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ABSTRACT
Osteoclasts are giant multinucleated myeloid cells specialized for
bone resorption, which is essential for the preservation of bone health
throughout life. The activity of osteoclasts relies on the typical
organization of osteoclast cytoskeleton components into a highly
complex structure comprising actin,microtubules and othercytoskeletal
proteins that constitutes the backbone of thebone resorption apparatus.
The development of methods to differentiate osteoclasts in culture and
manipulate them genetically, as well as improvements in cell imaging
technologies, has shed light onto the molecular mechanisms that
control the structure and dynamics of the osteoclast cytoskeleton, and
thus the mechanism of bone resorption. Although essential for normal
bone physiology, abnormal osteoclast activity can cause bone defects,
in particular their hyper-activation is commonly associated with many
pathologies, hormonal imbalance and medical treatments. Increased
bone degradation by osteoclasts provokes progressive bone loss,
leading to osteoporosis, with the resulting bone frailty leading to
fractures, loss of autonomy and premature death. In this context, the
osteoclast cytoskeleton has recently proven to be a relevant therapeutic
target for controlling pathological bone resorption levels. Here, we
review the present knowledge on the regulatory mechanisms of the
osteoclast cytoskeleton that control their bone resorption activity in
normal and pathological conditions.

KEY WORDS: Intermediate filament, Microtubule, Osteoclast,
Osteoporosis, Rho GTPase, Septin

Introduction
The cytoskeleton is made of filamentous structures that belong to one
of four categories: the polarized actin filaments or microtubules, or
the non-polarized intermediate or septin filaments (Dogterom and
Koenderink, 2019; Goldmann, 2018; Spiliotis, 2018). It fulfills
essential cellular functions, in particular for cell adhesion, migration,
contractility, division and vesicular transport. The cytoskeleton can
adopt unique shapes to support particular functions in differentiated
cells, such as phagocytosis in macrophages (Rougerie et al., 2013),
myotube contractility (Henderson et al., 2017), epithelial elasticity
(Latorre et al., 2018), long-distance signal transmission in neurons
(Dent, 2020) and bone resorption by osteoclasts (Georgess et al.,
2014a; Touaitahuata et al., 2014).
Bone is a connective tissue predominantly composed of highly

organized collagen I fibrils mineralized with calcium phosphate

crystals of hydroxyapatite (Reznikov et al., 2014). Although very
stiff, bone is highly dynamic; old bone is removed and replaced by
new bone throughout life. Specific post-mitotic differentiated cells
ensure cytoskeleton remodeling: the osteoclasts resorb the bone and
the osteoblasts produce and organize the new bone matrix
(Florencio-Silva et al., 2015). The osteocytes, a subset of
osteoblasts embedded into the bone matrix, coordinate bone
remodeling by monitoring skeleton load and sensing bone
damages (Tresguerres et al., 2020). Osteoclasts are multinucleated
hematopoietic cells that derive from myeloid precursors of the
monocyte/macrophage lineage, whose differentiation is triggered by
macrophage colony-stimulating factor (M-CSF; also known as
CSF1) and receptor activator of nuclear factor-κB ligand (RANKL;
also known as TNFSF11) (Jacome-Galarza et al., 2019). M-CSF
and RANKL induce a differentiation program that includes cell–cell
fusions to generate multinucleated osteoclasts (Fig. 1A) with the
ability to resorb bone (Jacome-Galarza et al., 2019). The bone
resorption apparatus consists of a highly convoluted plasma
membrane domain, the ruffled border, which is in contact with
the bone matrix (Ng et al., 2019) (Fig. 1A). There, the ATP-
dependent vacuolar proton pump V-ATPase and the chloride
channel type 7 (Clcn7), respectively, secrete H+ and Cl− into the
resorption lacuna (Fig. 1A,B), which acidifies the medium and
dissolves bone hydroxyapatite (Ng et al., 2019). Mineral dissolution
unmasks bone proteins, now amenable for proteolytic degradation
by proteases secreted at the ruffled border, including cathepsin K,
which can hydrolyze collagen fibril (Ng et al., 2019), and the matrix
metalloproteinases MMP9 and MMP14 (Zhu et al., 2020) (Fig. 1A,B),
thus forming a bone resorption pit (Fig. 1C). The ruffled border is
confined within a unique adhesion structure made of a belt of densely
packed podosomes (see Box 1), called the sealing zone or podosome
belt (Fig. 1A,B, Box 2). Podosomes ensure osteoclast adhesion to the
substrate via integrin αvβ3, the major osteoclast integrin (Georgess
et al., 2014a). A complex network of microtubules sustains osteoclast
podosome organization (Fig. 1D). Osteoclast podosomal structures are
dynamic (Fig. 1E,F, Box 2); they slide, assemble and disassemble,
generating a series of resorption pits on the bone surface during the
2-week lifetime of osteoclasts (Jacome-Galarza et al., 2019; Søe and
Delaissé, 2017).

The osteoclast cytoskeleton is instrumental for its bone
resorption function, as the sealing zone supports the ruffled
border. Not surprisingly, a lot of effort has been put into
understanding the dynamics and regulation of the osteoclast
cytoskeleton. These studies, based on various osteoclast models
(see Box 3), have established that the osteoclast cytoskeleton can
also be viewed as a therapeutic target to control osteoclast
activity in the context of bone diseases. This Review provides an
update of our knowledge of osteoclast cytoskeleton and points to
the questions that are now emerging at the beginning of the
new decade.
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The regulation of actin dynamics in osteoclasts and its
impact on bone resorption
As actin is the major component of podosomes, actin-regulating
proteins have received prominent attention as potential regulators of
bone resorption (Georgess et al., 2014a; Touaitahuata et al., 2014).
Downstream of integrins, the tyrosine kinase Src is a key controller
of the actin cytoskeleton and has been shown to control podosome
dynamics and organization in osteoclasts, which express high levels
of Src, and thus bone resorption (Destaing et al., 2008).
Interestingly, while Src is ubiquitously expressed, its knockout
(KO) in the mouse leads to one predominant phenotype: a severe
osteopetrosis resulting from a defect in osteoclast function (Horne
et al., 1992; Lowell and Soriano, 1996; Soriano et al., 1991). Src
binds to the tyrosine kinase Pyk2 (also known as PTK2B) and
they activate each other downstream of αvβ3 integrin (Fig. 2) to
regulate podosome dynamics in osteoclasts, in particular through
small GTPases of the Rho family (RhoGTPases), which are the

major regulators of actin dynamics (Gil-Henn et al., 2007; Sanjay
et al., 2001).

