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Molecular mechanisms of chemotropism and cell fusion
in unicellular fungi
Sophie G. Martin

ABSTRACT
In all eukaryotic phyla, cell fusion is important for many aspects of life,
from sexual reproduction to tissue formation. Fungal cells fuse during
mating to form the zygote, and during vegetative growth to connect
mycelia. Prior to fusion, cells first detect gradients of pheromonal
chemoattractants that are released by their partner and polarize growth
in their direction. Upon pairing, cells digest their cell wall at the site of
contact and merge their plasma membrane. In this Review, I discuss
recent work on the chemotropic response of the yeast models
Saccharomyces cerevisiae and Schizosaccharomyces pombe, which
has led to a novel model of gradient sensing: the cell builds a motile
cortical polarized patch, which acts as site of communication where
pheromones are released and sensed. Initial patch dynamics serve to
correct its position and align it with the gradient from the partner cell.
Furthermore, I highlight the transition from cell wall expansion during
growth to cell wall digestion, which is imposed by physical and signaling
changes owing to hyperpolarization that is induced by cell proximity.
To conclude, I discuss mechanisms of membrane fusion, whose
characterization remains a major challenge for the future.

KEY WORDS: Cell fusion, Cell polarity, Chemotropism,
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Introduction
All cells – whether they live on their own or are part of a
multicellular organism – interact with their environment. They are
able to perceive neighbors and respond to external signals that guide
their behavior. More often than not, the perceived signals are
directional and lead to a polar cellular response that is critical for cell
physiology. Examples of such chemotropic behaviors include those
of leukocytes migrating towards and responding to antigens,
amoeba responding to a cue for aggregation, neurons extending
growth cones to form neural networks, pollen tubes growing in the
stigma towards the egg cell or fungal hyphae creating connected
mycelia (Artemenko et al., 2014; Palanivelu and Preuss, 2000; Roca
et al., 2005). The encounter of gametes during sexual reproduction
is a particularly important form of chemotropic behavior, which
culminates in their fusion to form the zygote. This is likely to be a
very ancient process, as sex is thought to have evolved in the last
common eukaryotic ancestor and is present in all extant eukaryotic
phyla (Goodenough and Heitman, 2014).
In this Review, I present our current knowledge on the

chemotropic response of unicellular fungi (specifically the
ascomycetes Saccharomyces cerevisiae and Schizosaccharomyces
pombe) during sexual reproduction and its climax in cell fusion.

I will further draw comparison to somatic fusion in filamentous
fungi. Recent work has fundamentally changed our view of how
these cells, which detect chemoattractants through canonical
eukaryotic signaling pathways, orient up a gradient: instead of
simultaneously comparing chemoattractant concentration around
themselves, they organize a subcellular detection zone that
sequentially probes the concentration in their periphery.

A primer on fungal pheromone signaling and cell fusion
Yeast cells signal to each other and induce sexual differentiation
through the secretion of pheromones. Pheromone signaling is
very similar in S. cerevisiae and S. pombe, with some notable
differences. In S. cerevisiae, a- and α-cells (M- and P-cells in
S. pombe) secrete short peptide pheromones, of which the a-factor
(M-factor) is lipid modified. Pheromones are recognized by cognate
G-protein-coupled receptors (GPCR) on the partner cell. Although
pheromones and their receptors are cell type specific, pheromone
engagement activates a mitogen-activated protein kinase (MAPK)
signaling pathway that is common to both cell types. Receptor
activation promotes the exchange of GDP for GTP on the coupled
Gα subunit and, in S. cerevisiae, dissociation from the Gβγ
complex, which is now free to activate MAPK signaling by
recruiting the MAPK scaffold Ste5 to the membrane [see Alvaro
and Thorner (2016) for a complete recent review on GPCR
signaling in S. cerevisiae]. In S. pombe, receptor activation also
elicits activation of a MAPK cascade, which is under dual control of
Gα and a Ras GTPase. In this case, Gα plays a positive role in signal
transduction, and, in fact, the nature of the Gβγ complex, if any,
remains elusive (Merlini et al., 2013) (Fig. 1).

The fusion of fungi – non-motile cells encased in rigid cell walls –
can be divided into three stages. First, the cells signal their position by
acting as source of pheromone and polarize growth towards each
other to achieve cell contact. The ability of cells to orient growth in
response to an external cue, also called chemotropism, requires the
coupling of two basic functionalities: detection of the pheromones by
receptors and polarized growth. In yeast, polarized growth depends
on the local activation of the GTPase Cdc42, which drives polarized
secretion. The molecular links between the two functionalities is best
understood in S. cerevisiae, where Gβγ released from Gα inhibition
upon receptor activation forms a complex through Far1 with a Cdc42
guanine nucleotide exchange factor (GEF) (Cdc24 in S. cerevisiae,
hereafter referred to as the Cdc42 GEF). In S. pombe, the molecular
connection is not deciphered but likely involves the Ras family
GTPase Ras1, which, in addition to its function as MAPK activator,
promotes Cdc42 activation (Fig. 1). Second, once cells have paired,
which also involves cell surface adhesin molecules, they need to
digest their cell wall at the zone of contact, leading to plasma
membrane apposition. Because the yeast cell wall offers protection
not only against external insults but also against lysis due to high
internal turgor pressure, the time and location of wall digestion has to
be controlled. Third, the plasma membranes merge together to unite
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the two cells as one. This entire process takes 1–2 h in S. cerevisiae,
for which presence of a mating partner induces differentiation
immediately after the cell completes its last division (Henderson
et al., 2018preprint). In S. pombe, the process is slower: cells initiate
differentiation only upon starvation, divide once or twice, and then
pair and fuse over the next 10–12 h (Vjestica et al., 2016).

