig. 2A,B),
yet stably retained the HAC centromere (Fig. S1A). JMJD2DK9Low

cells thus allowed us to examine centromere behaviour in a naturally
low heterochromatin environment. To visualise the HAC in the
presence of doxycycline, all these cell lines were transiently
transfected with a construct expressing TetON–tdTomato (a TetR
mutant that binds to TetO only in the presence of doxycycline; Fig.
S1B) (Baron and Bujard, 2000; Orth et al., 1998).

After 8 days of tethering the chimeric TetR fusion proteins,
JMJD2D had significantly reduced H3K9me3 levels on the HACs
in both cell lines expressing the wild-type enzyme (JMJD2DK9Hi

and JMJD2DK9Low, Fig. 2A,B). Importantly, JMJD2DK9Low HACs,
which started with low H3K9me3 levels, underwent a further
reduction of the signal to close to background levels (Fig. 2A,B),
confirming they still contained significant residual H3K9me3. In
control cells, long-term tethering of control TetR–EYFP led to a
∼46% reduction of H3K9me3 levels. Thus, TetR–EYFP binding
can affect H3K9me3 levels when tethered for prolonged periods.
Despite this caveat for our tethering experiments, the reduction of
H3K9me3 induced by tethering control TetR–EYFP was far less
than the depletion induced by JMJD2D tethering (Fig. 2A,B).

We also tested whether H3K9me3 removal permanently ‘erased’
the heterochromatic state from the HAC (Audergon et al., 2015). We
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Fig. 1. See next page for legend.
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released the demethylase from the chromatin by adding doxycycline
after 4 days of tethering, and allowed recovery for 4 more days.
Interestingly, H3K9me3 on the HAC returned to levels not
significantly different from their starting point in each cell line
(Fig. 2A,B). Thus, H3K9me3 can be actively regenerated on the
HAC α-satellite repeats, and the process ceases when a characteristic
level has been reached.

Long-term depletion of centromeric H3K9me3 causes
decreased CENP-A levels and triggers mitotic mis-
segregation
To understand how long-term H3K9me3 absence affected the
centromere, we quantified CENP-A levels and analyzed the mitotic
behavior of the HAC after 8 days of tethering in our stable cell lines.
Long-term JMJD2D tethering caused CENP-A levels to drop to a
median of ∼59% or 40% of its starting levels (Fig. 2C,D) and HAC
mis-segregation to increase to ∼30% or 50% (Fig. 2C–E), in
JMJD2DK9Hi and JMJD2DK9Low, respectively. This resembled the
consequences of H3K9me3 removal from endogenous centromeres
(Molina et al., 2016b). Surprisingly, only a mild increase in HAC
mis-orientation in metaphase was observed, despite severe levels of
subsequent mis-segregation (Fig. S1C,D), suggesting these HACs
still bear a kinetochore that can attach to the mitotic spindle.
In JMJD2DK9Hi and JMJD2DK9Low cells, ∼23% and ∼35% of

individually quantified HACs respectively had critically low CENP-A
levels close to nuclear background signal (Fig. 2D, magenta line,
defined as below 0.1%of the normal centromeric CENP-A distribution;
Fig. S1E). This is remarkably similar to the percentage of mis-
segregating HACs in each cell line (Fig. 2E). Thus, the mis-segregation
phenotype is likely to involve those HACs where CENP-A levels are
critically compromised. The fact that JMJD2DK9Low HACs mis-
segregate only upon depletion of the final residual H3K9me3 to close to
background levels, argues for the specificity of the demethylation
activity of JMJD2D in triggering HAC mis-segregation.
We also generated a stable cell line expressing TetR–EYFP–

JMJD2DD195A to control for H3K9me3-independent effects on the
HAC. This chimera caused a slight reduction in HAC
heterochromatin at long tethering times (Fig. S2A), but similar to
tethering of EYFP-only, H3K9me3 levels were not as reduced as
those observed in HACs tethered with wild-type JMJD2D. Similar
to our EYFP-only control, JMJD2DD195A tethering caused no severe
increase in HAC mis-segregation (Fig. S2B). Although it caused a

drop in median HAC CENP-A levels, only ∼3% of HACs had
critically low levels of CENP-A (Fig. S2C, magenta line). We also
confirmed this phenotype was not unique to this JMJD2DD195A

stable cell line, by performing transient transfection of TetR–
EYFP–JMJD2DD195A for 4 days, in parental HeLa-OHAC-2-4 cells
(Fig. 2F; Fig. S2D). Taken together, these results confirmed that
CENP-A loss and mitotic defects were only observed after acute
depletion of H3K9me3 by wild-type JMJD2D.

Previous tethering of a JMJD2DD195A chimeric protein to
endogenous centromeres (Molina et al., 2016b) did not cause a
reduction in H3K9me3, but the timescale was only 48 h,
highlighting the need for long-term assays. While TetR binding
has been seen to have little impact on the DNA replication of HACs
(Erliandri et al., 2014), we believed it was important to assess its
long-term impact on centromere assembly and heterochromatin
maintenance. The mild effects we observed on CENP-A levels and
segregation ultimately motivated us to include a control for steric
hindrance and other indirect effects, to confirm how much of the
phenotype was indeed specific to JMJD2D enzymatic activity (see
following section).

We conclude that constitutive long-term demethylation by
JMJD2D results in decreased centromeric CENP-A, which
reaches critically low levels and is likely the cause of subsequent
HAC mis-segregation.

HAC CENP-A levels and segregation efficiency recover after
release of JMJD2D
The observation that H3K9me3 levels recovered on the HAC after
JMJD2D release (Fig. 2A,B) suggested there might be a mechanism
actively maintaining the repressive chromatin state at peri-
centromeres. Such a mechanism could explain the persistence of
low levels of H3K9me3, in JMJD2DK9Low HACs. To test whether
release of JMJD2D from the HAC, and subsequent H3K9me3
recovery, restored mitotic segregation fidelity, we performed TetR-
chimera release assays in our cell lines (Fig. 3A).

After 8 days of tethering, we released the tethered TetR fusion
chimera from the HAC for 4 days by adding doxycycline. Remarkably,
CENP-A, after being reduced by JMJD2D tethering, recovered to its
initial levels, in both JMJD2DK9Hi and JMJD2DK9Low cell lines
(Fig. 3B,C). Moreover, HAC mitotic defects also recovered
substantially after 4 days in both cell lines (Fig. 3D). Thus,
centromeres can recover and resume normal mitotic functions after
transient disruption of their chromatin state.

To better characterize the recovery of kinetochore structure and
function after removal of TetR-JMJD2D, we followed more closely
HAC mitotic behavior and CENP-A levels after release of the TetR
chimera in JMJD2DK9Low cells (Fig. 4A). We observed only a slow
recovery of both CENP-A levels and segregation efficiency over
the course of 4 days (Fig. 4B–E). Although the exact kinetics of
this recovery may be cell line specific, the fact that segregation
efficiency and CENP-A levels recovered only gradually over
several days suggests that these centromere defects are not caused
by the physical presence of TetR or JMJD2D somehow disrupting
the HAC centromere, or by any off-target modification of other
CCAN proteins by JMJD2D. With the exception of CENP-A, most
other CCAN proteins in human cells have a turnover time in the
span of a few hours (Hemmerich et al., 2008). Over the time scale
of this experiment, normal turnover of any affected proteins in
the absence of tethering would have rendered those effects
negligible.

Our results specifically implicate that long-term (but not short-
term) centromeric H3K9me3 depletion is causing chromosome

Fig. 1. JMJD2D efficiently removes heterochromatin from the HAC.
(A) Schematic representation of HAC structure and control of TetR-fusion-
protein tethering by doxycycline. (B) Simplified representation of the
constitutive heterochromatin recruitment pathway and the TetR–EYFP–
JMJD2D fusion protein used to remove H3K9me3 from the HAC. (C) JMJD2D
tethering specifically removes H3K9me3 from the HAC. Immunofluorescence
analysis of interphase HeLa-HAC-2-4 cells, 48 h after transient transfection
with plasmids expressing TetR–EYFP, TetR–EYFP–JMJD2D and
TetR–EYFP–JMJD2DD195A. Arrowheads locate the HAC. Scale bars: 5 μm.
(D) JMJD2D tethering delocalizes HP1 from the HAC. Experimental details as
in C. Scale bars: 5 µm. (E,F) JMJD2D tethering efficiently and specifically
removes H3K9me3 from the HAC, and delocalizes HP1α. Quantification of
mean HAC-associated H3K9me3 or HP1α immunofluorescence signal.
Median is shown with blue bars; red dashed line indicates mean nuclear
background level. H3K9me3, total of three biological repeats, n=13–46 cells
each; HP1α, total of three biological repeats, n=22–45 transfected cells each.
(G,H) JMJD2D tethering to the HAC for 2 days has little effect on CENP-A and
CENP-C. Quantification of HAC-associated immunofluorescent signal. CENP-
A, total of two biological repeats, n=27–36 transfected cells each; CENP-C,
total of two biological repeats, n=26–34 cells each. Median is shown with blue
bars. *P<0.05; ***P<0.0005; n.s., not significant (Mann–Whitney U test).
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Fig. 2. See next page for legend.

5

RESEARCH ARTICLE Journal of Cell Science (2020) 133, jcs242610. doi:10.1242/jcs.242610

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce



mis-segregation. This process is reversed by an endogenous
program that restores H3K9me3 and CCAN levels on the HAC.
Such a program could potentially maintain a ‘centrochromatin’
signature against temporary fluctuations in chromatin state.