Accordingly, the RhoGTPases RhoA, Rac1 and Rac2
(fp130denoted generically as Rac) and Cdc42 indeed have a key
role in controlling the actin cytoskeleton in osteoclasts, as detailed
below (Georgess et al., 2014a; Ory et al., 2008; Touaitahuata et al.,
2014) (Fig. 2). Differential gene expression has been used to
identify the regulators of RhoGTPase activity necessary for
osteoclast cytoskeleton organization and efficient bone resorption
(Brazier et al., 2006; Georgess et al., 2014b; Maurin et al., 2018).
The expression of various Rho guanine nucleotide exchange factors
(GEFs), which activate the RhoGTPases by promoting their binding
to GTP (Fort and Blangy, 2017), increases during osteoclast
differentiation (Brazier et al., 2006). In fact, several of these control
the osteoclast cytoskeleton and thus bone resorption, in particular
GEFs for the RhoGTPases Rac1 and Rac2, which are both needed
for podosome organization into a belt (Croke et al., 2011; Itokowa
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Fig. 1. General organization of the osteoclast cytoskeleton. (A,B) Schematic side view of an osteoclast (A) and top view of the sealing zone (B). Osteoclasts
(OC) are multinucleated (N) cells that adhere to the bone by means of a sealing zone, consisting of a belt of densely packed podosomes (blue dots) (see Boxes 1
and 2); the belt is stabilized by microtubules (MT) that emanate from the pericentriolar material that localizes to the Golgi (light orange), which surrounds each
nucleus. At the center of the sealing zone, the osteoclast membrane differentiates into a ruffled border where the v-ATPase proton pump (orange symbols)
secretes protons and theClcn7 chloride channel (red-brown symbols) secretes Cl− ions to acidify the resorption lacuna (RL) and dissolve bone calcium phosphate
crystals of hydroxyapatite (CaP). The ruffled border also secretes the proteases cathepsin K (CtsK), MMP9 andMMP14 (pacman symbols) into the RL to degrade
bone proteins, mainly collagen I. (C) Scanning electron microscopy image of a resorption pit (RP, arrow) formed on a bone slice after the resorption activity of an
osteoclast (OC). (D) Fluorescence microcopy image of an osteoclast plated on glass and stained for F-actin in blue and for tubulin in green to visualize the
podosome belt and microtubules, respectively; images on the right showan enlargement of the boxed area in themain image. (E) Schematic view of sealing zone
assembly in an osteoclast sitting on a mineralized substrate; the initial actin patch evolves into a ring of podosomes that enlarges to form a sealing zone (see
Box 2). (F) Schematic view of podosome organization during osteoclast differentiation or osteoclast adhesion onto a non-mineralized substrate; initial podosome
clusters evolve into rings of podosomes that expand and fuse to form the podosome belt (see Box 2 for details).
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et al., 2011; Magalhaes et al., 2011; Wang et al., 2008). Among
these, the Rac GEF dedicator of cytokinesis protein 5 (Dock5)
localizes to the podosome belt and is required for sealing zone
assembly (Vives et al., 2011). The binding to adaptor protein tensin-
3 stimulates Dock5 exchange activity towards Rac (Touaitahuata
et al., 2016) (Fig. 2). Dock5 controls the activating phosphorylation
levels of the Src substrate p130Cas (also known as BCAR1), an
adaptor protein required for the sealing zone formation (Nagai et al.,
2013), through an unknown mechanism (Vives et al., 2011),
Moreover, chemical inhibition of Rac activation through Dock5
confirmed its essential role for osteoclast podosome belt formation
and bone resorption activity (Ferrandez et al., 2017; Vives et al.,
2011). Consistent with this Dock5 KO mice, which are perfectly
viable, have increased bone mass (Vives et al., 2011). The Rac GEF
VAV3 also participates in podosome belt formation (Faccio et al.,
2005; Sakai et al., 2006); VAV3 is activated by the tyrosine protein
kinases Src and SYK downstream of integrin αvβ3 and the M-CSF
receptor c-Fms (also known as CSF1R) (Zou et al., 2007) (Fig. 2). In
this way, VAV3 controls osteoclast activity, as also demonstrated by
Vav3 KO mice, which have increased bone mass (Faccio et al.,
2005). FARP2 is another Rac GEF required for the localized
activation of Rac1 at rings of podosomes (Box 2): FARP2 depletion
impairs podosome belt formation and bone resorption, confirmed
by an increased bone mass in the Farp2 KO mouse (Takegahara
et al., 2010). Thus, bone resorption involves a complex spatial and
temporal regulation of Rac activity to organize the osteoclast actin
cytoskeleton.
Cdc42 is also necessary for sealing zone formation (Ito et al.,

2010; Steenblock et al., 2014) (Fig. 2). In contrast, the deletion of
Arhgap1, a Cdc42 GTPase-activating protein (GAP), which
inactivates the GTPase by stimulating its GTP hydrolysis activity
(Tcherkezian and Lamarche-Vane, 2007), has been shown to favor

sealing zone formation and stimulate bone resorption (Ito et al.,
2010). The faciogenital dysplasia (FGD) family member FGD6 is a
Cdc42 GEF required for bone resorption; it controls podosome
formation and lifetime (Steenblock et al., 2014). This study in
osteoclasts shows that, when it is phosphorylated by Src, FGD6
binds the Cdc42 effector IQGAP1, an adaptor protein necessary for
sealing zone formation (Fig. 2), while otherwise, it binds the Cdc42
GAP Arhgap10. This switch in the binding partners of FGD6 could
control the local activation of Cdc42 at the sealing zone (Steenblock
et al., 2014).

