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Phragmoplast microtubule dynamics – a game of zones
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ABSTRACT
Plant morphogenesis relies on the accurate positioning of the partition
(cell plate) between dividing cells during cytokinesis. The cell plate is
synthetized by a specialized structure called the phragmoplast, which
consists of microtubules, actin filaments, membrane compartments
and associated proteins. The phragmoplast forms between daughter
nuclei during the transition from anaphase to telophase. As cells are
commonly larger than the originally formed phragmoplast, the
construction of the cell plate requires phragmoplast expansion.
This expansion depends on microtubule polymerization at the
phragmoplast forefront (leading zone) and loss at the back (lagging
zone). Leading and lagging zones sandwich the ‘transition’ zone. A
population of stable microtubules in the transition zone facilitates
transport of building materials to the midzone where the cell plate
assembly takes place. Whereas microtubules undergo dynamic
instability in all zones, the overall balance appears to be shifted
towards depolymerization in the lagging zone. Polymerization of
microtubules behind the lagging zone has not been reported to date,
suggesting that microtubule loss there is irreversible. In this Review, we
discuss: (1) the regulation ofmicrotubule dynamics in the phragmoplast
zones during expansion; (2) mechanisms of the midzone
establishment and initiation of cell plate biogenesis; and (3) signaling
in the phragmoplast.
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Introduction
In development, animal cells are motile, whereas the rigid
oligosaccharide cell walls render plant cells immobile. Therefore,
plant development relies on the establishment of correct cell patterns
during the early stages of organ formation by precise positioning
of partitions (cell plates) between dividing cells. Cell plate
construction depends on the pre-prophase band (PPB) and the
phragmoplast. Both are plant-specific structures that co-evolved with
apical growth and asymmetric cell division (Buschmann and
Zachgo, 2016). The PPB forms during late G2 and delineates the
position of the division plane by defining the unique molecular
composition of the ‘cortical division zone’, the region on the plasma
membrane where the cell plate will eventually be attached by the
phragmoplast (Rasmussen et al., 2013). The phragmoplast originates

during anaphase from the remnants of the central spindle (Segui-
Simarro et al., 2004). It consists of microtubules, actin, membrane
compartments and proteins that associate with or regulate the above
(Boruc and Van Damme, 2015; Lipka et al., 2015). The microtubule
component of the phragmoplast consists of two aligned arrays that
flank the so-called phragmoplast midzone, where cell plate assembly
takes place (Fig. 1). The initial phragmoplast has a disk shape with a
diameter that approximately equals that of the daughter nuclei
(Fig. 1); however, the parental cell is generally wider. For example,
the length of a cambium cell exceeds the diameter of the disk-shaped
phragmoplast during late anaphase by up to 100 fold (Larson, 1994).
In such cases, the phragmoplast expands through the cytoplasm until
the cell plate reaches the mother cell boundary (Fig. 1).

Phragmoplast expansion is driven by the dynamic instability
of microtubules. Microtubules depolymerize in the innermost
regions – where cell plate synthesis has been accomplished – and
re-polymerize at the expanding phragmoplast front –where cell plate
synthesis will next take place (Segui-Simarro et al., 2007).
Eventually, the cell plate joins the parental cell wall at the site that
has been previously determined by the PPB (Lipka et al., 2015) and
the phragmoplast disassembles. Animal cells form a cytokinetic
structure similar to the phragmoplast, called the midbody (Lloyd and
Chan, 2006). However, in contrast to the phragmoplast, the midbody
does not expand, remains static during cytokinesis and persists
during interphase (Steigemann and Gerlich, 2009). The expansion of
the phragmoplast is an important and unique evolutionary advance
for plants, because it allows the recycling of tubulin, as well as other
phragmoplast proteins, and enables the concomitant correction of
any inappropriately positioned division planes.