JMJD2DK9Low HACs have low H3K9me3 but are enriched in
PcG markers
HACs in JMJD2DK9Low cells showed reduced basal levels of
H3K9me3, likely due to chronic low-level TetR–JMJD2D activity
even in the presence of doxycycline during clone selection. This
clone therefore offers the opportunity to characterize the chromatin
state and mitotic behavior of an active centromere within a
chronically low-H3K9me3 genomic landscape.
Chromatin immunoprecipitation (ChIP) assays confirmed that

initial H3K9me3 levels in JMJD2DK9Low HACs were ∼60% lower
than in control EYFP-only HACs, despite being normal on
endogenous centromere 21 α-satellite repeats (Cen21) and on
pericentric Sat2 repeats (Fig. 5A,B). Nonetheless, these low
H3K9me3 levels were still clearly above those of nuclear
background (Fig. 2B) or those of an active housekeeping gene
(PABPC1, Fig. 5A,B). Levels of H4K20me3, a mark associated
with pericentric heterochromatin and cohesion maintenance (Hahn
et al., 2013), were also lower on JMJD2DK9LowHACs and remained
unaffected by JMJD2D tethering for 5 days (Fig. 5A,C). This
JMJD2D tethering caused H3K9me3 levels to drop down to levels
similar to those on PABPC1 (Fig. 5A,B). This was accompanied by
only a slight reduction of HAC CENP-A (Fig. 5E). Together with
the observations at 2 days post-transfection described above
(Fig. 1C,G), this appears to indicate that CENP-A loss caused by
heterochromatin depletion is slow and gradual.

Given the reduced levels of heterochromatin in HACs of this cell
line, we wished to determine whether the centromeres were less
transcriptionally repressed (i.e. had an increased euchromatic
signature). Centromeric transcripts have been implicated in
supporting CCAN stability (McNulty et al., 2017; Rošic ́ et al.,
2014), and it has been proposed that heterochromatin may restrain
the levels of transcription and/or CENP-A in centrochromatin
(Craig et al., 2003; Molina et al., 2016a; Sullivan et al., 2016).
However, H3K4me2 (a histone modification associated with
transcriptional activity) was no higher on JMJD2DK9Low HACs
than on control HACs, or at Cen21 (Fig. 5A,D). Furthermore,
analysis of total RNA transcripts indicated that α-satellite
transcription levels in JMJD2DK9Low HACs were also similar to
control HACs, before and after tethering (Fig. 5A,H).

Previous studies have revealed that other markers associated with
transcriptional silencing, such as H3K27me3, can become enriched
in centromeric regions in the absence of canonical heterochromatin
(Cooper et al., 2014; Galazka et al., 2016; Jamieson et al., 2016;
Peters et al., 2003; Saksouk et al., 2014). H3K27me3 is part of the
polycomb group (PcG) chromatin pathway, which promotes an
alternative form of transcriptional repression (Di Croce and Helin,
2013; Lewis, 1978). Indeed, the low levels of classical
heterochromatin in JMJD2DK9Low HACs were accompanied by a
strong enrichment of PcG markers H3K27me3 (Fig. 5A,F,G,I) and
RING1A (Fig. 5G,J). Thus, HACs in this cell line had acquired an
alternative facultative heterochromatin repressive chromatin
signature. This switch in repressive chromatin appeared to reflect
a long-term selection, rather than a short-term effect, as further acute
depletion of H3K9me3 from the JMJD2DLow HAC centromere was
accompanied by an immediate (5 day) decrease, rather than increase
in H3K27me3 levels (Fig. 5F).

This duality of repressive states at centromeres is not restricted to
HACs and can also be observed at endogenous centromeres. Human
HT1080 fibrosarcoma cells have naturally reduced heterochromatin
levels due to low Suv39h1 expression (Ohzeki et al., 2012), and
∼20% of their centromeres show apparent H3K27me3 enrichment
(Fig. S3A,C) (Martins et al., 2016). H3K27me3 is also detected on
the non-repetitive centromere of chicken chromosome Z, which has
less H3K9me3 than other chicken chromosomes (Fig. S3D–F).
H3K27me3-positive centromeres are much less prevalent (∼3%) in
HeLa cells, which have robust heterochromatin.

Together, these results highlight the level of chromatin plasticity
that active centromeres can tolerate while sustaining accurate
chromosome segregation. A low-H3K9me3 chromatin environment
may favor a transition to PcG chromatin that can still support
centromere function at natural human centromeres (Hori et al.,
2017; Martins et al., 2016).

Long-term JMJD2D tethering does not inactivate HAC
centromere epigenetic memory or cohesion, but leads to
mitotic misalignment and mis-segregation
Tethering JMJD2D to the HAC, and consequent removal of
centromeric H3K9me3, increased HAC mis-segregation despite
causing surprisingly few observable defects in metaphase. To better
understand howHACmis-segregation develops over time following
H3K9me3 depletion, we analyzed a time-course of tethering,
focusing on centromeric proteins. We used JMJD2DK9Low cells,
which present robust centromere activity that is comparable to that
seen in JMJD2DK9Hi, while allowing us to study centromere
behavior in an H3K9me3-low environment similar to that present in
some cancer cells (Nizialek et al., 2016; Rodrigues et al., 2019; Slee
et al., 2011).

Fig. 2. Long-term JMJD2D tethering to the HAC causes a decrease in
CENP-A and increases mitotic mis-segregation. (A,B) HAC long-term
H3K9me3 removal, in EYFP-only and JMJD2D-expressing cell lines, using a
TetR/TetON switching strategy. Doxycycline was washed out of the cell
medium and cells were allowed to grow for 8 days. Parallel cultures were grown
instead for 4 days and then doxycycline was added to the medium for 4 more
days to prevent JMJD2D binding, to test recovery of H3K9me3. On the
penultimate day, all cultures were transiently transfected with a plasmid
expressing TetON-tdTomato, to allow visualization of HAC under doxycycline.
(A) Strategy and images of cells. Arrowheads denote the HAC. Scale bars:
5 μm. (B) Quantification of mean HAC-associated H3K9me3
immunofluorescence signal. Data are from two biological repeats, n=10–21
transfected interphase cells each. Median is shown with blue bars; red dotted
line indicates mean nuclear H3K9me3 background level, green dotted line
indicates median initial levels of H3K9me3 at JMJD2DK9Low HACs.
***P<0.0005; n.s., not significant (Mann–Whitney U test). (C) Long-term
JMJD2D tethering leads to HAC mis-segregation and reduction of CENP-A.
TetR–EYFP fusion proteins were allowed to tether to the HAC for 8 days.
Representative immunofluorescence image of post-mitosis JMJD2DK9Low

daughter cell pairs. Arrowheads locate the HAC(s). Scale bars: 5 μm. (D)
JMJD2D long-term tethering induces reduction of HAC CENP-A levels.
Quantification from C. Total of three biological repeats, n≥14 cells each. Blue
bars denote median, green dotted line indicates median starting levels of
control EYFP-only HAC CENP-A, magenta dotted line indicates 32.9% of the
median endogenous CENP-A level. *P<0.05; **P<0.005; ***P<0.0005 (Mann–
Whitney U test). (E) JMJD2D tethering to the HAC causes mis-segregation.
HAC phenotypes in fixed post-segregation (i.e. telophase or early G1) cells
were separately quantified. Sum of two biological repeats, n≥97 cells each.
*P<0.05; ***P<0.0005 (Fisher’s exact test). (F) Transient transfection of
JMJD2D shows similar HAC segregation defects to those found in stable cell
lines. Transfection of HeLa-HAC-2-4 cells with plasmids expressing TetR–
EYFP, TetR–EYFP–JMJD2D or TetR–EYFP–JMJD2DD195A, for 4 days,
before fixation and microscopy analysis. Segregation defects: sum of two
biological repeats, n≥52 transfected cells each. *P<0.05; ***P<0.0005; n.s.,
not significant (Fisher’s exact test).
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JMJD2D tethering slowly reduced HAC centromere proteins
CENP-A and CENP-C down to roughly ∼45–50% of their initial
levels over the course of ∼6 days, after which their median levels
stabilized, for up to 16 days (Fig. 6A; Fig. S4A,B), albeit with a
large variability in the amount of CENP-A in any individual HAC.
CENP-C levels began to decrease before CENP-A, at ∼3 days post-
tethering (Fig. S4B–D). This decrease in kinetochore proteins was
accompanied by reduced levels of Hec1 (a subunit of the
microtubule-binding NDC80 complex) (Liu et al., 2006; Varma

and Salmon, 2012) (Fig. S4E,F) and inner-centromere protein
Aurora B (Fig. S4E,G) which is responsible for correction of mis-
oriented chromatids. Thus, depletion of H3K9me3 from the HAC
for prolonged periods eventually lowers levels of a number of
kinetochore and centromeric proteins that are essential for accurate
chromosome segregation.

Despite this reduction in kinetochore protein levels, HACs in
JMJD2DK9Low cells showed only a slight increase in metaphase
alignment defects relative to control, even at 16 days of tethering

Fig. 3. Release of JMJD2D allows for recovery of HAC centromere proteins andmitotic segregation. (A) Outline of the tethering and release strategy, to test
centromere recovery. Doxycycline was washed out of cell medium and cells were allowed to grow for 8 days; a fraction of these were allowed to grow for 4 more
days, while another had doxycycline added to the medium to prevent JMJD2D binding, for 4 more days. Doxycycline was then washed from the medium to allow
TetR-fusion proteins to tether for 1 h only, to allow HAC visualization, before fixation for immunofluorescence. (B,C) Images and quantification of HAC CENP-A
recovery after JMJD2D release (see A), in the HAC cell lines expressing the TetR–EYFP fusion proteins. Arrowheads denote the HAC. Scale bars: 2 μm. Data are
from two biological repeats, n=14–33 interphase cells each. Blue bar indicates median, green dotted line indicates median starting levels of control EYFP-only
HAC CENP-A, magenta dotted line indicates 32.9% of the median endogenous CENP-A level. *P<0.05; ***P<0.0005; n.s., not significant (Mann–Whitney U test).
(D) Quantification of HAC segregation defects after JMJD2D release (see A), in the HAC cell lines expressing the TetR–EYFP fusion proteins. Data are from two
biological repeats, total of n=20–59 telophase or early G1 cells. **P<0.005; ***P<0.0005; n.s., not significant (Fisher’s exact test).
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(Fig. 6B shows fixed mitotic cells). Indeed, even after 31 days of
TetR–JMJD2D tethering, we still detected CENP-C and Hec1 on
the HAC kinetochore, and metaphase HACs were bi-oriented
(Fig. 6D,E). Kinetochores have been shown to retain normal mitotic
efficiency even with much reduced levels of CENP-A (Bodor et al.,
2014; Martins et al., 2016).
The kinetics of the decrease in CENP-A levels and effects on

mitotic accuracy track closely with each other over our long-term
experiment. This suggests that the reduced kinetochore is less
efficient at directing accurate HAC segregation. Indeed, HAC
segregation errors reached a maximum of ∼55% by 8 days of TetR–
JMJD2D tethering (Fig. 6C), but do not increase further after that.
Our observations suggest that H3K9me3 depletion does not

inactivate the HAC centromere epigenetic memory per se, but the
depleted kinetochores are less efficient at directing anaphase
chromosome segregation.