RhoA has a crucial role in podosome organization in osteoclasts;
both increasing and decreasing its activity disturbs the podosome
belt (Chellaiah et al., 2000; Ory et al., 2000). RhoA activity
decreases when podosomes organize from clusters into rings and
then belts, and RhoA inhibition accelerates podosome belt
formation (Destaing et al., 2005). Conversely, increasing the
activity of RhoA collapses the belt into rings and clusters of
podosomes (Destaing et al., 2005; Ory et al., 2000). However, on a
mineralized substrate, the inhibition of RhoA leads to a relaxation of
the sealing zone and the formation of a podosome belt (Saltel et al.,
2004), in which podosomes are less densely packed (Box 2). Owing
to its crucial role in podosome organization in osteoclasts, the
activity of RhoA is tightly balanced (Fig. 2). For instance, the RhoA
GAP myosin 9b (Myo9b) (Post et al., 1998) accumulates at the
podosome belt, where RhoA activity is low, whereas it is absent at
the sealing zone, where RhoA activity is high (McMichael et al.,
2014). Depletion of Myo9b increases the levels of active RhoA and
perturbs sealing zone formation, as well as bone resorption, which
can be counteracted through treatment with the RhoA inhibitor C3

Box 1. Podosomes
Podosomes are characteristic adhesion structures of myeloid cells,
including osteoclasts, macrophages and immature dendritic cells (van
den Dries et al., 2019b). Conversely, invadopodia designate closely
related structures typical of invading tumor cells (Linder and Wiesner,
2015; Paterson and Courtneidge, 2018). The ultrastructure of
podosomes has been reviewed in detail very recently (van den Dries
et al., 2019b). In brief, podosomes are dot-like adhesion structures
composed of a core domain, likely made of branched actin that
polymerizes beneath the plasma membrane. The podosome core is
surrounded by a podosome ring, usually called the podosome cloud in
osteoclasts, consisting of unbranched actomyosin filaments connected
to integrins; actomyosin filaments also link neighboring podosomes. In
addition, a cap structure containing actin nucleators of the formin family
is present on top of the podosome core, which appears to participate in
the coordinated podosome oscillations through actomyosin fibers that
connect adjacent podosomes (Mersich et al., 2010; Panzer et al., 2016;
van den Dries et al., 2019a). In osteoclasts, the core domain of
podosomes contains the adhesion protein CD44, the cloud connects to
integrin αvβ3 (Georgess et al., 2014a) and the cap contains tropomyosin
4 (McMichael et al., 2006). In contrast to immature dendritic cells and
macrophages, podosomes only transiently organize into clusters in
osteoclasts, as visible during the early steps of osteoclastogenesis or of
osteoclast adhesion (Destaing et al., 2003; Eleniste and Bruzzaniti,
2012; Saltel et al., 2004) (Fig. 1F). The typical podosome structures in
osteoclasts are the sealing zone and the podosome belt (Box 2).
Whereas the lifetime of an individual podosome is short, typically in the
range of minutes, the sealing zone and the podosome belt, made of
thousands of podosomes, can last for hours (Bhuwania et al., 2012;
Destaing et al., 2003; Klapproth et al., 2019).

Box 2. Podosome belt and sealing zone
The sealing zone (Fig. 1A,B) is made of a 3–6-µm-wide belt of densely
packed podosomes; the core to core distance is ∼210 nm (Luxenburg
et al., 2007). The sealing zone is observed in osteoclasts on bone or
placed on natural or artificial mineralized substrates, such as nacre or
pure calcium phosphate coated-plates (Shemesh et al., 2017). When
osteoclasts are on a non-mineralized substrate, a slightly different
structure appears, called the podosome belt or sealing zone-like
structure; it is 2–3 µm wide with a podosome core-to-core distance of
∼480 nm (Luxenburg et al., 2007). The podosome belt is distinct from the
podosome rosettes observed in invading cells, which are related to
invadopodia (Linder, 2007). Sealing zone assembly begins with an actin
patch, a poorly characterized structure that evolves into a ring and then a
sealing zone (McMichael et al., 2010; Saltel et al., 2004; Takito et al.,
2018) (Fig. 1E). During osteoclast differentiation, which takes several
days, cells initially exhibit podosome clusters that are similar to those of
macrophages or immature dendritic cells; differentiating osteoclasts
progressively organize rings of podosomes that expand and fuse to form
a single podosome belt in mature osteoclasts (Georgess et al., 2014a;
Touaitahuata et al., 2014) (Fig. 1F). During this process, podosome
compaction increases: the core-to-core distance is ∼750 nm in
podosome clusters, but only ∼480 nm in the podosome belt
(Luxenburg et al., 2007). A similar transition is observed upon
osteoclast attachment to the substrate; the formation of rings of
podosomes requires about 1 h, and the podosome belt establishes
after several hours (Eleniste and Bruzzaniti, 2012). Although the two
structures are not exactly the same, the podosome belt formed on glass
or plastic recapitulates many features of the sealing zone on bone, and
the presence of the podosome belt on glass/plastic reflects the ability of
the osteoclast to form a sealing zone when on a mineralized substrate
(Saltel et al., 2004). The osteoclast also forms a ruffled border-like
structurewithin the podosome belt (Fuller et al., 2010) and, as is the case
on bone, the extracellular medium beneath the cell becomes highly
acidic (Silver et al., 1988).
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(McMichael et al., 2014). Furthermore, the expression of the
atypical RhoGTPase RhoE (also known as Rnd3) increases during
osteoclast differentiation (Georgess et al., 2014b). RhoE
antagonizes RhoA activity: it both binds and activates the RhoA
GAPs p190ARhoGAP (ARHGAP35) and p190BRhoGAP
(ARHGAP5) (Wennerberg et al., 2003), whereas it binds to but