Challenges for spatial decoding
The classical view of chemotropism in yeast (Arkowitz, 2009) was
inspired by the spatial decoding mechanism of chemotactic amoeba
(see Box 1). Indeed, the identification of specific S. cerevisiae
alleles that prevent the interaction of the Cdc42 GEF with Gβγ
revealed that this physical link underlies chemotropism (Butty et al.,
1998; Nern andArkowitz, 1998, 1999). This led to the interpretation
that the site of pheromone sensing marked by free Gβγ acts as a
landmark for recruitment of the Cdc42 GEF. Spatial decoding
requires comparison of receptor occupancy between the front and
the back of the cell. However, because yeast cells are small (of the
order of 4–5 µm), yet able to detect shallow gradients, the difference
in occupancy may be minute. Indeed, use of quantitatively defined
gradients in microfluidic devices suggests that a 0.5% to 5%
difference in pheromone concentration between the cell front
and back is sufficient for accurate gradient detection, which requires
a very strong amplification system to yield robust polarization
(Moore et al., 2008; Muller et al., 2016). Note that these two studies
reached distinct conclusions regarding the range of pheromone
concentrations that leads to robust directional growth. Spatial
sensing also necessitates pheromone receptors to be present around
the entire cell periphery. Accordingly, in S. cerevisiae, Ste2 (the
α-factor receptor expressed in a-cells) is constitutively expressed
and present over the entire cell surface in mitotically proliferating
cells. However, pheromones trigger the rapid endocytosis of Ste2
with a halftime of ∼6 min (Emmerstorfer-Augustin et al., 2018),
which then becomes enriched at the shmoo (the mating projection)
cortex ∼30 min later. This observation poses a significant challenge
to the idea of spatial decoding, as even at this late stage, the cell is
able to start a new site of growth if the gradient direction changes
(Moore et al., 2013).

Local sensing in a mobile patch
In line with the above, recent observations showing that pheromone
sensing elicits unstable zones of polarity are challenging the notion
that the polarity patch is established downstream of gradient
decoding: wild-type yeast cells – both S. cerevisiae and S. pombe –
form a motile polarity patch for chemotropism. From S. pombe
experiments, my lab described that cells exposed to homogenous
fields of low pheromone concentrations exhibit a motile patch that
contains active Cdc42 GTPase and its regulators and effectors. The
patch assembles and disassembles at the plasma membrane with a
lifetime of less than one to several minutes, exploring most of the
cell periphery (Fig. 2) (Bendezú and Martin, 2013). Interestingly,
patch dynamics depend on pheromone concentration, with higher
concentrations extending the patch residence time. Importantly,
during early mating, cells also form an unstable patch before
stabilizing a site of growth towards a partner. Subsequent work
showed that these patches are fully developed polarity sites, at
which secretory vesicles (transporting, among other cargoes, the
P-factor) accumulate, and which (in M-cells) are enriched in the
M-factor transporter, arguing that pheromones are locally released
at these sites. Furthermore, whereas pheromone receptors occupy a
large portion of the cell surface, the associated Gα subunit
specifically accumulates at the patch, suggesting that the patches
are sites of receptor activation, in agreement with the idea that
pheromone levels modulate their lifetime (Merlini et al., 2016).
Thus, each patch is a mobile communication site, where pheromone
signals are sent and locally interpreted. Stimulation by pheromones
released at a closely positioned partner cell patch promotes
stabilization for chemotropic growth. These observations are
captured in a simplified model that reproduces efficient cell
pairing in a complex environment (Merlini et al., 2016).

The source of the short lifetime of the patch has not yet been
elucidated. Assembly-disassembly dynamics do not require Cdc42
inactivation by GTPase-activating proteins (GAP) (Gallo Castro and
Martin, 2018). Instead, it relies on regulation of Ras1, which
colocalizes and is active at the polarity patch in S. pombe (Merlini
et al., 2016, 2018) (Fig. 1). At the patch, Ras1-GTP recruits its sole
GAP Gap1, which causes a negative feedback that destabilizes the
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Fig. 1. Schematic depiction of pheromone-sensing pathways in yeasts. Pheromone binding to the receptor leads to Gα GTP binding. In S. cerevisiae,
this causes dissociation from Gβγ, which is now free to activate the MAPK cascade to induce cell differentiation, cell cycle arrest and initiation of cell polarization.
Gβ also forms a complex with the Cdc42 GEF with the help of Far1 to provide a positional bias to Cdc42 activation. In addition, Gα directly binds the MAPK
Fus3 (dashed line). In S. pombe, the activated Gα signals positively to activate the MAPK cascade. The molecular links are unknown (dotted lines) but involve
Ras-dependent and Ras-independent routes. Ras both acts as MAPK activator and forms a complex with the Cdc42 GEF to couple cell polarization to
pheromone perception.
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patch (Khalili et al., 2018; Merlini et al., 2018) (Fig. 3). High local
pheromone sensing then overcomes this negative control to stabilize
the patch. Importantly, because cells lacking the Ras1 GAP retain
the ability to form unstable patches when exposed to very low
pheromone concentrations, this likely does not represent the sole
patch destabilization mechanism.
Similar motile polarity patches underlie chemotropism in