Loss of centromeric cohesion has been implicated as the cause of
chromosome mis-segregation when pericentric heterochromatin is
lost (Allshire et al., 1995; Bernard et al., 2001; Ekwall et al., 1996;
Lewis et al., 2010; Nonaka et al., 2002; Smith et al., 2011).
However, we found no significant difference in HAC inter-
chromatid distances between JMJD2DK9Low and control HACs in
metaphase cells after 8 days of tethering (Fig. 6F,G). Thus, cohesin
loss is unlikely to cause the HAC mis-segregation following
H3K9me3 depletion, in agreement with other studies in animal cells
(Koch et al., 2008; Peters et al., 2001; Serrano et al., 2009).

Fig. 4. Control for steric hindrance and off-target effects reveals centromere recovers slowly after release, even in the absence of the TetR- JMJD2D
fusion chimera. (A) Time-course of HAC recovery after JMJD2D release. JMJD2DK9Low cells were grown for 8 or 10 dayswith JMJD2D tethered to theHAC, or for
8 days with tethering and then doxycycline added for an additional 2 or 4 days (for JMJD2D release). At each time point, cells were fixed and analyzed. (B,C)
Quantification of HAC mitotic defects in JMJD2DK9Low cells, after JMJD2D release. Data are from two biological repeats, metaphase defects, n≥37 metaphase
cells; segregation defects, n≥76 telophase or early G1 cells. *P<0.05; ***P<0.0005 (Fisher’s exact test). (D,E) Images and quantification of CENP-A in
JMJD2DK9Low cells, after JMJD2D release. Arrowheads denote the HAC. Scale bars: 5 μm.Data are from two biological repeats, n>26 interphase cells each. Blue
bar indicates median, green dotted line indicates median CENP-A levels at the start of the time-course, magenta dotted line indicates 32.9% of the median
endogenous CENP-A level. *P<0.05; ***P<0.0005 (Mann–Whitney U test).
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Fig. 5. See next page for legend.
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To further explore why JMJD2D-tethered HACs mis-segregate
during mitosis, we performed live-cell imaging of JMJD2DK9Low

cells after 6 days of tethering, the point at which CENP-A loss and
mis-segregation roughly reach their highest values before
stabilizing. We found that these HACs underwent increased
transient misorientation (∼32% of cells, compared to ∼11% in
control) and failure to congress (11% of cells compared to 3% in
control) throughout metaphase (Fig. S5). These transient events
were not readily observed in fixed cells. Most of the mis-oriented
HACs went on to either mis-segregate, or their cell remained
arrested in anaphase (Fig. S5B).
In summary, long-term loss of the residual HAC H3K9me3 in

JMJD2DK9Low cells has little effect on centromeric cohesion and
does not lead to complete loss of mitotic kinetochores. However,
decreased levels of kinetochore proteins likely interfere with
metaphase orientation and congression, resulting in HAC mis-
segregation.

DISCUSSION
Here, we demonstrate that a human synthetic centromere located on
α-satellite repeats requires a minimal level of H3K9me3 to sustain
accurate mitotic function. H3K9me3 removal did not cause an
immediate loss of centromere proteins, indicating that H3K9me3 is
not directly essential for CCAN binding and assembly. H3K9me3
removal was then followed by an initial decrease in CENP-A and
CENP-C levels, but these low levels of kinetochore proteins were
then stably maintained for at least 30 days in the presence of
constant H3K9 demethylation by JMJD2D. Thus, constitutive
heterochromatin is not required for a basal level of centrochromatin
epigenetic memory. Surprisingly, H3K9me3, CENP-A and mitotic
segregation all recovered to their initial levels when the JMJD2D
demethylase was released from the chromatin. Thus, the levels of
H3K9me3 at pericentromeres and centromere proteins in
centrochromatin are subject to a previously unknown homeostatic
regulation. Endogenous human centromeres and HACs can sustain
mitotic function (less than 5% mis-segregation) with CENP-A
levels reduced down to ∼50% (Bodor et al., 2014; Martins et al.,
2016). Indeed, our results suggest that HAC mis-segregation occurs

only when CENP-A levels drop below a critical threshold, of ∼33%
of the median CENP-A signal found at endogenous centromeres.
We also showed that loss of cohesion was not a contributing factor
to mis-segregation under heterochromatin depletion conditions.
Nonetheless, it is possible that other changes in the local chromatin
environment, caused by heterochromatin loss, may also contribute
to mis-segregation. We conclude that human centromeres may
require a minimal H3K9me3 level to sustain both normal levels of
CCAN proteins and accurate mitotic segregation.

Our studies confirmed an apparent balance at centromeres
between H3K9me3-containing constitutive heterochromatin, and
H3K27me3-containing PcG-based facultative heterochromatin.
Normally, H3K9me3 and H3K27me3 are mutually exclusive
across the genome (de Wit et al., 2007; Ernst et al., 2011; Filion
et al., 2010). Centromeric H3K27me3 occurs naturally in some
human cell lines (Martins et al., 2016; Mravinac et al., 2009) and on
paternally derived chromosomes in mouse early zygotic divisions
(De La Fuente et al., 2015; Puschendorf et al., 2008), all of which
have low H3K9me3 levels. Previous studies have shown that global
abolishment of H3K9me3 constitutive heterochromatin in mouse
(Cooper et al., 2014; Déjardin, 2015; Peters et al., 2003; Saksouk
et al., 2014) and Neurospora crassa (Galazka et al., 2016; Jamieson
et al., 2016) caused an enrichment of H3K27me3 and PcG proteins
on centromeric repeats.

We previously reported that H3K27me3 and PcG markers are
compatible with HAC centromere stability and mitotic segregation
(Martins et al., 2016). Indeed, the JMJD2DK9Low HAC centromere
described here maintained near-wild-type levels of CENP-A and
centromeric transcription, and segregated normally despite having
only residual levels of H3K9me3 and greatly increased H3K27me3.
The ability of PcG chromatin to replace constitutive heterochromatin
at centromeres may be because the PcG pathway may promote
cohesin recruitment or retention (Stelloh et al., 2016; Strübbe et al.,
2011). This could explain why the JMJD2DK9Low HAC exhibited
normal cohesive behavior following heterochromatin depletion. If
PcG chromatin can functionally substitute for constitutive H3K9me3-
based heterochromatin at pericentromeres, this might also explain
why heterochromatin seems dispensable for cohesion in animal cells
(Koch et al., 2008; Peters et al., 2001; Serrano et al., 2009) but not in
fission yeast, which is not known to possess a PcG pathway.

CENP-A has a much longer half-life at the kinetochore than most
other CCAN proteins in human cells (Bodor et al., 2013;
Hemmerich et al., 2008) and indeed, JMJD2D tethering seemed
to more strongly affect CENP-C levels. CENP-C is a major hub of
CCAN structure (Klare et al., 2015; Przewloka et al., 2011),
recruiting the CENP-A assembly factor Mis18 and the NDC80
complex (Dambacher et al., 2012; Guse et al., 2011; Hori et al.,
2013), and through them Bub1, which promotes Aurora B retention
at the inner centromere (Hindriksen et al., 2017). Thus, effects on
CENP-C could potentially explain why components of the entire
centromere, from Hec1 in the outer kinetochore to CENP-A and
Aurora B in the inner centromere, are reduced following
heterochromatin depletion.

Interestingly, CENP-C has also been shown to be lost before
CENP-A when a HAC centromere was targeted with the repressive
scaffolding factor KAP-1 (Cardinale et al., 2009), which increases
centromeric heterochromatin. CENP-C binding may be particularly
sensitive to variations in local chromatin signature caused either by
H3K9me3 loss or gain. CENP-C in flies interacts with
heterochromatic proteins LHR and HMR, depletion of which can
give rise to lagging chromosomes in anaphase (Blum et al., 2017;
Thomae et al., 2013), similar to our observations. We speculate that

Fig. 5. HACs in JMJD2DK9Low contain reduced H3K9me3 but elevated
markers of PcG chromatin. (A) Outline of targets in our ChIP analysis, for
HAC and endogenous chromosomal loci. Cen21 (chr. 21 α-satellite) is a
control locus for an endogenous, non-modified centromere. Sat2 is a
transcriptionally repressed DNA repeat (control for constitutive
heterochromatin). PABPC1 is a housekeeping gene (control for actively
transcribed regions). (B–F) ChIP analysis of HAC chromatin, using mouse
antibodies against the chromatin marks analyzed. JMJD2DK9Low cells were
grown for 5 days, in the presence or absence of doxycycline, before harvesting
and processing for ChIP. PulldownDNAwas quantified by qPCR. Total of three
biological repeats, n≈5×106 cells each. Error bars denote s.e.m. *P<0.05;
**P<0.005; n.s., not significant (Wilcoxon matched-pairs signed rank test).
(G) JMJD2DK9Low HACs are enriched for PcG markers H3K27me3 and
RING1A, compared to H3K9me3-rich JMJD2DK9Hi and control EYFP-only
HACs. TetR-EYFP fusion proteins were tethered for 1 h only, before fixation
and immunofluorescence staining. Arrowheads denote the HAC. Scale bars:
5 µm. (H) Loss of HAC H3K9me3 does not cause increase in HAC
transcription. Quantification of transcripts from EYFP-only and JMJD2DK9Low

cells. Cells were grown as in B–F, before harvesting for RNA extraction.
Expression level is normalized to genomic copy number (for repeats) and
further normalized to β-actin. Total of three biological repeats, n≈5×105 cells
each. Error bars denote s.e.m. n.s., not significant (Wilcoxon matched-pairs
signed rank test). (I,J) Quantification of HAC-associated H3K27me3 and
RING1A levels from the different cell lines in G. Both n≥53 cells per condition.
Blue lines indicate median, red dashed line indicates nuclear background
staining. ***P<0.0005; n.s., not significant (Mann–Whitney U test).
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Fig. 6. See next page for legend.
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there may be a previously unappreciated level of crosstalk between
CENP-C and the local chromatin epigenetic state.
HAC H3K9me3 levels recover following JMJD2D release,