inhibits the RhoA effector Rho-associated protein kinase 1
(ROCK1) (Oinuma et al., 2012). RhoE KO osteoclasts have fewer
podosomes, and they are defective in podosome belt and sealing
zone formation and have a low bone resorption activity (Georgess
et al., 2014b). RhoE prevents the ROCK1-mediated inhibitory
phosphorylation of the actin-severing protein cofilin (herein
referring to cofilin 1) on serine 3 (Georgess et al., 2014b)
(Fig. 2), which is needed for podosome belt formation (Zalli
et al., 2016). Cofilin activity, as monitored by serine 3
dephosphorylation, increases during the differentiation of
osteoclasts (Blangy et al., 2012). Furthermore, cofilin serine 3
dephosphorylation is required for its association with cortactin
(Zalli et al., 2016), an actin-nucleation promoting factor also needed
for podosome organization and bone resorption (Tehrani et al.,
2006). The cofilin–cortactin complex is required for belt formation
(Zalli et al., 2016), as detailed below. Finally, the RhoA GAPArap1
also localizes to osteoclast podosomal structures and its RhoA GAP
activity is needed for podosome belt and sealing zone formation
(Segeletz et al., 2018).

Although the spatiotemporal regulation of RhoGTPase signaling
pathways by specific GEFs and GAPs is clearly crucial for
controlling the formation of osteoclast podosome superstructures,
how they are coordinated in time and space remains far from being
understood. Besides controlling RhoGTPase activity, GEFs and
GAPs are multimodal proteins that are able to couple the actin
cytoskeleton to other cellular features. For instance, Arap1 has two
GAP domains, one for Rho and one for Arf GTPases (Miura et al.,
2002), which are essential regulators of intracellular trafficking
(Sztul et al., 2019). Thus, Arap1 couples the regulation of actin
through its RhoA GAP domain to that of membrane trafficking to
the ruffled border through its Arf GAP domain (Segeletz et al.,
2018). Similarly, Dock5 is likely to participate in actin and
microtubule crosstalk, as this GEF for Rac also controls microtubule

Box3.Historical overviewofmodel systemsused to study
osteoclast biology
Until the late 1990s, osteoclasts were either isolated directly from rat,
rabbit, human or chicken bones, which were very fragile and few in
numbers, allowing only limited studies (Teti et al., 1991), or they were
obtained from co-cultures of bone marrow or spleen cells with
osteoblastic cells, which led to non-homogeneous cellular cultures
(Akatsu et al., 1992). Then, RANKL was identified as the key cytokine
that, together with M-CSF, can support the differentiation of primary
hematopoietic progenitors into bone-resorbing osteoclasts in culture
(Lacey et al., 1998). Hence, osteoclast differentiation became possible,
either by ex vivo culture of mouse bone marrow or human peripheral
blood cells in the presence of RANKL andM-CSF, or culturing themouse
monocyte/macrophage-derived cell line RAW264.7 in the presence of
RANKL (Hsu et al., 1999). To study the role of a gene of interest, one can
either differentiate osteoclasts from a relevant KO mouse model, or
transfect siRNAs or transduce shRNAs in wild-type osteoclasts or
osteoclast precursors. Very recently, mouse myeloid progenitors have
been immortalized by the ectopic expression of the homeodomain
containing transcription factor Hoxb8; these cells differentiate into
functional osteoclasts in the presence of RANKL and M-CSF and are
amenable for CRISP/Cas9-mediated gene deletion (Di Ceglie et al., 2017).
These different systemshave paved theway for the geneticmanipulation of
osteoclasts in culture and shed light on the molecular mechanisms
controlling osteoclast cytoskeleton and then bone resorption. Of note, the
different osteoclast models may lead to non-consistent findings, as for
instance regarding Myo10 function (see main text).
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Fig. 2. Signaling pathways involved in the control of the osteoclast cytoskeleton and bone resorption. Downstream of integrin αvβ3 and the M-CSF
receptor c-Fms, the non-receptor tyrosine kinases Src, Pyk2 and Syk control the activity of various GEFs that activate the GTPases Rac and Cdc42. Dock5, Vav3
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RhoA effector mDia2, which activates the α-tubulin deacetylase HDAC6, and of Cbl, which inhibits HDAC6. The cofilin–cortactin complex participates in actin–
microtubule crosstalk in osteoclasts. The formation of this complex requires the acetylation (ac) of the both cofilin and cortactin; it is counteracted by the
deacetylase HDAC6 and by ROCK1-mediated cofilin phosphorylation. When cortactin is not acetylated, but is tyrosine-phosphorylated by Src (yp), it binds the
microtubule +TIP protein EB1; the cortactin–EB1 complex is involved in targeting microtubules to podosome clusters. The GSK3β kinase is another inhibitor of
microtubule acetylation in osteoclasts; AKT kinase and Dock5 negatively regulate the activity of GSK3β. GSK3β inhibits, whereas AKT favors, the formation of a
complex between EB1 and APC, two proteins involved in actin–microtubule crosstalk.
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dynamics and acetylation in osteoclasts (Guimbal et al., 2019), as
detailed below.

Interplay between actin and microtubules in osteoclasts
It has become clear that microtubules and the actin cytoskeleton are
intimately connected and work together to fulfill many cellular
processes (Dogterom and Koenderink, 2019). In osteoclasts in fact,
depolymerization of microtubules destabilizes both the podosome
belt, which breaks down into rings and clusters of podosomes (Babb
et al., 1997; Destaing et al., 2003), and the sealing zone, which
prevents bone resorption (Okumura et al., 2006).