In this Review, we discuss the regulation of microtubule
dynamics in the course of phragmoplast expansion. The first
section provides an overview of the relevant phragmoplast
components that govern microtubule behavior. The second section
focuses on the interplay between phragmoplast components during
the expansion. Coordination of the microtubule dynamics with the
cell plate assembly results in two asymmetries: (1) the lateral
(longitudinal) asymmetry, which is generated by addition of new
microtubules on the outer edge and microtubule loss on the inner
edge of the expanding phragmoplast; (2) the axial (transverse)
asymmetry, which is the consequence of cell plate assembly
processes in the midzone. Interaction between these asymmetries
generates five functionally distinct zones: distal, leading, transition
and lagging zones, and the midzone. We discuss roles of the
phragmoplast components in the context of the five zones and
provide an overview of the signaling processes that underlie
microtubule loss in the lagging zone.

An overview of the main phragmoplast components
A detailed account of phragmoplast proteins has been recently
provided in several reviews (Lipka et al., 2015; McMichael and
Bednarek, 2013; Müller and Jürgens, 2016). Here, we will focus
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on highlighting the specific properties of the phragmoplast
components that are relevant for the model we discuss.

Microtubule organization and dynamics
Microtubule nucleation
Microtubules in plants are nucleated by the evolutionarily conserved γ-
tubulin ringcomplex (γ-TuRC) comprising six subunits,GCP1–GCP6,
where γ-tubulin is GCP1 (Hashimoto, 2013). γ-TuRC can nucleate
microtubules in the cytoplasm and on the lattice of extantmicrotubules.
The geometry ofmicrotubule nucleation by γ-TuRC is regulated by the
augmin complex, which consists of eight subunits (AUG1–AUG8), as
well as by the homologs ofmammalian and yeastMOZART1 (MZT1)
protein GIP1 and GIP2, which interact with GCP3 (Hashimoto, 2013;
Janski et al., 2012).Theseproteins recruitγ-TuRC to the latticeof extant
microtubules and facilitate the nucleation of branched microtubules,
wherebyanewmicrotubule forms at an angle relative to the existingone
(Hashimoto, 2013; Liu et al., 2014; Walia et al., 2014).
Multiple studies have demonstrated the importance of branched

microtubule nucleation by γ-TuRC for plant cytokinesis: γ-tubulin,
GCP3, MZT1 (GIP1 and GIP2), and AUG7 colocalize with
phragmoplast microtubules (Hotta et al., 2012; Janski et al., 2012;
Murata et al., 2013; Nakamura et al., 2012; Nakaoka et al., 2012).
Furthermore, the knockout or knockdown of γ-tubulin (Nakaoka
et al., 2012; Pastuglia et al., 2006), GCP4 (Kong et al., 2010;
Nakaoka et al., 2012), AUG3 (Ho et al., 2011b; Nakaoka et al.,
2012), AUG7 (Hotta et al., 2012) or MZT1 (GIP1 and GIP2; Janski
et al., 2012) results in disorganized phragmoplasts, abnormal cell
divisions and perturbed plant development.

Microtubule polymerization
Several proteins that act on the microtubule plus-ends facilitate
microtubule polymerization. The end-binding 1 family of proteins

(EB1a, EB1b and EB1c in Arabidopsis) have higher affinity for
growing microtubule plus-ends than for the rest of microtubule
lattice, where they act as an catastrophe-promoting factor
(Akhmanova and Steinmetz, 2008). Although all EB1 proteins
colocalize with the phragmoplast, no cytokinetic defects have been
observed in eb1a eb1b eb1c triple knockout mutants (Bisgrove et al.,
2008; Komaki et al., 2010). CLIP-associating protein (CLASP)
binds along the microtubule lattice, but it exhibits its highest affinity
for the area behind the tip of the microtubule end that is occupied by
EB1 at growing ends (Kirik et al., 2007). However, unlike EB1,
CLASP is essential for phragmoplast organization and expansion
(Ambrose et al., 2007). The plant-specific protein SPIRAL1 (SPR1)
competes with EB1 for the microtubule plus-ends (Galva et al.,
2014) and localizes to the phragmoplast (Sedbrook et al., 2004).
Therefore, the overlap in the localization of proteins such as SPR1
and CLASP, together with the lack of cytokinetic defects in the eb1a
eb1b eb1c, could hint at a compensation by these proteins for the
functions of EB1 in the triple knockout plant. The plant homolog of
the microtubule-associated protein 215 (XMAP215, also known as
CKAP5; in plants known as MOR1 or GEM1), mediates tubulin
exchange at the plus end of microtubules and facilitates both
polymerization and catastrophe (Twell et al., 2002; Whittington
et al., 2001). MOR1 localizes to phragmoplast microtubules and to
the midzone (Twell et al., 2002). Mutations in the genes coding for
MOR1 perturb phragmoplast structure and cause cytokinetic defects
(Kawamura et al., 2006; Twell et al., 2002).