suggesting that a previously undescribed homeostatic pathway
actively recruits heterochromatin factors to (peri)centromeric
repeats. Importantly, this pathway not only rebuilds the
centromeric heterochromatin, it also rescues kinetochore assembly
(CENP-A levels), thereby restoring chromosome segregation in
mitosis. A remarkable aspect of this homeostatic pathway is that,
during recovery, centromeric levels of H3K9me3 seem to return to a
set point specific for each cell clone. This could be explained if the
pathway is templated by DNA methylation, which would not be
expected to be altered over the time scales of these experiments.
Indeed, Suv39h1/2 can bind to methyl-binding protein MeCP2
(Fuks et al., 2003; Lunyak et al., 2002; Rose and Klose, 2014). Such
a methylated CpG template model can explain why, during
recovery, the heterochromatin in the JMJD2DK9Low HACs does
not ‘overshoot’ back to the levels seen in the JMJD2DK9Hi or EYFP-
only HACs. PcG chromatin can remove CpG methylation, by
recruiting the enzyme Tet1 (Kohli and Zhang, 2013; Neri et al.,
2013; Piccolo and Fisher, 2014), thereby reducing the size of the
‘template’ available for homeostatic recovery. In addition, PcG
chromatin itself only localizes to centromeric repeats when
heterochromatin and DNA methylation are absent (Saksouk et al.,
2014), suggesting a model that, once PcG chromatin becomes
established on those repeats, it prevents spreading of
heterochromatin. HAC α-satellite transcripts could also be
involved, by recruiting heterochromatin de novo through an
RNAi-mediated process. In several organisms, heterochromatin
maintenance is dependent on RNAi activated by dsRNAs
transcribed from repetitive DNA loci, allowing de novo
recruitment of heterochromatin (Bayne et al., 2010; Bühler et al.,
2006; Fukagawa et al., 2004; Huang et al., 2013; Johnson et al.,
2017; Peng and Karpen, 2007; Shirai et al., 2017; Velazquez
Camacho et al., 2017). Centromere repeat transcripts have also been
reported to directly associate with the CCAN, and knockdown of
specific repeat RNAs can cause loss of CENP-A and/or CENP-C

from centromeres in cis and induce mitotic defects (McNulty et al.,
2017; Rošic ́ et al., 2014).

It will be important in future studies to identify the factors and
pathways involved in the homeostatic control at centromeres
described here. The mechanism that links CENP-A recruitment to
the recovery of heterochromatin remains to be determined.
Particularly, given the long-term persistence of lower CENP-A
levels at heterochromatin-depleted centromeres, it will be important
to identify what other chromatin components cooperate to maintain
centromere identity.

MATERIALS AND METHODS
Expression constructs and transfections
TetR–EYFP–JMJD2D was constructed by cloning JMJD2D cDNA (amino
acids 1–523) (clone cp00193, Kazusa ORFeome, Kazusa DNA Research
Institute, Japan) into pJETY3 vector (Ohzeki et al., 2012), which drives
expression from a cytomegalovirus (CMV) promoter and carries a synthetic
intron and an IRES motif, followed by a hygromycin resistance gene. The
TetR–EYFP plasmid has been described previously (Nakano et al., 2008),
and carries a puromycin resistance gene.

Transient transfections were performed using Fugene HD (Roche),
according to manufacturer’s instructions. For analysis 4 days after
transfection, cells were selected with 400 μg/ml hygromycin for 3 days
(for pJETY3-derived vectors), or 2 μg/ml puromycin for 1 day (for TetR–
EYFP). Transfected cells used for real-time quantitative PCR (RT-qPCR) or
ChIP analysis were typically selected for in 2 μg/ml or greater than 3 μg/ml
puromycin, respectively.

Cell lines and culture
Human cells were grown in DMEM (with L-glutamine and pyruvate) and
100 U/ml penicillin G and 100 μg/ml streptomycin sulfate, or in Leibovitz
L-15 medium for live-cell experiments. Cells were grown at 37°C in
humidified atmosphere containing 5% CO2. HeLa-HAC-2-4 cells
(Tachiwana et al., 2013) and derived cell lines were maintained in the
presence of 400 μg/ml G418, selectable via the neo gene present in the
HAC. Derived lines EYFP-only, JMJD2DK9Hi and JMJD2DK9Low were
further maintained in the presence of 2 μg/ml puromycin (to select for
plasmid integrants) and 2 μg/ml doxycycline to prevent TetR binding.
JMJD2DK9Low and JMJD2DD195A cells were generated by transfection with
TetR–EYFP–JMJD2D or TetR–EYFP–JMJD2D-D195A plasmids,
respectively, using Fugene HD (Roche) as described above, and clones
were isolated by limiting dilution. The JMJD2DK9Hi cell line was generated
in a similar manner to JMJD2DK9Low but without clonal isolation: it is a
heterogenous cell line where 78% of cells express the TetR-fusion protein, and
most HACs present high levels of H3K9me3. Chicken lymphoma DT40 cells
(wild-type Clone 18; Shang et al., 2013) were grown in RPMI 1640 medium
supplemented with 10% (v/v) FBS, 1% (v/v) chicken serum, 100 U/ml
penicillin and 100 μg/ml streptomycin. Cells were grown at 39°C in humidified
atmosphere containing 5% CO2. Cells were not tested for mycoplasma.

Immunofluorescence staining
Cells were fixed in 2.5% PFA in PBS for 5 min. at room temperature and
quenched in 125 mM glycine for 5 min before immunofluorescence staining.
Primary antibodies used are described below. DNAwas counterstained with
1 μg/ml Hoechst 333342. Samples were mounted onto glass slides with
ProLong Gold (Life Technologies, Carlsbad, CA, USA).

Staining of unfixed metaphase spreads
Confluent cultures were incubated for 2–3 h in 300 nM TN-16 (Wako,
Osaka, Japan) at 37°C. Human cells thus arrested in mitosis were collected
by shake-off, centrifuged (600 g for 8 min), and re-suspended in hypotonic
buffer (75 mMKCl) for 10 min at 37°C. Cells were then cytospun (Shandon
Cytospin 4) onto ethanol-washed glass slides at 1800 rpm for 5 min, and
subsequently processed for unfixed immunofluorescence.

In the case of non-adherent chicken DT40 cells, the culture was first
enriched with cells arrested in mitosis using 0.1 µg/ml colcemid (Thermo

Fig. 6. Long-term JMJD2D tethering induces progressive reduction of
HAC CCAN and increase in mis-segregation, but HAC centromere is not
abolished. (A) Time-course of long-term JMJD2D tethering indicates that the
HAC centromere is not abolished. JMJD2DK9Low cells were washed of
doxycycline and grown for several days, and samples were taken in intervals.
The mean HAC-associated CENP-A immunofluorescence signal was
measured, and normalized to that of endogenous centromeres. Total of two
biological replicates, n≥22 interphase cells each. Blue bar indicates median,
green dotted line indicates median CENP-A levels at the start of the time-
course, magenta dotted line indicates 32.9% of the median endogenous
CENP-A level. ***P<0.0005; n.s., not significant (Mann–Whitney U test).
(B,C) JMJD2D tethering causes few observable metaphase defects, but HAC
mis-segregation increases progressively until ∼8 days, but no further.
Time-course analysis as described in A, but examining HAC metaphase
phenotypes, or mis-segregation defects in telophase or early G1 cells. Sum of
two biological repeats, n≥80 cells (metaphase), n≥100 cells (segregation)
each. *P<0.05; **P<0.005; ***P<0.0005; n.s., not significant (Fisher’s exact
test). (D,E) HAC centromere persists even upon very long tethering durations
and retains ability to congress and bi-orient on the metaphase plate. Reduced
but still present signals for CENP-C can be observed on HAC interphase
centromeres, and also Hec1 in metaphase chromatids, by
immunofluorescence. Arrowheads locate the HAC. Scale bars: 5 μm.
(F,G) Images and quantification showing that HAC sister chromatid cohesion
during metaphase is not significantly affected by short or long-term JMJD2D
tethering, and subsequent H3K9me3 removal. Interchromatid distance was
measured between the two HACEYFP fluorescent signals, in fixedmetaphase
cells. Scale bars: 2 μm. *P<0.05; ***P<0.0005; n.s., not significant (Mann–
Whitney U test.).
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Fisher Scientific, Houston, TX), and a fraction of the total culture was
centrifuged and re-suspended in hypotonic buffer, as described above.

Preparation and staining of unfixed mitotic chromosomes was essentially
performed as described in Keohane et al. (1996). Human cell cultures were
enriched for mitotically arrested cells for 2 h in 300 nM TN-16 (Wako,
Osaka, Japan), collected by shake-off and incubated in 75 mM KCl for
10 min. Non-adherent chicken DT40 cultures, on the other hand, were
enriched for mitotic cells in TN-16 in the same manner, and subsequently
resuspended in KCl. Cells were then cytospun at 1800 rpm for 10 min onto
glass slides using a Cytospin3 (Thermo Fisher Scientific, Houston, TX), and
incubated in KCM buffer (10 mM Tris-HCl pH 8.0, 120 mM KCl, 20 mM
NaCl, 0.5 mM EDTA and 0.1% Triton X-100) for 10 min. Samples were
then labeled with primary and secondary antibodies (diluted in 1% BSA in
KCM buffer), fixed in 4% PFA (in KCM), stained with Hoechst 33342 and
mounted as described above.