Complexity of the osteoclast microtubule network
Actin and microtubules are intimately connected at the podosome
belt and at the sealing zone (Babb et al., 1997; Batsir et al., 2017;
Destaing et al., 2005) (Fig. 1A,D). Mammalian osteoclasts are
devoid of centrosomes; instead, microtubules emanate from the
pericentriolar material that localizes to the Golgi, which surrounds
each nucleus (Mulari et al., 2003; Yamamoto et al., 2019). Some
microtubules can be observed growing until they reach a podosome,
while others are observed to bend back toward the cell center when
they reach the podosome belt (Batsir et al., 2017; Biosse Duplan
et al., 2014) or grow towards the top of the podosomes where they
form a dense circular network over the podosomal belt (Fig. 3).
Microtubules also associate with the actin-rich area of the sealing
zone; the network there is even denser than at the podosome belt,
therefore, hampering further insights into its structure (Okumura
et al., 2006).

Actin and microtubule crosstalk at the podosome belt
As discussed above, microtubules are necessary for the formation of
the podosome belt and the sealing zone. Accordingly, treatment

with high concentrations of nocodazole in order to disrupt
microtubules induces rapid podosome belt disorganization, while
individual podosomes are maintained but reorganize into rings and
clusters (Babb et al., 1997; Destaing et al., 2003). Depolymerization
of microtubules also precludes stabilization of the sealing zone
(Okumura et al., 2006). The perturbation of microtubule dynamic
instability with low doses of nocodazole or paclitaxel similarly
destabilizes the podosome belt (Biosse Duplan et al., 2014).

Various mechanisms control the crosstalk between actin and
microtubule networks in osteoclasts (Fig. 2). In fact, microtubules at
the podosome belt and the sealing zone are highly acetylated as
compared to those at rings and clusters of podosomes (Akisaka
et al., 2011; Destaing et al., 2005), and tubulin acetylation is
important for osteoclast function (Destaing et al., 2005). RhoA
activity has a negative effect on microtubule acetylation: in
osteoclasts, RhoA counteracts microtubule acetylation through its
effector mDia2 (also known as DIAPH3), a formin that binds and
activates the microtubule deacetylase HDAC6 (Destaing et al.,
2005) (Fig. 2). By preventing the interaction of HDAC6 with
microtubules, the adaptor proteins c-Cbl and Cbl-b protect
microtubules against deacetylation (Fig. 2). Suppression of c-Cbl
and Cbl-b prevents bone resorption by disorganizing the
cytoskeleton (Purev et al., 2009). The kinase Pyk2 also
participates in preserving tubulin acetylation by maintaining low
RhoA activity through an unknown mechanism (Fig. 2; Gil-Henn
et al., 2007). Thus, understanding the precise functions of RhoA in
controlling actin and microtubule crosstalk still requires further
investigations.

The kinases AKT1 and AKT2 (collectively known as AKT
kinases) and the kinase GSK3β also control microtubule acetylation
in osteoclasts (Matsumoto et al., 2013) (Fig. 2). GSK3β activity
inhibits osteoclast microtubule acetylation, but its phosphorylation
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Bottom Top Side view Fig. 3. Microtubule network in osteoclasts.
(A) Schematic illustration of the microtubules at
the podosome belt. Microtubules (in green)
radiating from the perinuclear area extend
towards the podosomes (blue dots). When
they reach the podosome belt, they can stop or
bend back toward the cell center, or cross the
podosome belt (bottom). Some microtubules
also bend and extend upwards (side view) and
form a circular network above the podosome
belt (top). (B) Airyscan imaging of tubulin
(green) and F-actin (blue) staining at the
podosome belt of an osteoclast plated on
glass. Shown here is a gallery of 10 equally
distant planes between the bottom of the cell
and the top of the podosome belt, as
schematized in A. The images on the right
show the z projection of the 10 actin and
microtubule planes in the galleries, with the
merged images at the bottom. Image courtesy
of Julien Cau and Amélie Sarrazin, Montpellier
Ressources Imagerie (MRI) platform.
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by AKT inhibits GSK3β and thus favors microtubule acetylation;
accordingly, GSK3β inhibition can compensate for the KO of AKT
and rescue the formation of the sealing zone (Matsumoto et al.,
2013). AKT kinases are also needed for the formation of a complex
between the microtubule plus-end tracking protein (+TIP) EB1 (also
known as MAPRE1) and adenomatosous polyposis coli protein
(APC) in osteoclasts and for APC localization at the podosome belt
(Matsumoto et al., 2013). Both EB1 and APC participate in actin–
microtubule crosstalk (Dogterom and Koenderink, 2019). In
osteoclasts, EB1 is required for podosome belt formation (Biosse
Duplan et al., 2014), and indirect evidence suggests that APC has an
important role at the podosome belt as well as in bone resorption
(Guo et al., 2018). Besides AKT, Dock5 also regulates microtubule
acetylation and GSK3β activity in osteoclasts (Fig. 2). In the
absence of Dock5, GSK3β activity increases and microtubules
acetylation is reduced, with a concomitant reduction in the length of
microtubules and duration of their growth (Guimbal et al., 2019).
Taken together, the above data suggest that RhoA functions as an

inhibitor of microtubule acetylation through its effect on the
activation of HDAC6, whereas AKT, by inhibiting GSK3β, favors
microtubule acetylation and the recruitment of the microtubule
+TIP complex EB1–APC (Fig. 2). APC is an important mediator of
actin–microtubule crosstalk in cell adhesion (Juanes et al., 2019),
and APC phosphorylation by GSK3β inhibits its binding to
microtubules (Zumbrunn et al., 2001). Taken together, this
suggests that APC could be an important factor for the actin–
microtubule crosstalk in osteoclasts, and that is under the control of
AKT and GSK3β kinases, although this remains to be established.
In addition, the targeting of microtubules to podosomes has been
found to involve a dynamic balance between acetylation and
phosphorylation of cortactin and cofilin (Fig. 2), which together
with EB1 are required for podosome belt formation and bone
resorption (Biosse Duplan et al., 2014; Zalli et al., 2016). These
studies show that in osteoclasts, EB1 is present in a complex with
cortactin phosphorylated by Src on Y421, to target EB1-decorated
microtubules to podosome clusters. The formation of the EB1–
cortactin complex is inhibited by cortactin acetylation, which itself
is counteracted by HDAC6 (Biosse Duplan et al., 2014). Upon its
acetylation, cortactin can then interact with cofilin that is acetylated
and not phosphorylated on serine 3 (Fig. 2) to allow podosome belt
formation (Zalli et al., 2016). To date, the enzymes involved in
cofilin and cortactin acetylation are unknown.
The actin motor protein unconventional myosin X (Myo10) can