S. cerevisiae. It had long been known that cells lacking
chemotropic information polarize by default at the presumptive
bud site (Dorer et al., 1995), and that cells that also lack bud site
positioning signals form a motile patch that is unable to sustain
polarized growth (Nern and Arkowitz, 2000). Importantly, Lew and
colleagues showed that wild-type S. cerevisiae cells exposed to
homogenous fields of low pheromone concentrations also exhibit a
motile Cdc42 patch (Dyer et al., 2013). As in the S. pombe situation,
higher pheromone levels constrain patch movement, which leads to
more pointed growth (Dyer et al., 2013; Hegemann et al., 2015).
However, in this case, motility is not achieved by disassembly
and re-assembly elsewhere on the cell periphery but by lateral
displacement at rates up to 0.01 µm2/min (Fig. 2). Artificial
signaling activation through uniform targeting of the MAPK
scaffold Ste5 to the plasma membrane (Pryciak and Huntress,
1998) also yields wandering patches that are constrained by high
pheromone concentrations (McClure et al., 2015). The source of the

motion is proposed to depend on the influx of secretory vesicles
along actin cables nucleated at the patch (Fig. 3). As the patch is
maintained by positive-feedback systems that have been well
characterized during mitotic growth (reviewed in Martin, 2015),
local dilution leads to patch lateral displacement. In turn, high
pheromone levels counteract the vesicle-dependent dilution effect
by activating newly delivered receptors to bias Cdc42 activation
at their location (see below). Consistent with this view, when the
Cdc42 GEF is disconnected from the activated receptor,
pheromones fail to constrain the patch, which trails Gβγ in its
wake. Although these studies were conducted in homogeneous
fields of pheromone, similar mechanisms likely operate during
gradient perception. Indeed, cells encountering natural gradients
produced by partner cells, or placed in engineered gradients in
microfluidics chambers, also display a wandering patch, which
serves to correct an initial position largely independent of gradient
direction, likely at the presumptive bud site (Hegemann et al., 2015).
Patch wandering and stabilization at higher pheromone levels are
also consistent with the observation that the growth direction in
pheromone gradients is gradually improved over time (Paliwal et al.,
2007; Segall, 1993). I note that, whereas the modes of patch motility
in S. cerevisiae and S. pombe – lateral displacement versus
assembly–disassembly – may at first appear quite distinct, recent
studies indicate that both types of movements may be used by both

Box 1. Chemotaxis strategies
Chemotropism can be compared with chemotaxis, which relies on sensing of a graded signal to orient cell movement towards a chemoattractant. For
chemotaxis, two conceptually distinct mechanisms – spatial or temporal decoding – have been defined. A spatial decoding system has long been proposed
to be used by large cells such as chemotactic eukaryotic amoeba (Cai and Devreotes, 2011; Jin, 2013). Briefly, chemoattractant molecules are detected by
receptors that are uniformly present at the plasma membrane and differences in concentration are compared between the front and the back of the cell.
Amplification and long-range inhibition mechanisms then magnify the perceived differences to generate a robust axis of polarity. Thus, receptors act at the
top of the hierarchy and direct the cytoskeleton re-organization that is necessary for cell migration. More recent work has focused on the excitable properties
of the cytoskeletal network and how these are harnessed by the chemotactic signaling system (recently reviewed by Devreotes et al., 2017). Interestingly,
chemotactic cells also process information locally at the pseudopod to bias the direction of cell migration (Insall, 2013).

A temporal decoding strategy is used by small cells, such as chemotactic bacteria, like E. coli (Sourjik and Wingreen, 2012). Here, the cell moves and
probes its immediate environment at temporal intervals, comparing the results over time. If the sensed chemo-attractant concentration has increased, the
cell continues in the same direction. If it has diminished, it randomly tumbles and continues in a new direction. This strategy can be viewed with the opposite
hierarchy, where cell movement comes first, with receptor information used to correct for directionality.
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organisms. Indeed, uniform 1 nM pheromone concentration also
leads to unstable polarization in S. cerevisiae, which is very similar
to the assembly-disassembly mode of S. pombe (Muller et al.,
2016); in addition, S. pombe cells that lack one of three Cdc42 GAPs
displayed notable instances of local biased random walk (Gallo
Castro and Martin, 2018).
Collectively, these studies invite a revised model of yeast

chemotropism, where a polarity patch is established independently
of gradient sensing. The patch is then re-oriented up-gradient by
mechanisms involving its destabilization and specific stabilization
upon higher local pheromone perception. In this view, the cell does
not directly perceive a concentration difference between the front
and back, but establishes a specialized cortical zone that serves to
locally exchange information: it signals its presence through
pheromone release and probes the concentration of the pheromone
secreted by the partner cell to decide between staying (when high
concentration is sensed) and going (in case of low concentration).
This mechanism is more akin to the temporal decoding mechanism
used by chemotactic bacteria, yet the sensing and moving entity is
not the cell but the polarity patch (see Box 1). One important
difference, however, is that the yeast patch may not operate a true

temporal comparison by retaining a memory of previous perception,
as is the case during bacterial chemotaxis. Although this – to my
knowledge – has not been directly tested, studies in homogeneous
pheromone concentrations have not reported an adaptation in the
patch behavior over time. The cell might, however, measure fractional
gradient values rather than absolute gradient concentration (Paliwal
et al., 2007). A possible mechanism that remains to be investigated
may involve differential sensing of pheromone concentrations within
a single patch to skew patch movement towards the gradient source.