Antibodies
The following antibodies were used: normal mouse IgG, 1:1000 dilution
(Merck Millipore, Billerica, MA, USA); mouse anti-CENP-A, 1:1000
dilution (A1, Ando et al., 2002); rabbit anti-CENP-C, 1:500 dilution
(R554, Saitoh et al., 1992), mouse anti-H3K27me3, 1:1000 dilution
(1E7-CMA309, Kimura et al., 2008); anti-H3K4me2, 1:500 dilution (ref.
07-030, for IF, Merck Millipore); mouse anti-H3K4me2, 1:1000 dilution
(27A6-CMA303, for ChIP only, Kimura et al., 2008); rabbit anti-H3K9me3,
1:1000 dilution (ref. 07-523, for IF, MerckMillipore); mouse anti-H3K9me3,
1:1000 dilution (2F3-CMA308, for ChIP, Kimura et al., 2008); mouse anti-
H4K20me3, 1:1000 dilution (27F10-CMA423, Hayashi-Takanaka et al.,
2015); rabbit anti-RING1A 1:500 dilution (ASA3, a kind gift from Paul
Freemont, Department of Infectious Disease, Imperial College, UK; Saurin
et al., 1998); mouse anti-HP1α, 1:1000 dilution (MAB3584, Chemicon-
Millipore, Billerica, MA, USA); rabbit anti-Aurora B, 1:1000 dilution
(ab2254, Abcam, Cambridge, MA); rabbit anti-Hec1, 1:10,000 dilution
(Ab3613, Abcam), rabbit anti-Gallus gallus CENP-A, 1:500 dilution
(Régnier et al., 2003); human, ACA 1:100 dilution (Anti Centromere
Antibodies, serum, Earnshaw and Rothfield, 1985); GFP-Booster, 1:200
dilution (anti-GFP nanobody Atto-488 conjugate, Chromotek, Planegg-
Martinsried, Germany). All secondary antibodies for immunofluorescence
analysis were purchased from Jackson ImmunoResearch Laboratories.
Secondary antibodies against mouse and rabbit IgG were conjugated to
either FITC, Alexa Fluor 488, Texas Red, Alexa Fluor 594, Cy5 or Alexa
Fluor 647. All secondary antibodies were used at a 1:200 dilution, except for
Alexa Fluor 594 (1:1000).

Microscopy cytological analysis and fluorescence
quantification
Images were acquired on a DeltaVision Core system (Applied Precision,
Issaquah, WA) using an inverted Olympus IX-71 stand, with an Olympus
UPlanSApo 100× oil immersion objective (NA 1.4) and an InsightSSI light
source. Camera (Cool Snap HQ, Photometrics, Tucson, AZ), shutter and stage
were controlled through SoftWorx (Applied Precision, Issaquah, WA). Z-
sectionswere collectedwith a spacing of 0.2 mm, and imageswere analyzed in
ImageJ. When required, image stacks were first deconvolved in SoftWorx.

Fluorescence signal quantification was performed on maximum intensity
projections of non-deconvolved images acquired at a 1×1 binning, at
identical exposure conditions for each experimental subset. Fluorescence
intensity is displayed as arbitrary fluorescence units (A.F.U.). Cells
displaying more than one HAC were only quantified for one of them,
determined randomly.

To quantify centromeric proteins in interphase cells, an ImageJ macro
(HAC & CRaQ; Martins et al., 2016), adapted from that of Bodor et al.
(2013) was used to assess HAC centromere protein levels relative to those of
endogenous centromeres. Briefly, the maximum signal intensity (of a given
centromere protein staining) associated with the HACwas measured and the
local nuclear background signal subtracted. The same measurement
procedure was applied to endogenous centromeres, and the HAC-
associated signal was normalized against the mean signal of all those
centromeres.

To quantify HAC-associated signals for chromatin marks or chromatin
proteins, maximum intensity projections of five Z planes, centered around
the HAC, were used. An area thresholded to the EYFPHAC signal was used;
the mean signal within the HAC area was quantified and the mean of three
local nuclear background areas, of the same size, was subtracted from it.

ChIP-qPCR experiments
ChIP experiments followed a protocol adapted and modified from Kimura
et al. (2008). At least 5×106 human cells (or 50×106 chicken DT40 cells)
were used per each ChIP experiment, crosslinked with 1% formaldehyde
(Sigma-Aldrich, St Louis, MO) for 5 min at room temperature. Crosslinked
chromatin was snap-frozen, and samples from human cells were sheared by
sonication. Samples from chicken DT40 cells were instead digested with
200 U/ml of Micrococcal nuclease (Worthington Biochem. Corp.) for
30 min at 21°C, and sonicated briefly. Immunoprecipitation was performed
with anti-mouse IgG Dynabeads M-280 (Life Technologies, Carlsbad, CA)
conjugated with primary antibodies (see above), using 106 cells (10×106

cells for chicken) each. Samples were decrosslinked at 93–100°C for
12 min, and treated with RNase A and proteinase K, and DNAwas purified
with Chelex beads (Bio-Rad).

To quantify the IP DNA, qPCR was performed on Input and IP samples
using a SYBR Green master mix (Roche, Penzberg, Germany). Primers
were used at 400 nM and are described in Table S1. Percentage of recovered
IP material was calculated relative to standard curves calculated from Input
using the second derivative maximum algorithm in the LightCycler 480
software, to account for differential primer efficiency.

Transcript quantification by RT-qPCR analysis
Total RNA was extracted and purified using TRIzol reagent (Life
Technologies, Carlsbad, CA) as per the manufacturer’s protocol. Reverse
transcription was performed using Transcriptor High Fidelity cDNA
Synthesis Kit (Roche, Penzberg, Germany), using random hexamer
primers. qPCR was performed in a LightCycler 480 (Roche, Penzberg,
Germany) using a SYBR Green master mix (Sigma-Aldrich); primers were
used at 400 nM, and are described in Table S1. For each primer set, a serial
dilution of gDNA template was included to determine a standard curve, and
normalize for locus copy number and differential primer efficiencies.
Specificity of reactions was validated by product melting curve analysis.
Reaction crossing points were determined using the second derivative
maximum algorithm in the LightCycler 480 software. Background values
(no reverse transcriptase) were subtracted, and all values were normalized to
β-actin expression and arbitrarily multiplied by 104 for ease of visualization.

Statistical analyses
Data acquired was plotted and analyzed with GraphPad Prism software
v5.03 (GraphPad Software, San Diego, CA). Statistical analyses of
immunofluorescence datasets were performed using two-tailed Mann–
Whitney U-tests, for ChIP and transcript datasets, we used two-tailed
Wilcoxon matched-pairs signed rank test, and for mitotic defects we used
two-tailed Fisher’s exact test. Significance key: n.s. (not significant),
P>0.05; *P<0.05; **P<0.005; ***P<0.0005.
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Déjardin, J. (2015). Switching between epigenetic states at pericentromeric
heterochromatin. Trends Genet. 31, 661-672. doi:10.1016/j.tig.2015.09.003

Di Croce, L. and Helin, K. (2013). Transcriptional regulation by Polycomb group
proteins. Nat. Struct. Mol. Biol. 20, 1147-1155. doi:10.1038/nsmb.2669

Earnshaw, W. C. and Migeon, B. R. (1985). Three related centromere proteins are
absent from the inactive centromere of a stable isodicentric chromosome.
Chromosoma 92, 290-296. doi:10.1007/BF00329812

Earnshaw, W. C. and Rothfield, N. (1985). Identification of a family of human
centromere proteins using autoimmune sera from patients with scleroderma.
Chromosoma 91, 313-321. doi:10.1007/BF00328227

Eissenberg, J. C., James, T. C., Foster-Hartnett, D. M., Hartnett, T., Ngan, V. and
Elgin, S. C. (1990). Mutation in a heterochromatin-specific chromosomal protein
is associated with suppression of position-effect variegation in Drosophila
melanogaster. Proc. Natl. Acad. Sci. USA 87, 9923-9927. doi:10.1073/pnas.87.
24.9923

Ekwall, K., Nimmo, E. R., Javerzat, J. P., Borgstrøm, B., Egel, R., Cranston, G.
and Allshire, R. (1996). Mutations in the fission yeast silencing factors clr4+ and
rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair
centromere function. J. Cell Sci. 109, 2637-2648.

Erliandri, I., Fu, H., Nakano, M., Kim, J.-H., Miga, K. H., Liskovykh, M.,
Earnshaw, W. C., Masumoto, H., Kouprina, N., Aladjem, M. I. et al. (2014).
Replication of alpha-satellite DNA arrays in endogenous human centromeric
regions and in human artificial chromosome. Nucleic Acids Res. 42,
11502-11516. doi:10.1093/nar/gku835

Ernst, J., Kheradpour, P., Mikkelsen, T. S., Shoresh, N., Ward, L. D., Epstein,
C. B., Zhang, X., Wang, L., Issner, R., Coyne, M. et al. (2011). Mapping and
analysis of chromatin state dynamics in nine human cell types.Nature 473, 43-49.
doi:10.1038/nature09906

Filion, G. J., van Bemmel, J. G., Braunschweig, U., Talhout, W., Kind, J., Ward,
L. D., Brugman,W., de Castro, I. J., Kerkhoven, R. M., Bussemaker, H. J. et al.
(2010). Systematic protein location mapping reveals five principal chromatin types
in Drosophila cells. Cell 143, 212-224. doi:10.1016/j.cell.2010.09.009

14

RESEARCH ARTICLE Journal of Cell Science (2020) 133, jcs242610. doi:10.1242/jcs.242610