bind actin, microtubules and integrins (Lee, 2018). Localized at the
interface between actin and microtubules during the formation of
the podosome belt and the sealing zone, Myo10 has been proposed
to crosslink actin cytoskeleton and microtubules in osteoclasts,
(McMichael et al., 2010). Targeting Myo10 expression with
siRNAs in osteoclasts derived from RAW264.7 cells (see Box 3)
reduced sealing zone size and bone resorption activity; conversely,
Myo10 overexpression increased sealing zone size (McMichael
et al., 2010). Moreover, podosome belt reformation after
microtubule disassembly was defective upon Myo10 suppression
(McMichael et al., 2010). These results were confirmed by shRNA-
mediated Myo10 silencing in primary mouse osteoclasts (Box 3),
which also affected osteoclast differentiation (Tasca et al., 2017). In
contrast to these reports, a recent study found that Myo10 KO
osteoclasts differentiated more efficiently (Wang et al., 2019). The
actual bone resorption activity of was not assessed, but the serum of
the mice contained high levels of bone resorption marker
deoxypyridinoline, suggesting Myo10 KO osteoclasts were active
in vivo (Wang et al., 2019). Of note, Myo10 KO osteoclasts were

derived fromMyo10tm1a(KOMP)Wtsimice, which have a LacZ cassette
insertion between exons 26 and 27 of Myo10 (Heimsath et al.,
2017). The inconsistencies could result from the expression of
truncated forms of myosin X in the Myo10 KO osteoclasts, as
suggested by western blots on mouse brain lysates of the
Myo10tm1a(KOMP)Wtsi mice (Heimsath et al., 2017). In fact, Myo10
deleted after exon 26 contains the motor domain but lacks the
C-terminal region, which functions as an intra-molecular inhibitor
of the motor domain (Kerber and Cheney, 2011) and indeed
suppressed formation of the podosome belt and the sealing zone
when expressed in osteoclasts (McMichael et al., 2010). These
truncated Myo10 proteins could lead to gain-of-function effects in
osteoclasts derived fromMyo10tm1a(KOMP)Wtsi mice. Thus, the exact
role of Myo10 in osteoclasts remains unclear.

The function of kinesins, microtubule-associated motors, in
osteoclasts has not been highly studied to date. The only published
report shows that KIF1C is essential for the formation of the
podosome belt (Kobayakawa et al., 2019). This study shows that in
osteoclasts, KIF1C, which is in a complex with Src and p130Cas
and localized at the podosome belt, is necessary for podosome belt
formation. Moreover, KIF1C overexpression increases the
resorption activity of osteoclasts and partially compensates for the
KO of p130Cas, but not that of Src with regard to podosome belt
organization and bone resorption (Kobayakawa et al., 2019). It is
not known whether KIF1C is important for the activating
phosphorylation of p130Cas and the activation of Rac, as shown
for Dock5 (Vives et al., 2011), or it is needed for the interaction
between Dock5 and the kinases Src and Pyk2, as shown for
p130Cas (Nagai et al., 2013).

Diseases associated with osteoclast function
Under physiological conditions, bone homeostasis is maintained by
the coupling between resorption and formation: the amount of bone
removed by osteoclasts is identical to the amount of new bone
deposited by osteoblasts (Florencio-Silva et al., 2015). Bone
modeling and remodeling are necessary for fracture healing and
the adaptation of the skeleton to load and to mechanical use, as well
as for Ca2+ and phosphorus homeostasis. An imbalance between
bone resorption and bone formation results in several bone diseases.

Osteoclast-related diseases
A few and rare genetic diseases prevent osteoclast activity, thereby
increasing bone mass and causing osteopetrosis (Palagano et al.,
2018); casual mutations include mutations in genes encoding the a3
subunit of the v-ATPase, chloride channel 7 and cathespin K
(Fig. 1A,B), whose mutation causes the severe human bone disorder
pycnodysostosis. Mutations in kindlin-3, a hematopoietic protein
regulating integrins and osteoclast cytoskeleton (Schmidt et al.,
2011), also cause osteopetrosis in association with leukocyte
adhesion deficiency type III. Conversely, rare genetic diseases, such
as juvenile Paget’s disease of bone, cause osteoclasts to be
hyperactive, leading to osteoporosis (Masi et al., 2015; Palagano
et al., 2018). However, the most common bone remodeling disorder
is an excessive resorption activity of osteoclasts, resulting in bone
loss and eventually osteoporosis (Compston et al., 2019). Indeed, a
number of physiopathological conditions are accompanied by
excessive osteoclast activity. These include hormone deficiency
after menopause (Compston et al., 2019), inflammatory diseases
such as rheumatoid arthritis (Coury et al., 2019; Madel et al., 2019),
cancer metastasis to the bone and multiple myeloma (Croucher
et al., 2016) and corticotherapy (Buckley and Humphrey, 2018), as
well as lack of mechanical forces applied to the bone, for instance
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due to prolonged bed rest, spinal cord injury or space flights (Bettis
et al., 2018). Finally, abnormal bone loss also accompanies some
infectious diseases (Raynaud-Messina et al., 2019). For instance,
HIV-1 infection targets osteoclasts where the viral protein Nef
favors sealing zone formation and increases bone resorption activity
(Raynaud-Messina et al., 2018). Osteoclasts are the obvious
therapeutic target to prevent osteoporosis and the associated
increased risk of fracture, which cause pain, disabilities and
premature death. Therefore, understanding osteoclast biology and
development of strategies to target their activity can lead to
important medical applications.