Mechanisms of patch stabilization upon pheromone sensing
A critical question is how pheromone sensing stabilizes the polarity
patch. The receptor, initially homogeneously distributed at the
plasma membrane, is rapidly internalized upon pheromone exposure
and subsequently accumulates at the shmoo tip (Jackson et al., 1991).
Whereas this would be problematic for spatial decoding, it is likely
advantageous for local sensing. There are diverging views on
how receptor polarization is achieved. In S. cerevisiae, it is well
established that activation of the receptor by pheromone triggers its
phosphorylation by casein kinases I (Yck1 and Yck2) as well as its
ubiquitylation, which serve as signal for internalization (reviewed in
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Fig. 2. Schematic representation of yeast strategies for chemotropic growth in response to pheromone gradients. A polarity patch (red line) that serves
for local pheromone release and sensing is established independently of gradient sensing. The patch is unique and exhibits either assembly–disassembly
dynamics (primarily in S. pombe) or lateral displacement (biased random walk, primarily in S. cerevisiae). It forms a communication zone that secretes and
responds to pheromones. Higher local pheromone perception leads to patch stabilization, polarized cell growth and cell fusion. Note that the initial distribution
of pheromone receptors is not depicted. Blue and yellow indicate different mating types.
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Alvaro and Thorner, 2016). Because the localization of the
receptor to the shmoo tip does not require actin-based transport,
but requires its endocytic removal, Suchkov et al. (2010) proposed
that receptor polarization is achieved by a mechanism blocking
receptor internalization at the cell front. However, recent
investigations using fluorogen-activating protein (FAP) tagging to
specifically visualize the fate of surface-localized receptor concluded

that no region of the plasma membrane is immune to internalization
(Emmerstorfer-Augustin et al., 2018). This suggests that receptor
accumulation at the shmoo tip does not rely on protection from
endocytosis but on de novo production and secretion, which may be
polarized independently from actin-based transport as observed in
other instances (Bendezú and Martin, 2011; Yamamoto et al., 2010).
By extension, naïve receptors are likely delivered to the motile patch.
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Fig. 3. Molecular model of polarity patch dynamics and
stabilization by pheromone sensing. (A) (1) In S. cerevisiae,
local secretion is proposed to dilute patch components (red line).
As patch integrity is reinforced by positive feedback, this
leads to patch lateral displacement. (2) Activation of naïve,
unphosphorylated receptor (represented by the light blue andwhite
receptor trace) delivered at the patch leads to Gα activation and Gβ
dissociation, allowing Gβ to promote Cdc42 GEF activity. Gα also
promotes Gβ phosphorylation to ensure the interaction with Cdc42
GEF is short-lived, thus coupling it to the active receptor. The
receptor is rapidly phosphorylated (P), leading to its inactivation
(darker blue shade), ubiquitylation (pink oval) and internalization.
(B) (1) In S. pombe, patch destabilization is promoted by negative
control on Ras GTPase, which is caused by GAP recruitment by
activated Ras, and other unknown mechanisms. (2) In analogy to
the case inS. cerevisiae, a pool of naïve receptors is required at the
patch to couple pheromone concentration to patch dynamics.
Higher pheromone sensing promotes Gα activation, which
leads to enhanced Ras GEF activation, thus overcoming the
negative control by the Ras GAP.
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Unlike older receptors, naïve receptors are not phosphorylated.
Receptor phosphorylation plays two functions: it marks receptors for
ubiquitylation and internalization, and also plays an independent role
in chemotropism. Indeed, blocking internalization prevents receptor
clearing from the surface for polarization (Suchkov et al., 2010), but
does not interfere with polarity patch motility (McClure et al., 2015).
Such cells also exhibit only modest defects in chemotropic
orientation and mating (Ismael et al., 2016). Interestingly, these
cells retain a polarized pool of unphosphorylated receptors, which
are marked by Sst2, the GTPase-activating protein for Gα
(Ballon et al., 2006; Suchkov et al., 2010). By contrast, when
phosphorylation of the receptor is either blocked or constitutively
mimicked, pheromone signaling occurs, but chemotropic growth is
largely compromised and cells extend long curved shmoos, which
are suggestive of persistent patch wandering (Ismael et al., 2016).
Similarly, S. pombe cells with a truncated receptor that lacks its C-
terminal tail (and thus can neither be endocytosed nor
phosphorylated) sense pheromones (Hirota et al., 2001) but
completely fail to stabilize the polarity patch in the later stages of
mating, thus blocking cell fusion (see below; Dudin et al., 2016). A
model that accounts for the observations is that phosphorylation
modifies older receptors to restrict the unphosphorylated pool to the
active secretion site. This in turn may create a local differential in
pheromone signaling. There is indeed some evidence that
phosphorylation (by casein kinases or other kinases) reduces
receptor activity though mechanisms distinct from internalization
(Chen and Konopka, 1996; Kim et al., 2012). Thus, a transient local
pool of naïve, unphosphorylated receptors is critical for the cells to
update their pheromone sensing at the patch (Fig. 3).
How does this active pool of receptors transduce pheromone

concentration information to the polarity patch? Gβγ is widely
considered the critical signaling molecule in S. cerevisiae. Like
Sst2, Gβ is polarized even in absence of receptor endocytosis and
independently of its association with the Cdc42 GEF (McClure
et al., 2015), suggesting that it concentrates at sites of
unphosphorylated receptor activation. Interestingly, Gβ is itself
phosphorylated (Cole and Reed, 1991) and this phosphorylation is
required to stabilize the polarity site (Deflorio et al., 2013). One
model is that phosphorylation of Gβweakens its interaction with the
Cdc42 GEF, allowing for more frequent probing of activated
receptors, to update on local pheromone concentration information
and prevent polarity site drift from active receptors (Deflorio et al.,
2013) (Fig. 3). Phosphorylation of Gβ depends on Gα (Deflorio
et al., 2013; Li et al., 1998), which is required for Gβ polarization
and for polarity patch constraint (McClure et al., 2015).
Interestingly, Gα binds Gβ through two interfaces, one of which
is critical for its chemotropic role (Strickfaden and Pryciak, 2008).
The relevant kinase may be the MAPK Fus3, as Gα directly binds
Fus3, and this interaction promotes chemotropism (Metodiev et al.,
2002). The MAPK also plays a second positive role in patch
stabilization by promoting the nuclear export of the Cdc42 GEF
(Hegemann et al., 2015). However, one study found that Fus3 is
dispensable for chemotropism (Strickfaden and Pryciak, 2008). In
summary, Gα activation may not only free Gβγ to bind the Cdc42
GEF, but also promote its phosphorylation through Fus3 or another
kinase to ensure the interaction is short lived.
Gα and Gβ may influence chemotropism by additional means.