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://jcs.biologists.org/lookup/doi/10.1242/jcs.242610.supplemental
https://jcs.biologists.org/lookup/doi/10.1242/jcs.242610.supplemental
https://jcs.biologists.org/lookup/doi/10.1242/jcs.242610.reviewer-comments.pdf
https://jcs.biologists.org/lookup/doi/10.1242/jcs.242610.reviewer-comments.pdf
https://doi.org/10.1101/gad.9.2.218
https://doi.org/10.1101/gad.9.2.218
https://doi.org/10.1101/gad.9.2.218
https://doi.org/10.4161/nucl.2.5.17707
https://doi.org/10.4161/nucl.2.5.17707
https://doi.org/10.4161/nucl.2.5.17707
https://doi.org/10.1186/1756-8935-3-6
https://doi.org/10.1186/1756-8935-3-6
https://doi.org/10.1186/1756-8935-3-6
https://doi.org/10.1128/MCB.22.7.2229-2241.2002
https://doi.org/10.1128/MCB.22.7.2229-2241.2002
https://doi.org/10.1128/MCB.22.7.2229-2241.2002
https://doi.org/10.1128/MCB.22.7.2229-2241.2002
https://doi.org/10.1126/science.1260638
https://doi.org/10.1126/science.1260638
https://doi.org/10.1126/science.1260638
https://doi.org/10.1038/35065138
https://doi.org/10.1038/35065138
https://doi.org/10.1038/35065138
https://doi.org/10.1038/35065138
https://doi.org/10.1016/S0076-6879(00)27292-3
https://doi.org/10.1016/S0076-6879(00)27292-3
https://doi.org/10.1016/S0076-6879(00)27292-3
https://doi.org/10.1016/j.cell.2010.01.038
https://doi.org/10.1016/j.cell.2010.01.038
https://doi.org/10.1016/j.cell.2010.01.038
https://doi.org/10.1016/j.cell.2010.01.038
https://doi.org/10.1038/emboj.2010.329
https://doi.org/10.1038/emboj.2010.329
https://doi.org/10.1038/emboj.2010.329
https://doi.org/10.1038/emboj.2010.329
https://doi.org/10.1038/emboj.2010.329
https://doi.org/10.1126/science.1064027
https://doi.org/10.1126/science.1064027
https://doi.org/10.1126/science.1064027
https://doi.org/10.1534/genetics.117.300390
https://doi.org/10.1534/genetics.117.300390
https://doi.org/10.1534/genetics.117.300390
https://doi.org/10.1534/genetics.117.300390
https://doi.org/10.1534/genetics.117.300390
https://doi.org/10.1083/jcb.201611087
https://doi.org/10.1083/jcb.201611087
https://doi.org/10.1083/jcb.201611087
https://doi.org/10.1091/mbc.e13-01-0034
https://doi.org/10.1091/mbc.e13-01-0034
https://doi.org/10.1091/mbc.e13-01-0034
https://doi.org/10.1091/mbc.e13-01-0034
https://doi.org/10.7554/eLife.02137
https://doi.org/10.7554/eLife.02137
https://doi.org/10.7554/eLife.02137
https://doi.org/10.7554/eLife.02137
https://doi.org/10.1073/pnas.1216934111
https://doi.org/10.1073/pnas.1216934111
https://doi.org/10.1073/pnas.1216934111
https://doi.org/10.1073/pnas.1216934111
https://doi.org/10.1016/j.cell.2006.04.025
https://doi.org/10.1016/j.cell.2006.04.025
https://doi.org/10.1016/j.cell.2006.04.025
https://doi.org/10.1091/mbc.e09-06-0489
https://doi.org/10.1091/mbc.e09-06-0489
https://doi.org/10.1091/mbc.e09-06-0489
https://doi.org/10.1091/mbc.e09-06-0489
https://doi.org/10.1073/pnas.1108705109
https://doi.org/10.1073/pnas.1108705109
https://doi.org/10.1073/pnas.1108705109
https://doi.org/10.1073/pnas.1108705109
https://doi.org/10.1534/g3.112.003327
https://doi.org/10.1534/g3.112.003327
https://doi.org/10.1534/g3.112.003327
https://doi.org/10.1534/g3.112.003327
https://doi.org/10.1016/j.devcel.2015.05.012
https://doi.org/10.1016/j.devcel.2015.05.012
https://doi.org/10.1016/j.devcel.2015.05.012
https://doi.org/10.1016/j.devcel.2015.05.012
https://doi.org/10.1016/j.devcel.2015.05.012
https://doi.org/10.1074/jbc.M111.228510
https://doi.org/10.1074/jbc.M111.228510
https://doi.org/10.1074/jbc.M111.228510
https://doi.org/10.1074/jbc.M111.228510
https://doi.org/10.1016/j.celrep.2014.04.012
https://doi.org/10.1016/j.celrep.2014.04.012
https://doi.org/10.1016/j.celrep.2014.04.012
https://doi.org/10.1016/j.celrep.2014.04.012
https://doi.org/10.1016/j.celrep.2014.04.012
https://doi.org/10.1038/nsmb1273
https://doi.org/10.1038/nsmb1273
https://doi.org/10.1038/nsmb1273
https://doi.org/10.1093/emboj/cdg232
https://doi.org/10.1093/emboj/cdg232
https://doi.org/10.1093/emboj/cdg232
https://doi.org/10.4161/nucl.18955
https://doi.org/10.4161/nucl.18955
https://doi.org/10.4161/nucl.18955
https://doi.org/10.4161/nucl.18955
https://doi.org/10.1242/dev.118927
https://doi.org/10.1242/dev.118927
https://doi.org/10.1242/dev.118927
https://doi.org/10.1242/dev.118927
https://doi.org/10.1371/journal.pgen.0030038
https://doi.org/10.1371/journal.pgen.0030038
https://doi.org/10.1371/journal.pgen.0030038
https://doi.org/10.1016/j.tig.2015.09.003
https://doi.org/10.1016/j.tig.2015.09.003
https://doi.org/10.1038/nsmb.2669
https://doi.org/10.1038/nsmb.2669
https://doi.org/10.1007/BF00329812
https://doi.org/10.1007/BF00329812
https://doi.org/10.1007/BF00329812
https://doi.org/10.1007/BF00328227
https://doi.org/10.1007/BF00328227
https://doi.org/10.1007/BF00328227
https://doi.org/10.1073/pnas.87.24.9923
https://doi.org/10.1073/pnas.87.24.9923
https://doi.org/10.1073/pnas.87.24.9923
https://doi.org/10.1073/pnas.87.24.9923
https://doi.org/10.1073/pnas.87.24.9923
https://doi.org/10.1093/nar/gku835
https://doi.org/10.1093/nar/gku835
https://doi.org/10.1093/nar/gku835
https://doi.org/10.1093/nar/gku835
https://doi.org/10.1093/nar/gku835
https://doi.org/10.1038/nature09906
https://doi.org/10.1038/nature09906
https://doi.org/10.1038/nature09906
https://doi.org/10.1038/nature09906
https://doi.org/10.1016/j.cell.2010.09.009
https://doi.org/10.1016/j.cell.2010.09.009
https://doi.org/10.1016/j.cell.2010.09.009
https://doi.org/10.1016/j.cell.2010.09.009


Fukagawa, T. and Earnshaw, W. C. (2014). The centromere: chromatin foundation
for the kinetochore machinery. Dev. Cell 30, 496-508. doi:10.1016/j.devcel.2014.
08.016

Fukagawa, T., Nogami, M., Yoshikawa, M., Ikeno, M., Okazaki, T., Takami, Y.,
Nakayama, T. and Oshimura, M. (2004). Dicer is essential for formation of the
heterochromatin structure in vertebrate cells. Nat. Cell Biol. 6, 784-791. doi:10.
1038/ncb1155

Fuks, F., Hurd, P. J., Wolf, D., Nan, X., Bird, A. P. and Kouzarides, T. (2003). The
Methyl-CpG-binding protein MeCP2 links DNA methylation to histone
methylation. J. Biol. Chem. 278, 4035-4040. doi:10.1074/jbc.M210256200

Galazka, J. M., Klocko, A. D., Uesaka, M., Honda, S., Selker, E. U. and Freitag, M.
(2016). Neurospora chromosomes are organized by blocks of importin alpha-
dependent heterochromatin that are largely independent of H3K9me3. Genome
Res. 26, 1069-1080. doi:10.1101/gr.203182.115

Grenfell, A. W., Heald, R. and Strzelecka, M. (2016). Mitotic noncoding RNA
processing promotes kinetochore and spindle assembly in Xenopus. J. Cell Biol.
214, 133-141. doi:10.1083/jcb.201604029

Guse, A., Carroll, C. W., Moree, B., Fuller, C. J. and Straight, A. F. (2011). In vitro
centromere and kinetochore assembly on defined chromatin templates. Nature
477, 354-358. doi:10.1038/nature10379

Hahn, M., Dambacher, S., Dulev, S., Kuznetsova, A. Y., Eck, S., Wörz, S., Sadic,
D., Schulte, M., Mallm, J.-P., Maiser, A. et al. (2013). Suv4-20h2 mediates
chromatin compaction and is important for cohesin recruitment to
heterochromatin. Genes Dev. 27, 859-872. doi:10.1101/gad.210377.112

Hayashi-Takanaka, Y., Maehara, K., Harada, A., Umehara, T., Yokoyama, S.,
Obuse, C., Ohkawa, Y., Nozaki, N. andKimura, H. (2015). Distribution of histone
H4 modifications as revealed by a panel of specific monoclonal antibodies.
Chromosom. Res. 23, 753. doi:10.1007/s10577-015-9486-4

Hayden, K. E., Strome, E. D., Merrett, S. L., Lee, H.-R., Rudd, M. K. and Willard,
H. F. (2013). Sequences associated with centromere competency in the human
genome. Mol. Cell. Biol. 33, 763-772. doi:10.1128/MCB.01198-12

Heitz, E. (1929). E. Heitz: heterochromatin, chromocentren, chromomeren. Ber.
Dtsch. Bot. Ges. 47, 274-284.

Hemmerich, P., Weidtkamp-Peters, S., Hoischen, C., Schmiedeberg, L.,
Erliandri, I. and Diekmann, S. (2008). Dynamics of inner kinetochore
assembly and maintenance in living cells. J. Cell Biol. 180, 1101-1114. doi:10.
1083/jcb.200710052

Hindriksen, S., Lens, S. M. A. and Hadders, M. A. (2017). The Ins and Outs of
Aurora B Inner Centromere Localization. Front. Cell Dev. Biol. 5, 112. doi:10.3389/
fcell.2017.00112

Honda, S., Lewis, Z. A., Shimada, K., Fischle, W., Sack, R. and Selker, E. U.
(2012). Heterochromatin protein 1 forms distinct complexes to direct histone
deacetylation and DNA methylation. Nat. Struct. Mol. Biol. 19, 471-477. doi:10.
1038/nsmb.2274

Hori, T., Shang, W.-H., Takeuchi, K. and Fukagawa, T. (2013). The CCAN recruits
CENP-A to the centromere and forms the structural core for kinetochore
assembly. J. Cell Biol. 200, 45-60. doi:10.1083/jcb.201210106

Hori, T., Kagawa, N., Toyoda, A., Fujiyama, A., Misu, S., Monma, N., Makino, F.,
Ikeo, K. and Fukagawa, T. (2017). Constitutive centromere-associated network
controls centromere drift in vertebrate cells. J. Cell Biol. 216, 101-113. doi:10.
1083/jcb.201605001

Huang, X. A., Yin, H., Sweeney, S., Raha, D., Snyder, M. and Lin, H. (2013). A
major epigenetic programming mechanism guided by piRNAs. Dev. Cell 24,
502-516. doi:10.1016/j.devcel.2013.01.023