The osteoclast cytoskeleton as a therapeutic target
Molecules of the bisphosphonate family are the most widely used
drugs to control osteoclast activity; these pyrophosphate analogs
incorporate into the bone matrix and are ingested by the bone-
degrading osteoclasts, causing their apoptosis (Cremers et al.,
2019). More recently, a human monoclonal antibody against
RANKL, called Denosumab, was developed; it prevents
osteoclast differentiation by inhibiting the key function of
RANKL in this process (Deeks, 2018). Through the killing of
osteoclasts or the inhibition of their differentiation, both types of
drugs efficiently protect against pathological bone loss. However,
these drugs suffer limitations, including counter-indications and
undesirable side effects (Vargas-Franco et al., 2018). In particular,
because Denosumab and bisphosphonates prevent the
differentiation or cause the apoptosis of osteoclasts, they inhibit
the stimulatory activity of osteoclasts on osteoblast differentiation
and bone formation activity and, as a consequence, patients
receiving these drugs suffer from a blockade of de novo bone
formation (Drissi and Sanjay, 2016; Teitelbaum, 2016). Active
research is ongoing to tackle osteoclast activity with a different
approach and better fulfill patient needs. Specifically targeting the
bone-resorption function of osteoclasts appears an attractive strategy
to control bone resorption while preserving bone formation. One
promising approach is to inhibit cathepsin K. Indeed, the cathepsin
K inhibitor Odanacatib efficiently prevents pathological bone loss
while preserving bone formation in patients, but unfortunately, it
recently failed in clinical phase III trials due to increased risk of
stroke (Stone et al., 2019).
Targeting the unique cytoskeletal organization of osteoclasts

appears as a tempting approach, and is still in preclinical or early
clinical exploration. One strategy to control osteoclast activity is to
perturb the function of integrin αvβ3. Indeed, a selective inhibitor of
αvβ3, which does not target platelet integrin αIIbβ3 (Pickarski et al.,
2015), allowed reducing osteoclast activity and proved efficient in
protecting women from postmenopausal bone loss in a phase I study
(Murphy et al., 2005). More compounds were recently developed to
target αvβ3 selectively, or much more efficiently than αIIbβ3, and
block osteoclast activity in culture or in the mouse (Li et al., 2019;
Lin et al., 2017). However, to our knowledge, no clinical trial is
ongoing with αvβ3 inhibitors. Another approach is to aim at actin
regulatory proteins. For instance, two classes of small chemical
compounds were developed to inhibit Dock5 exchange activity
towards Rac (Ferrandez et al., 2017; patent WO2019197659A1).
When administered to the mouse, Dock5 inhibitors prevented
pathological bone loss, while bone formation by osteoblasts was
maintained, making this a promising strategy to prevent pathological
bone loss (patent WO2019197659A1; Vives et al., 2015). Better
understanding of osteoclast cytoskeleton regulation is likely to provide
information on novel molecular targets to control osteoclast activity
and prevent osteoporosis.

Emerging questions and research perspectives
The osteoclast cytoskeleton has a key role in establishing the bone
resorption apparatus and represents a promising target to control
osteoclast activity in pathological situations. However, we are far
from a full understanding of how it is organized and regulated.
Below, we highlight several aspects that have recently emerged as
potentially important for the regulation of osteoclast cytoskeleton
and bone resorption: actin isoforms, tubulin isotypes, intermediate
filaments and septins.

Beyond generic actin and tubulin
Post-translational modifications of both actin and tubulin participate
in cytoskeleton complexity (Janke and Magiera, 2020; Terman and
Kashina, 2013), with microtubule acetylation being crucial for
osteoclast function. Furthermore, although actin filaments and
microtubules are often considered as dynamic polymers of simply
‘actin’ and ‘α- and β-tubulin dimers’, respectively, these proteins
have in fact several isoforms with specific properties, both at the
biochemical and the biological level, which are only just beginning
to emerge (Janke and Magiera, 2020; Vedula and Kashina, 2018).

With regard to actin, there are six isoforms, which have been
shown to fulfill distinct biological functions; the β- and γ-
cytoplasmic actins are ubiquitous, whereas other actins have a
more restricted expression pattern, such as α-skeletal and α-cardiac
actin (Vedula and Kashina, 2018). Interestingly, it was found
recently in macrophages that there is a differential actin isoform
distribution between podosomes near the cortex and those located
inside the cell (Cervero et al., 2018). This, in fact, dictates the
subcellular distribution of two podosome-regulatory proteins;
leukocyte-specific protein 1 (LSP1), an actin-bundling protein,
preferentially localizes at podosomes near the cell cortex, whereas
supervillin, which connects actin filaments to the plasma
membrane, associates with podosomes in the center of the
macrophage (Cervero et al., 2018). Such distribution relies on the
distinct binding affinities of LSP1 and supervillin for specific actin
isoforms. As supervillin can bind to myosin IIa (Bhuwania et al.,
2012), this generates gradients of podosome actomyosin
contractility from the cortex to the macrophage center (Cervero
et al., 2018). Furthermore, an analysis of podosome ultrastructure in
immature dendritic cells has revealed that cytoplasmic β- and γ-actin
show a different distribution within the podosome (van den Dries
et al., 2019a). The central part of the core is enriched in branched
β-actin filaments and contains cortactin; it is surrounded by linear
filaments containing γ-actin and crosslinked by α-actinin (van den
Dries et al., 2019a). Thus far, there are no reports addressing actin
isoforms in osteoclasts; it would thus be very interesting to examine
the distribution and function of the different actin isoforms at the
podosome belt and their possible role in bone resorption.