For instance, Gβ phosphorylation permits its monoubiquitylation, a
modification that also influences its chemotropic function (Zhu
et al., 2011). Another possible mean of control may be through Gα
ubiquitylation (Wang et al., 2005), which is required for a normal
morphogenetic response and controls its internalization and

degradation through a mechanism partly distinct from receptor
endocytosis (Dixit et al., 2014). The Gα also regulates
chemotropism positively – perhaps to enhance morphogenesis –
by binding the RNA-binding protein Scp160, a cortical ER protein
that promotes the transport of mRNA-encoding polarity and
secretion factors along actin cables (Gelin-Licht et al., 2012; Guo
et al., 2003). These positive functions of the Gα are intriguing in
light of the pathway wiring in S. pombe, where Gα is the sole signal
transducer, and promotes localization and/or activation of the Ras
GEF through unknown molecular connections (Fig. 3).

In summary, unphosphorylated receptors that are delivered at the
mobile patch locally probe pheromones. Activated Gα frees and
promotes the phosphorylation of Gβ, which transiently binds the
Cdc42 GEF, thus countering patch movement by coupling Cdc42
activity with the activated receptor. An interesting question is
whether this mechanism suffices to fully explain chemotropism, or
whether there is also a contribution from receptor sensing away from
the patch. A computational model from Stone and colleagues, based
on the finding that Gβ phosphorylation also increases its interaction
with the casein kinases that phosphorylate the pheromone receptor,
yielded receptor polarization to the cell front without invoking
Cdc42 (Ismael et al., 2016). The idea is that the interaction titrates
the kinases away from the receptor, creating a local feedback that
delays receptor phosphorylation to enhance its activity and inhibit
endocytosis. This opens the possibility of a Cdc42-independent
mode of anisotropy in activated receptors, which may perhaps
work at a short-scale within a patch. However, whether receptor
polarization can take place independently of Cdc42 in cells
remains to be tested. An intriguing observation is that, although
the initial patch position is often not aligned with the pheromone
gradient, it may not be completely random relative to the pheromone
gradient, whether the gradient is generated artificially (Hegemann
et al., 2015; 59% of cells polarized towards the gradient source) or
by a mating partner (Henderson et al., 2018 preprint). It will be
important in the future to establish whether and how cells can also
use some elements of spatial decoding to bias the initial position of
the patch.

From growth to fusion
Fungal cells are protected by a cell wall, which is locally remodeled
during polarized growth and protects cellular integrity (Davì and
Minc, 2015). Indeed, cell growth is powered by the internal turgor
pressure, which pushes against the resisting cell wall. Local wall
remodeling allows the uniform internal pressure to expand the cell
locally to achieve polarized growth. Although this process is not
understood in great detail, it relies on polarized secretion under
control of Cdc42, which leads to local delivery of transmembrane
cell wall synthases and secretion of hydrolases to locally promote
cell wall expansion (Martin and Arkowitz, 2014). During mating, as
cells polarize towards each other, they extend a growth projection.
Importantly, during polarized growth, cell wall integrity is almost
never compromised, which would result in cell lysis. How is this
behavior changed to induce the formation of a hole in the cell wall in
preparation for fusion?

Cell wall digestion is thought to rely on a local increase in the
concentration and/or activity of secreted hydrolases (Fig. 4). Cell
contact can passively help this increase by confining secreted
enzymes to the space between the two partner cells (Huberman and
Murray, 2014). More importantly, the cells actively re-organize and
confine their secretion zone, enhancing their polarized state. An
early electron microscopy study of S. cerevisiae mating described a
cluster of vesicles that requires the function of Spa2, a protein
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associated with the actin polymerization factor formin, suggesting
an important role of the actin cytoskeleton (Gammie et al., 1998).
Studies in S. pombe established the importance of the actin
cytoskeleton in organizing this vesicle cluster, which is also
observed in electron micrographs of cell pairs in this organism
(unpublished observations from my laboratory). A formin that is
specifically expressed during mating, Fus1, is essential for cell
wall digestion (Petersen et al., 1998, 1995). It assembles a
specialized actin structure at the site of cell–cell contact, called
the fusion focus, which resembles an aster of linear actin filaments
that drive the concentration of type V myosin motors and their
cargoes to a focused cortical zone (Dudin et al., 2015). Several other
actin-binding proteins, such as tropomyosin and its associated
factors, help tighten the focus (Dudin et al., 2017; Kurahashi et al.,
2002). This results in the delivery of vesicles carrying cell wall

hydrolases to a confined zone. Indeed, hydrolase cargoes and
vesicle-associated exocyst complex subunits concentrate at the site
of fusion (Dudin et al., 2015; Sharifmoghadam et al., 2010).
Because cell wall synthases remain more broadly distributed at the
contact site, my group proposed this leads to an imbalance between
synthetic and lytic reactions in the cell wall, promoting local
digestion (Dudin et al., 2015; Martin, 2016).