Inoue, A., Hyle, J., Lechner, M. S. and Lahti, J. M. (2008). Perturbation of HP1
localization and chromatin binding ability causes defects in sister-chromatid
cohesion. Mutat. Res. 657, 48-55. doi:10.1016/j.mrgentox.2008.08.010

Jamieson, K., Wiles, E. T., McNaught, K. J., Sidoli, S., Leggett, N., Shao, Y.,
Garcia, B. A. and Selker, E. U. (2016). Loss of HP1 causes depletion of
H3K27me3 from facultative heterochromatin and gain of H3K27me2 at
constitutive heterochromatin. Genome Res. 26, 97-107. doi:10.1101/gr.194555.
115

Johnson, W. L., Yewdell, W. T., Bell, J. C., McNulty, S. M., Duda, Z., O’Neill, R. J.,
Sullivan, B. A. and Straight, A. F. (2017). RNA-dependent stabilization of
SUV39H1 at constitutive heterochromatin. eLife 6, e25299. doi:10.7554/eLife.
25299

Kagansky, A., Folco, H. D., Almeida, R., Pidoux, A. L., Boukaba, A., Simmer, F.,
Urano, T., Hamilton, G. L. and Allshire, R. C. (2009). Synthetic heterochromatin
bypasses RNAi and centromeric repeats to establish functional centromeres.
Science 324, 1716-1719. doi:10.1126/science.1172026

Keohane, A. M., O’Neill, L. P., Belyaev, N. D., Lavender, J. S. and Turner, B. M.
(1996). X-onactivation and histone H4 acetylation in embryonic stem cells. Dev.
Biol. 180, 618-630. doi:10.1006/dbio.1996.0333

Kimura, H., Hayashi-Takanaka, Y., Goto, Y., Takizawa, N. and Nozaki, N. (2008).
The organization of histone H3 modifications as revealed by a panel of specific
monoclonal antibodies. Cell Struct. Funct. 33, 61-73. doi:10.1247/csf.07035

Klare, K., Weir, J. R., Basilico, F., Zimniak, T., Massimiliano, L., Ludwigs, N.,
Herzog, F. and Musacchio, A. (2015). CENP-C is a blueprint for constitutive
centromere–associated network assembly within human kinetochores. J. Cell
Biol. 210, 11-22. doi:10.1083/jcb.201412028

Koch, B., Kueng, S., Ruckenbauer, C., Wendt, K. S. and Peters, J.-M. (2008).
The Suv39h-HP1 histone methylation pathway is dispensable for enrichment and
protection of cohesin at centromeres in mammalian cells. Chromosoma 117,
199-210. doi:10.1007/s00412-007-0139-z

Kohli, R. M. and Zhang, Y. (2013). TET enzymes, TDG and the dynamics of DNA
demethylation. Nature 502, 472-479. doi:10.1038/nature12750

Krishnan, S. and Trievel, R. C. (2013). Structural and functional analysis of
JMJD2D reveals molecular basis for site-specific demethylation among JMJD2
demethylases. Structure 21, 98-108. doi:10.1016/j.str.2012.10.018

Krouwels, I. M., Wiesmeijer, K., Abraham, T. E., Molenaar, C., Verwoerd, N. P.,
Tanke, H. J. and Dirks, R. W. (2005). A glue for heterochromatin maintenance:
stable SUV39H1 binding to heterochromatin is reinforced by the SET domain.
J. Cell Biol. 170, 537-549. doi:10.1083/jcb.200502154

Lachner, M., O’Carroll, D., Rea, S., Mechtler, K. and Jenuwein, T. (2001).
Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature
410, 116-120. doi:10.1038/35065132

Lehnertz, B., Ueda, Y., Derijck, A. A. H. A., Braunschweig, U., Perez-Burgos, L.,
Kubicek, S., Chen, T., Li, E., Jenuwein, T. and Peters, A. H. F. M. (2003).
Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to
major satellite repeats at pericentric heterochromatin. Curr. Biol. 13, 1192-1200.
doi:10.1016/S0960-9822(03)00432-9

Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila.Nature
276, 565-570. doi:10.1038/276565a0

Lewis, Z. A., Adhvaryu, K. K., Honda, S., Shiver, A. L., Knip, M., Sack, R. and
Selker, E. U. (2010). DNA methylation and normal chromosome behavior in
neurospora depend on five components of a histone methyltransferase complex,
DCDC. PLoS Genet. 6, e1001196. doi:10.1371/journal.pgen.1001196

Liu, S.-T., Rattner, J. B., Jablonski, S. A. and Yen, T. J. (2006). Mapping the
assembly pathways that specify formation of the trilaminar kinetochore plates in
human cells. J. Cell Biol. 175, 41-53. doi:10.1083/jcb.200606020

Lunyak, V. V., Burgess, R., Prefontaine, G. G., Nelson, C., Sze, S.-H.,
Chenoweth, J., Schwartz, P., Pevzner, P. A., Glass, C., Mandel, G. et al.
(2002). Corepressor-dependent silencing of chromosomal regions encoding
neuronal genes. Science 298, 1747-1752. doi:10.1126/science.1076469

Martins, N. M. C., Bergmann, J. H., Shono, N., Kimura, H., Larionov, V.,
Masumoto, H. andEarnshaw,W. C. (2016). Epigenetic engineering shows that a
human centromere resists silencing mediated by H3K27me3/K9me3. Mol. Biol.
Cell 27, 177-196. doi:10.1091/mbc.E15-08-0605

McNulty, S. M., Sullivan, L. L. and Sullivan, B. A. (2017). Human centromeres
produce chromosome-specific and array-specific alpha satellite transcripts that
are complexed with CENP-A and CENP-C. Dev. Cell 42, 226-240.e6. doi:10.
1016/j.devcel.2017.07.001

Melcher, M., Schmid, M., Aagaard, L., Selenko, P., Laible, G. and Jenuwein, T.
(2000). Structure-function analysis of SUV39H1 reveals a dominant role in
heterochromatin organization, chromosome segregation, andmitotic progression.
Mol. Cell. Biol. 20, 3728-3741. doi:10.1128/MCB.20.10.3728-3741.2000

Melters, D. P., Bradnam, K. R., Young, H. A., Telis, N., May, M. R., Ruby, J. G.,
Sebra, R., Peluso, P., Eid, J., Rank, D. et al. (2013). Comparative analysis of
tandem repeats from hundreds of species reveals unique insights into centromere
evolution. Genome Biol. 14, R10. doi:10.1186/gb-2013-14-1-r10

Mendiburo, M. J., Padeken, J., Fulop, S., Schepers, A. and Heun, P. (2011).
Drosophila CENH3 is sufficient for centromere formation. Science 334, 686-690.
doi:10.1126/science.1206880

Meraldi, P., McAinsh, A. D., Rheinbay, E. and Sorger, P. K. (2006). Phylogenetic
and structural analysis of centromeric DNA and kinetochore proteins. Genome
Biol. 7, R23. doi:10.1186/gb-2006-7-3-r23

Molina, O., Vargiu, G., Abad, M. A., Zhiteneva, A., Jeyaprakash, A. A.,
Masumoto, H., Kouprina, N., Larionov, V. and Earnshaw, W. C. (2016a).
Epigenetic engineering reveals a balance between histone modifications and
transcription in kinetochore maintenance. Nat. Commun. 7, 13334. doi:10.1038/
ncomms13334

Molina, O., Carmena, M., Maudlin, I. E. and Earnshaw,W. C. (2016b). PREditOR:
a synthetic biology approach to removing heterochromatin from cells.
Chromosom. Res. 24, 495-509. doi:10.1007/s10577-016-9539-3

Mravinac, B., Sullivan, L. L., Reeves, J. W., Yan, C. M., Kopf, K. S., Farr, C. J.,
Schueler, M. G. and Sullivan, B. A. (2009). Histone modifications within the
human X centromere region. PLoS ONE 4, e6602. doi:10.1371/journal.pone.
0006602

Müller-Ott, K., Erdel, F., Matveeva, A., Mallm, J.-P., Rademacher, A., Hahn, M.,
Bauer, C., Zhang, Q., Kaltofen, S., Schotta, G. et al. (2014). Specificity,
propagation, and memory of pericentric heterochromatin. Mol. Syst. Biol. 10,
746-746. doi:10.15252/msb.20145377

Musacchio, A. and Desai, A. (2017). A molecular view of kinetochore assembly
and function. Biology 6, 5. doi:10.3390/biology6010005

Nakano, M., Okamoto, Y., Ohzeki, J. and Masumoto, H. (2003). Epigenetic
assembly of centromeric chromatin at ectopic alpha-satellite sites on human
chromosomes. J. Cell Sci. 116, 4021-4034. doi:10.1242/jcs.00697

Nakano, M., Cardinale, S., Noskov, V. N., Gassmann, R., Vagnarelli, P.,
Kandels-Lewis, S., Larionov, V., Earnshaw, W. C. and Masumoto, H. (2008).