Microtubules consist of dimers of one α- and one β-tubulin, with
each of them occurring in several isotypes: eight α- and nine
β-tubulin-encoding genes are present in the human genome (Janke
andMagiera, 2020). Recent reports highlighted that tubulin isotypes
confer distinct dynamic properties to microtubules and dictate the
differential binding of microtubule-associated proteins (Janke and
Magiera, 2020). Interestingly, a recent study shows that osteoclasts
express four α- and four β-tubulin-encoding genes, with a
remarkably high amount of tubulin β6 protein (Guerit et al.,
2020). In fact, tubulin β6 levels appeared to control microtubule
shaping at the osteoclast periphery, as well as podosome patterning.
Interfering with tubulin β6 expression impaired podosome belt
formation, led to smaller sealing zones and inhibited bone
resorption (Guerit et al., 2020). However, it remains to establish
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whether tubulin β6 levels affect microtubule dynamics or the
binding of specific proteins to microtubules in osteoclasts.

Intermediate filaments and septins
In contrast to actin filaments and microtubules, intermediate
filaments are non-polarized filaments that connect the nuclear and
plasma membranes with microtubules and actin filaments (Leduc
and Etienne Manneville, 2015). There is little literature about
intermediate filaments in osteoclasts. Vimentin filaments are
present at the podosome belt and along osteoclast microtubules
(Akisaka et al., 2008; Babb et al., 1997). In addition, plectin, which
connects vimentin to actin filaments and to microtubules (Leduc
and Etienne Manneville, 2015), is a podosomal protein (Gad et al.,
2008). Plectin is required for actin organization and resorption
activity in osteoclasts derived from RAW264.7 cells (Box 3), where
it appears to control microtubule acetylation as well as Src and Pyk2
activities (Matsubara et al., 2017, 2020). Fimbrin also connects
vimentin to actin filaments (Leduc and Etienne-Manneville, 2015).
T- and L-fimbrin are present at the osteoclast podosome core (Babb
et al., 1997). L-fimbrin (also known as L-plastin) associates with
osteoclast podosomes and with the actin patch of the nascent sealing
zone (Chellaiah et al., 2018, 2020). L-fimbrin recruitment to the
actin patch requires phosphorylation by the leucine rich repeat
kinase 1 (LRRK1) (Chellaiah et al., 2018; Si et al., 2018) and
binding to the membrane-tethering complex protein TRAPPC9
(Hussein et al., 2019). Interestingly, mutations in LRRK1 give rise to
a severe osteopetrotic phenotype in the mouse and cause human
osteosclerotic metaphyseal dysplasia that is associated with
osteoclast dysfunction (Miryounesi et al., 2019; Xing et al.,
2013). Conversely, mutations in T-fimbrin cause X-linked
primary osteoporosis in men and a variable bone phenotype in
women (van Dijk et al., 2013). In fact, T-fimbrin is an inhibitor of
sealing zone formation and its deletion increases bone resorption
(Neugebauer et al., 2018). Finally, APC is involved in the association
between vimentin intermediate filaments and microtubules (Leduc
and Etienne-Manneville, 2015), and, as described above, APC
appears important in organizing the podosome belt and for bone
resorption (Guo et al., 2018; Matsumoto et al., 2013). However, the
specific functions of APC and vimentin in osteoclasts are
unknown. In conclusion, how intermediate filaments and associated
proteins participate in the organization of actin and microtubules to
control bone resorption remains an open question.
The 13 septins form heteromeric GTP-dependent dynamic apolar

filaments, and septin-9 has been shown to link septin filaments to
other cytoskeletal elements and membranes (Valadares et al., 2017)
and also to bundle microtubules and affect their dynamics (Bai et al.,
2013; Nakos et al., 2019). Furthermore, septin-9 also binds to actin
filaments, and inhibits the activity of myosin and cofilin (Smith et al.,
2015). Currently, the only study about septins in osteoclasts shows
that septin-9 is associated with actin and microtubules in the area of
the sealing zone (Møller et al., 2018). The authors show that the
inhibition of septin filament dynamics is detrimental for bone
resorption and that targeted deletion of septin-9 in osteoclasts
increased bone mass in the mouse, suggesting that osteoclasts are
deficient for bone resorption in the absence of septin-9 (Møller et al.,
2018). Nevertheless, the actual activity and cytoskeleton organization
of septin-9 KO osteoclasts were not examined. The precise roles of
septin filaments in osteoclasts, therefore, remain to be established.
How intermediate filaments and septins, together with the

proteins that connect them to actin filaments and microtubules,
participate in the organization of osteoclast cytoskeleton for
efficient bone resorption is still an emerging field of research.

Conclusion
Understanding the functional crosstalk between the different
elements of the cytoskeleton is an important challenge in cell
biology. Osteoclasts offer an excellent cellular model to tackle this
question as the cytoskeleton plays a major role in their physiological
function of bone resorption. It is clear that actin and microtubules
are intimately linked in osteoclasts to organize podosomes. The
activity of RhoA is key to coordinate the two elements of the
cytoskeleton, but how it is regulated remains poorly understood, in
particular, no RhoA GEF has been described so far as having a role
in podosome belt formation. It has been shown recently in
macrophages that microtubules sequester GEF-H1 to prevent
excessive activity of RhoA, which is detrimental for podosome
stability (Rafiq et al., 2019). Whether such a mechanism also
underlies podosome organization in osteoclasts would be interesting
to examine. Microtubules guide the delivery of regulatory
molecules to cell adhesion structures and they regulate podosome
dynamics (Seetharaman and Etienne-Manneville, 2019). Thus,
examining the role of kinesins in osteoclasts and identifying their
cargoes should also bring valuable information on the mechanisms
driving the organization of the sealing zone. Moreover, intermediate
filament and septins are integral components of the cytoskeleton
interacting with actin andmicrotubules; although they have not been
highly studied in osteoclasts, they appear important in controlling
bone resorption. Finally, the osteoclast cytoskeleton also emerged
as a potential therapeutic target, and better understanding of the
molecular mechanisms controlling cytoskeleton dynamics in
osteoclasts could pave the way for novel treatments against
pathological bone loss.
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