A critical question is what controls the shift between cell wall
expansion and digestion to avoid lysis. We modified S. pombe
cells to act as autocrine cells by expressing the receptor for the
self-produced pheromone and discovered that these mount a fusion
response in absence of a partner cell, and thus lyse (Dudin et al.,
2016). This is due to a positive feedback where the fusion focus
localizes the pheromone signaling pathway (pheromone transporter,
receptors and MAPK cascade), which in turn promotes focus

Cell wall
remodeling

for polarized
growth

Unstable vesicle
focus

Vesicle
focus

Local release
for cell wall digestion

Secretion over
broad

domain Lytic
enzyme-

containing
vesicle

Vesicle release

Fus2-Rvs161
amphiphysin
focus

Interface flattening promotes
Cdc42 focus formation

Cdc42 focus

B  S. cerevisiae

Stabilization

Fus1
formin
unstable
focus

Proximity promotes 
positive feedback signaling

MAPK

Ras-GTP

C  S. pombe

Myosin VMyosin V

A

Fig. 4. Strategies for coupling cell wall digestion with cell–cell contact. (A) Cell wall lytic enzymes (red) are secreted by polarized exocytosis. These are
required for cell wall remodeling for expansion during polarized growth. Duringmating, the secretory vesicles are concentrated over a small surface area. If the site
of secretion is not fixed and moves over time, the cell wall keeps expanding. If the site of secretion is fixed, this leads to a local increase in secreted enzyme
concentration and cell wall digestion, which needs to be coordinated with cell–cell contact to avoid lysis. (B) In S. cerevisiae, a focus made of vesicles and a
Fus2–Rvs161 amphiphysin-like complex is also formed by means that may involve the actin cytoskeleton (green line), like in S. pombe. Flattening of the plasma
membrane curvature, which occurs as cells grow against each other, is proposed to induce a conformational change in the Fus2–Rvs161 complex. This
allows the recruitment of Cdc42, which leads to local release of the vesicular pool. In the middle and right panels, yellow and blue indicate pheromones. (C) In
S. pombe, the fusion focus, an actin aster nucleated by the formin Fus1, promotes the concentration of vesicles delivered by type V myosin. The focus is initially
unstable, leading to secretion of lytic enzymes over a broad zone and cell growth. As the focus is also a site of pheromone release and perception, the increasing
proximity between the two cells enhances the positive feedback signaling between the two partners. This local increase in MAPK signaling leads to focus
stabilization, driving cell wall digestion. Lipidated pheromones (a- and M-factors) are secreted from the cytosol by a dedicated ABC-type transporter, itself
delivered by polarized secretion (not shown in the figure).
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stabilization: local MAPK activity stabilizes the focus, which
concentrates pheromone release and leads to enhanced receptor–
Ras–MAPK signaling. This further stabilizes the focus, and so on.
This self-enhancing system normally occurs between two partner
cells, each stabilizing the focus of the partner, similar to the case of
cell pairing during chemotropism. Inhibition of Ras1 activity by its
GAP restrains the system and restricts focus stabilization, and thus
cell wall digestion, to cells in close proximity (Merlini et al., 2018).
Interestingly, whereas local MAPK recruitment stabilizes the
polarity site and triggers cell wall digestion, a constitutively active
MAPK present ubiquitously at the membrane blocked cell fusion,
indicating a critical role for a spatially restricted MAPK signal
(Dudin et al., 2016). In this view, conversion from a process of cell
wall expansion to local digestion is a natural consequence of the
increasing proximity of the two partner cells, which leads the
positive pheromone-dependent focusing feedback to overcome
negative Ras1-GAP controls (Fig. 4).
In S. cerevisiae, important work from the laboratory of Mark

Rose has concentrated on the function of the Fus2 protein, which is
required for efficient fusion. Fus2 forms a focus at the shmoo tip, but
is not itself required for vesicle clustering (Gammie et al., 1998;
Paterson et al., 2008). Fus2, which has both an amphiphysin-like
and a Dbl homology (DH) domain, associates with the
BAR-domain-containing protein Rvs161, with which it is
transported to the shmoo tip by myosin V (Brizzio et al., 1998;
Paterson et al., 2008; Sheltzer and Rose, 2009). This likely forms
an amphiphysin-like complex proposed to bind vesicles, though it
does not visibly associate with Sec4-decorated secretory vesicles
(Sheltzer and Rose, 2009; Stein et al., 2015). The function of
Rvs161 in this complex is distinct from its role in shaping endocytic
vesicles with its alternative binding partner Rvs167 (Brizzio et al.,
1998). Interestingly, the Fus2 DH domain does not appear to
function as a GEF, but binds the GTP-loaded form of Cdc42
through an interaction involving the Cdc42 Rho-insert domain
(Ydenberg et al., 2012). This interaction is specifically important for
cell fusion: indeed, Cdc42 mutants that are deficient in this
interaction are competent for cell polarization, but exhibit fusion
defects. Furthermore, this interaction underlies a focal concentration
of Cdc42, which does not occur in shmoos, but specifically at the
pre-fusion zone (Smith et al., 2017). As this localization also
depends on the overall membrane curvature at the shmoo tip, which
becomes flatter as cells pair together, the proposed model is that the
Fus2–Rvs161 complex recognizes the modification in membrane
curvature through a conformational change that induces Cdc42
binding. Cdc42 focusing may in turn promote local exocytosis of
pre-accumulated vesicles at this point for cell wall digestion. Thus,
the conversion from cell wall expansion to digestion would be a
physical consequence of cell pair formation, where growth of the
cells against each other leads to interface flattening (Fig. 4).
Although studies in the two yeast models have investigated

largely distinct molecular components, we are now starting to see
points of convergence, in particular in the formation of a focus at the
site of cell contact, which can be viewed as a hyperpolarization
response. An actin focus may exist in S. cerevisiae, especially given
the reported roles of formin, tropomyosin and myosin V in cell
fusion (reviewed in Merlini et al., 2013). There is also increasing
evidence for a role of MAPK signaling for fusion, like in S. pombe.
Indeed, cells with loss-of-function alleles of theMAPK fus3 display
specific fusion deficiency (Elion et al., 1990; Fujimura, 1994), and a
recent study suggested an increase in MAPK activity just before cell
fusion (Conlon et al., 2016). As Fus3 localizes to the shmoo tip in a
manner dependent on interaction with its scaffold Ste5 and

substrates (Conlon et al., 2016; Maeder et al., 2007; van Drogen
et al., 2001), it is likely that it acts locally at the fusion site. A role for
MAPK in fusion was also recently proposed during somatic cell
fusion in Neurospora (see Box 2). Reciprocally, mutants in the
S. pombe Rvs161 homolog Hob3 displays a fusion defect and may