15

RESEARCH ARTICLE Journal of Cell Science (2020) 133, jcs242610. doi:10.1242/jcs.242610

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://doi.org/10.1016/j.devcel.2014.08.016
https://doi.org/10.1016/j.devcel.2014.08.016
https://doi.org/10.1016/j.devcel.2014.08.016
https://doi.org/10.1038/ncb1155
https://doi.org/10.1038/ncb1155
https://doi.org/10.1038/ncb1155
https://doi.org/10.1038/ncb1155
https://doi.org/10.1074/jbc.M210256200
https://doi.org/10.1074/jbc.M210256200
https://doi.org/10.1074/jbc.M210256200
https://doi.org/10.1101/gr.203182.115
https://doi.org/10.1101/gr.203182.115
https://doi.org/10.1101/gr.203182.115
https://doi.org/10.1101/gr.203182.115
https://doi.org/10.1083/jcb.201604029
https://doi.org/10.1083/jcb.201604029
https://doi.org/10.1083/jcb.201604029
https://doi.org/10.1038/nature10379
https://doi.org/10.1038/nature10379
https://doi.org/10.1038/nature10379
https://doi.org/10.1101/gad.210377.112
https://doi.org/10.1101/gad.210377.112
https://doi.org/10.1101/gad.210377.112
https://doi.org/10.1101/gad.210377.112
https://doi.org/10.1007/s10577-015-9486-4
https://doi.org/10.1007/s10577-015-9486-4
https://doi.org/10.1007/s10577-015-9486-4
https://doi.org/10.1007/s10577-015-9486-4
https://doi.org/10.1128/MCB.01198-12
https://doi.org/10.1128/MCB.01198-12
https://doi.org/10.1128/MCB.01198-12
https://doi.org/10.1083/jcb.200710052
https://doi.org/10.1083/jcb.200710052
https://doi.org/10.1083/jcb.200710052
https://doi.org/10.1083/jcb.200710052
https://doi.org/10.3389/fcell.2017.00112
https://doi.org/10.3389/fcell.2017.00112
https://doi.org/10.3389/fcell.2017.00112
https://doi.org/10.1038/nsmb.2274
https://doi.org/10.1038/nsmb.2274
https://doi.org/10.1038/nsmb.2274
https://doi.org/10.1038/nsmb.2274
https://doi.org/10.1083/jcb.201210106
https://doi.org/10.1083/jcb.201210106
https://doi.org/10.1083/jcb.201210106
https://doi.org/10.1083/jcb.201605001
https://doi.org/10.1083/jcb.201605001
https://doi.org/10.1083/jcb.201605001
https://doi.org/10.1083/jcb.201605001
https://doi.org/10.1016/j.devcel.2013.01.023
https://doi.org/10.1016/j.devcel.2013.01.023
https://doi.org/10.1016/j.devcel.2013.01.023
https://doi.org/10.1016/j.mrgentox.2008.08.010
https://doi.org/10.1016/j.mrgentox.2008.08.010
https://doi.org/10.1016/j.mrgentox.2008.08.010
https://doi.org/10.1101/gr.194555.115
https://doi.org/10.1101/gr.194555.115
https://doi.org/10.1101/gr.194555.115
https://doi.org/10.1101/gr.194555.115
https://doi.org/10.1101/gr.194555.115
https://doi.org/10.7554/eLife.25299
https://doi.org/10.7554/eLife.25299
https://doi.org/10.7554/eLife.25299
https://doi.org/10.7554/eLife.25299
https://doi.org/10.1126/science.1172026
https://doi.org/10.1126/science.1172026
https://doi.org/10.1126/science.1172026
https://doi.org/10.1126/science.1172026
https://doi.org/10.1006/dbio.1996.0333
https://doi.org/10.1006/dbio.1996.0333
https://doi.org/10.1006/dbio.1996.0333
https://doi.org/10.1247/csf.07035
https://doi.org/10.1247/csf.07035
https://doi.org/10.1247/csf.07035
https://doi.org/10.1083/jcb.201412028
https://doi.org/10.1083/jcb.201412028
https://doi.org/10.1083/jcb.201412028
https://doi.org/10.1083/jcb.201412028
https://doi.org/10.1007/s00412-007-0139-z
https://doi.org/10.1007/s00412-007-0139-z
https://doi.org/10.1007/s00412-007-0139-z
https://doi.org/10.1007/s00412-007-0139-z
https://doi.org/10.1038/nature12750
https://doi.org/10.1038/nature12750
https://doi.org/10.1016/j.str.2012.10.018
https://doi.org/10.1016/j.str.2012.10.018
https://doi.org/10.1016/j.str.2012.10.018
https://doi.org/10.1083/jcb.200502154
https://doi.org/10.1083/jcb.200502154
https://doi.org/10.1083/jcb.200502154
https://doi.org/10.1083/jcb.200502154
https://doi.org/10.1038/35065132
https://doi.org/10.1038/35065132
https://doi.org/10.1038/35065132
https://doi.org/10.1016/S0960-9822(03)00432-9
https://doi.org/10.1016/S0960-9822(03)00432-9
https://doi.org/10.1016/S0960-9822(03)00432-9
https://doi.org/10.1016/S0960-9822(03)00432-9
https://doi.org/10.1016/S0960-9822(03)00432-9
https://doi.org/10.1038/276565a0
https://doi.org/10.1038/276565a0
https://doi.org/10.1371/journal.pgen.1001196
https://doi.org/10.1371/journal.pgen.1001196
https://doi.org/10.1371/journal.pgen.1001196
https://doi.org/10.1371/journal.pgen.1001196
https://doi.org/10.1083/jcb.200606020
https://doi.org/10.1083/jcb.200606020
https://doi.org/10.1083/jcb.200606020
https://doi.org/10.1126/science.1076469
https://doi.org/10.1126/science.1076469
https://doi.org/10.1126/science.1076469
https://doi.org/10.1126/science.1076469
https://doi.org/10.1091/mbc.E15-08-0605
https://doi.org/10.1091/mbc.E15-08-0605
https://doi.org/10.1091/mbc.E15-08-0605
https://doi.org/10.1091/mbc.E15-08-0605
https://doi.org/10.1016/j.devcel.2017.07.001
https://doi.org/10.1016/j.devcel.2017.07.001
https://doi.org/10.1016/j.devcel.2017.07.001
https://doi.org/10.1016/j.devcel.2017.07.001
https://doi.org/10.1128/MCB.20.10.3728-3741.2000
https://doi.org/10.1128/MCB.20.10.3728-3741.2000
https://doi.org/10.1128/MCB.20.10.3728-3741.2000
https://doi.org/10.1128/MCB.20.10.3728-3741.2000
https://doi.org/10.1186/gb-2013-14-1-r10
https://doi.org/10.1186/gb-2013-14-1-r10
https://doi.org/10.1186/gb-2013-14-1-r10
https://doi.org/10.1186/gb-2013-14-1-r10
https://doi.org/10.1126/science.1206880
https://doi.org/10.1126/science.1206880
https://doi.org/10.1126/science.1206880
https://doi.org/10.1186/gb-2006-7-3-r23
https://doi.org/10.1186/gb-2006-7-3-r23
https://doi.org/10.1186/gb-2006-7-3-r23
https://doi.org/10.1038/ncomms13334
https://doi.org/10.1038/ncomms13334
https://doi.org/10.1038/ncomms13334
https://doi.org/10.1038/ncomms13334
https://doi.org/10.1038/ncomms13334
https://doi.org/10.1007/s10577-016-9539-3
https://doi.org/10.1007/s10577-016-9539-3
https://doi.org/10.1007/s10577-016-9539-3
https://doi.org/10.1371/journal.pone.0006602
https://doi.org/10.1371/journal.pone.0006602
https://doi.org/10.1371/journal.pone.0006602
https://doi.org/10.1371/journal.pone.0006602
https://doi.org/10.15252/msb.20145377
https://doi.org/10.15252/msb.20145377
https://doi.org/10.15252/msb.20145377
https://doi.org/10.15252/msb.20145377
https://doi.org/10.3390/biology6010005
https://doi.org/10.3390/biology6010005
https://doi.org/10.1242/jcs.00697
https://doi.org/10.1242/jcs.00697
https://doi.org/10.1242/jcs.00697
https://doi.org/10.1016/j.devcel.2008.02.001
https://doi.org/10.1016/j.devcel.2008.02.001


Inactivation of a human kinetochore by specific targeting of chromatin modifiers.
Dev. Cell 14, 507-522. doi:10.1016/j.devcel.2008.02.001

Neri, F., Incarnato, D., Krepelova, A., Rapelli, S., Pagnani, A., Zecchina, R.,
Parlato, C. and Oliviero, S. (2013). Genome-wide analysis identifies a functional
association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem
cells. Genome Biol. 14, R91. doi:10.1186/gb-2013-14-8-r91

Nizialek, E. A., Sankunny, M., Niazi, F. and Eng, C. (2016). Cancer-predisposition
geneKLLNmaintains pericentric H3K9 trimethylation protecting genomic stability.
Nucleic Acids Res. 44, 3586-3594. doi:10.1093/nar/gkv1481

Nonaka, N., Kitajima, T., Yokobayashi, S., Xiao, G., Yamamoto, M., Grewal,
S. I. S. and Watanabe, Y. (2002). Recruitment of cohesin to heterochromatic
regions by Swi6/HP1 in fission yeast.Nat. Cell Biol. 4, 89-93. doi:10.1038/ncb739

Ohzeki, J.-I., Bergmann, J. H., Kouprina, N., Noskov, V. N., Nakano, M., Kimura,
H., Earnshaw, W. C., Larionov, V. and Masumoto, H. (2012). Breaking the HAC
Barrier: histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO
J. 31, 2391-2402. doi:10.1038/emboj.2012.82

Ohzeki, J.-I., Shono, N., Otake, K., Martins, N. M. C., Kugou, K., Kimura, H.,
Nagase, T., Larionov, V., Earnshaw, W. C. and Masumoto, H. (2016). KAT7/
HBO1/MYST2 regulates CENP-A chromatin assembly by antagonizing Suv39h1-
mediated centromere inactivation. Dev. Cell 37, 413-427. doi:10.1016/j.devcel.
2016.05.006

Oliveira, R. A., Kotadia, S., Tavares, A., Mirkovic, M., Bowlin, K., Eichinger, C. S.,
Nasmyth, K. and Sullivan, W. (2014). Centromere-independent accumulation of
cohesin at ectopic heterochromatin sites induces chromosome stretching during
anaphase. PLoS Biol. 12, e1001962. doi:10.1371/journal.pbio.1001962

Olszak, A. M., van Essen, D., Pereira, A. J., Diehl, S., Manke, T., Maiato, H.,
Saccani, S. and Heun, P. (2011). Heterochromatin boundaries are hotspots for
de novo kinetochore formation. Nat. Cell Biol. 13, 799-808. doi:10.1038/ncb2272

Orth, P., Cordes, F., Schnappinger, D., Hillen, W., Saenger, W. and Hinrichs, W.
(1998). Conformational changes of the Tet repressor induced by tetracycline
trapping. J. Mol. Biol. 279, 439-447. doi:10.1006/jmbi.1998.1775

Peng, J. C. and Karpen, G. H. (2007). H3K9 methylation and RNA interference
regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 9,
25-35. doi:10.1038/ncb1514

Peters, A. H. F. M., O’Carroll, D., Scherthan, H., Mechtler, K., Sauer, S., Schöfer, C.,
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