Box 2. Somatic chemotropism and fusion in
Neurospora crassa
In addition to cell fusion during sexual development, filamentous fungi
also display fusion between somatic hyphae, a process called
anastomosis. The chemotropic signal inducing growth and fusion
during anastomosis remains to be defined, but is believed to be
identical in the two partners. The partner cells resolve this problem
through a ping-pong mechanism in which they coordinately alternate
between states of signal release and perception (Fleissner et al., 2009b).
Interestingly, this ping-pong mechanism involves two MAPK pathways.
As one cell accumulates the homolog of the yeast pheromone-
responsive MAPK, mitogen-activated protein kinase 2 (MAK-2), and its
scaffold, HAM-5, the other accumulates the WD40 protein SO (SOFT),
proposed to act as scaffold for the homolog of the yeast cell wall integrity
MAPK MAK-1, which visibly accumulate only at fusion time (Fleissner
et al., 2009b; Jonkers et al., 2014; Weichert et al., 2016). MAK-2 induces
dispersion of SO, which in consequence oscillates in alternate phase.
The periodic oscillations are proposed to stem from the pulsatile nature of
an activator, possibly MAK-2, that induces vesicle docking and prevents
their fusion until its activity diminishes (Goryachev et al., 2012).
There are many interesting analogies with the yeast chemotropic

and fusion mechanisms. For instance, oscillatory signaling
shows reinforcement as cells grow towards each other, resulting
in progressive concentration of MAK-2 at cell tips (Fleissner et al.,
2009b). The small GTPases CDC-42 and RAC-1, which are present and
active at the growing tip, are required for chemotropic growth, MAK-2
recruitment and its oscillatory dynamics (Lichius et al., 2014). Sterol
intermediates cause fusion defects by interfering with MAK-1 localization
(Weichert et al., 2016). MAK-2 is also required for the final stages of cell
fusion leading to cytoplasmic mixing (Serrano et al., 2018). Numerous
other complexes, such as reactive oxygen species (ROS)-generating
dihydronicotinamide-adenine dinucleotide phosphate (NADPH) oxidase
and striatin-interacting phosphatase and kinase (STRIPAK) complexes
play important roles in Neurospora germling fusion. See Fleissner and
Herzog (2016) for a recent review.

MAK-2

SO
Hypothetical signal
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function with a yet-to-be-identified functional homolog of Fus2
(Dudin et al., 2017). Thus, the increased proximity of partner cells
as they grow towards each other may induce both meaningful
physical and signaling changes, which additively contribute to a
successful fusion process. Additional control mechanisms likely
also participate. For instance, yeast cells monitor cell wall integrity,
and S. cerevisiae mutants in cell wall sensors exhibit pheromone-
dependent lysis (Hall and Rose, 2019; Rajavel et al., 1999).
Conversely, mutations enhancing cell wall integrity signaling block
pheromone-induced cell death (Philips and Herskowitz, 1997;
Zhang et al., 2006). Continued studies in a range of fungal systems
should help illuminate how the cell safely pierces its cell wall.

Plasma membrane merging
The final stage of cell fusion involves merging of the plasma
membranes of the partner cells. This is arguably the defining step in
cell–cell fusion, which has recently received much attention in a
wide range of organisms. Membrane merging requires significant
force to overcome the repulsive charge and hydration forces that
normally keep biological membranes separate. In well-characterized
paradigms of membrane fusion, including vesicle or viral fusion,
this force is conferred by fusogens; these membrane proteins
are able to release stored energy through complex formation or
conformational change that bring membranes in very close contact
(Hernández and Podbilewicz, 2017). Excitingly, recent work has
uncovered a family of virus-derived fusogens, variously called
Hap2, Gcs1 or Eff-1, that mediate cell–cell fusion in a wide range of
organisms (Clark, 2018). However, no member of this class of
proteins appears to exist in fungi (nor vertebrates), raising the
question of what mediates membrane merging in fungi.
Loss-of-function in a fusogen is expected to yield cell pairs that

are arrested with a digested cell wall and apposed plasma
membranes. However, only a small group of genes exhibit a loss-
of-function phenotype that fulfill this criterion, the most prominent
member being the fungal-specific, and highly conserved, multi-
transmembrane protein Prm1. Prm1 was initially identified through
a bioinformatic strategy in S. cerevisiae, where its loss causes∼50%
of cell pairs to fail at fusion, with their plasma membranes
remaining at a distance of∼8 nm (Heiman andWalter, 2000). These
cells have successfully digested their cell wall and exhibit a
characteristic phenotype in which one cell extends a protrusion
inside the other. Studies on other fungi have confirmed the role of
Prm1 in fusion: prm1Δ partner cells in Neurospora, Cryptococcus
and S. pombe protrude into each other and are partly or almost
completely fusion deficient (Curto et al., 2014; Fleissner et al.,
2009a; Fu and Heitman, 2017). However, electron micrographs of
prm1Δ S. pombe cells did not reveal apposed plasma membranes
(Curto et al., 2014), possibly because of efficient cell wall repair
mechanisms. The molecular function of Prm1 is not known. In S.
cerevisiae, it forms homodimers, which are stabilized by disulfide
bridges. This promotes the exit of Prm1 from the ER and
localization to the plasma membrane at the fusion site where it
exerts its function (Engel et al., 2010; Olmo and Grote, 2010a,b).
Prm1 has four transmembrane domains and a hydrophobic region
on one of its extracellular loops (Olmo and Grote, 2010a), which
raises the exciting but untested possibility that it may be able to
insert in the partner cell membrane to promote fusion. Work on
S. pombe has also suggested Prm1 stimulates fusion by promoting the
externalization of phosphatidylserine to the outer plasma membrane
leaflet at the point of cell–cell contact (Curto et al., 2014). In addition,
because S. cerevisiae andNeurospora prm1Δ cells (but not S. pombe)
often lyse, Prm1 also serves a protective function against cell lysis

during fusion, which may be also catalyzed by other, as-yet
unidentified fusogen(s) (Aguilar et al., 2007; Curto et al., 2014;
Jin et al., 2004; Palma-Guerrero et al., 2014).

A second family of four-pass transmembrane proteins, including
S. cerevisiae Fig1 and S. pombe Dni1 and Dni2, appears to have
roles in membrane fusion in several fungi. Cells lacking fig1, dni1 or
dni2, like prm1Δ cells, exhibit protrusion, membrane apposition
and fusion defects (Aguilar et al., 2007; Clemente-Ramos et al.,
2009). Because S. cerevisiae fig1Δ cells also lyse and the lysis and
fusion defects are to a large part rescued by addition of Ca2+, Fig1
has been proposed to promote Ca2+ influx (Erdman et al., 1998;
Muller et al., 2003). Importantly, addition of Ca2+ also ameliorates
the fusion efficiency of prm1Δ cells in this organism (Aguilar et al.,
2007), suggesting regulation of Ca2+ is critical for fusion. However,
Ca2+ does not modulate fusion in S. pombe (Clemente-Ramos et al.,
2009), where Dni2 is proposed to function as a claudin-like
compartmentalization factor to restrict Dni1 to the fusion site (Curto
et al., 2018).

A number of other fungal proteins and factors have been
implicated in membrane fusion, as their loss leads to partial
cell fusion defects with one cell protruding into the other. In
S. cerevisiae, these include the Golgi protease Kex2, which was
proposed to post-translationally modify a fusion factor acting
additively with Prm1 (Heiman et al., 2007). Two enzymes involved
in ergosterol biosynthesis, Erg6 and Erg4, promote efficient cell
fusion, which suggests a role for sterols, although fusion defects in
erg4Δ were shown to arise because of accumulation of a sterol
intermediate, rather than absence of ergosterol (Aguilar et al., 2010;
Jin et al., 2008). Furthermore, direct physical interaction between
the pheromone receptors on the two partner cells has also been
proposed to promote membrane fusion, although mutations
abrogating this interaction blocked cell fusion before membrane
apposition (Shi et al., 2007). In Neurospora, the transmembrane
protein Lfd1 appears to be involved in membrane fusion (Palma-
Guerrero et al., 2014). Identification of the fungal fusogen(s)
remains a clear challenge for the future.

Conclusions and perspectives
The recent studies on chemotropism in S. cerevisiae and S. pombe
have brought about a complete reversal in the concepts of gradient
sensing. Given their distant evolutionary origin, there are of course
important differences in the two yeast models, which in many cases
help to highlight diverse realization of the same phenomenon.
Instead of globally comparing chemoattractant concentration in its
surrounding, the cell assembles a specialized detection patch that
sequentially probes the local pheromone concentration. Thus,
conceptually, cell polarization functions upstream of gradient
detection. The subsequent digestion of the cell wall between two
partner cells is a direct consequence of the change in geometry due
to the growth of the partners towards each other.

There remain many unanswered questions, especially on the
nature and mechanism of the membrane fusogen(s), but also on a
possible bias in initial polarization, on the role of local MAPK
signaling in patch stabilization, and on the relative contributions of
various physical changes for cell wall digestion. The novel
concepts of gradient source and detection at a local patch may also
prompt re-investigation of old questions, for instance, on the role
of pheromone proteases in sharpening gradients or the possible
differences between the two fusing cell types, conferred in part by
the distinct nature of the two pheromones. Finally, our recent
finding that there are active mechanisms to prevent chemotropism
and fusion in zygotes (Vjestica et al., 2018) opens questions into
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the regulatory mechanisms that limit fusion to exactly two
partners. Active research in these areas promises exciting
discoveries in the near future.
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Bendezú, F. O. andMartin, S. G. (2013). Cdc42 explores the cell periphery for mate
selection in fission yeast. Curr. Biol. 23, 42-47. doi:10.1016/j.cub.2012.10.042

Brizzio, V., Gammie, A. E. andRose,M. D. (1998). Rvs161p interacts with Fus2p to
promote cell fusion in Saccharomyces cerevisiae. J. Cell Biol. 141, 567-584.
doi:10.1083/jcb.141.3.567

Butty, A. C., Pryciak, P. M., Huang, L. S., Herskowitz, I. and Peter, M. (1998). The
role of Far1p in linking the heterotrimeric G protein to polarity establishment
proteins during yeast mating. Science 282, 1511-1516. doi:10.1126/science.282.
5393.1511

Cai, H. and Devreotes, P. N. (2011). Moving in the right direction: how eukaryotic
cells migrate along chemical gradients.Semin. Cell Dev. Biol. 22, 834-841. doi:10.
1016/j.semcdb.2011.07.020

Chen, Q. and Konopka, J. B. (1996). Regulation of the G-protein-coupled alpha-
factor pheromone receptor by phosphorylation. Mol. Cell. Biol. 16, 247-257.
doi:10.1128/MCB.16.1.247

Clark, T. (2018). HAP2/GCS1: Mounting evidence of our true biological EVE? PLoS
Biol. 16, e3000007. doi:10.1371/journal.pbio.3000007
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