Spatial organization of microtubules
Microtubule-associated protein 65 (MAP65) belongs to the
evolutionary conserved group of microtubule-bundling proteins,
which preferentially cross-link anti-parallel microtubules by creating
bridges of 25–30 nmwidth between microtubules (Chan et al., 1999;
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Fig. 1. Successive stages of phragmoplast expansion. (A) Representative pictures of successive stages of phragmoplast expansion in Tobacco BY-2
and Arabidopsis root meristem cells. In both systems, the phragmoplast expands asymmetrically and first attaches to one side of the mother cell, where
microtubules depolymerize. Microtubules were immunostained with anti-tubulin antibody (green) and staining of DNA with DAPI (blue). Scale bars: 5 µm.
(B) The phragmoplast is established between daughter nuclei (blue ellipses) during the anaphase-to-telophase transition and at this stage is disk shaped. Cell
plate assembly takes place in the midzone. Once the cell plate assembly reaches the tubular network stage, microtubules depolymerize and this results in a
ring-shaped phragmoplast. The ring phragmoplast then expands towards the cortical division zone, which was established during prophase by the preprophase
band. During the expansion, microtubules depolymerize in the regions where the cell plate reaches a certain degree of maturity (lagging zone, purple) and
polymerize at the outermost phragmoplast edge (leading zone, light blue). The leading and lagging zones sandwich transition zone (orange). Phragmoplast
expansion is generally asymmetric and the cell plate first fuses with one side of the cortical division zone (Cutler and Ehrhardt, 2002; Lucas and Sack, 2012).
The phragmoplast is dismantled once the cell plate attaches to the plasma membrane and the cell wall.
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Gaillard et al., 2008; Smertenko et al., 2004). In addition, MAP65
may also stabilize microtubules (Chan et al., 1999; Mao et al., 2005;
Smertenko et al., 2008; Wicker-Planquart et al., 2004). MAP65 is
encoded by a family of functionally divergent proteins (Hussey et al.,
2002; Kosetsu et al., 2013). In Arabidopsis and Physcomitrella
patens, several MAP65 isotypes localize to the midzone where they
stabilize the phragmoplast structure by cross-linking anti-parallel
microtubules (Kosetsu et al., 2013; Müller et al., 2004; Smertenko
et al., 2000; Van Damme et al., 2004b). Consistent with this
hypothesis, knockout of the isotype MAP65-3 results in a wider
midzone and causes cytokinetic failure, and cells only show cells
wall stubs and have multiple nuclei (Caillaud et al., 2008; Ho et al.,
2011a; Müller et al., 2004). The mutants also exhibit abnormal post-
embryonic development and reduced fertility. In P. patens, failure of
cytokinesis was observed upon knockdown of threeMAP65 isotypes
(Kosetsu et al., 2013). These findings demonstrate the importance of
anti-parallel microtubule bundles for cell plate synthesis.
Katanin is the onlymicrotubule-severing protein that so far has been

implicated in plant cytokinesis. Live-cell imaging showed that the p60
katanin subunit localized to the phragmoplast (Panteris et al., 2011).
Katanin appears to play three functions during cytokinesis: (1) control
of the phragmoplast length by preventing microtubule elongation; (2)
maintaining orientation of the division plane; and (3) increasing
phragmoplast expansion rate (Komis et al., 2017; Panteris et al., 2011).
The frequency at which extended phragmoplasts occurred, as reported
by Komis et al. (2017), was relatively low, suggesting that this
phenotype is conditional (Komis et al., 2017).

Formins
Electron microscopy studies demonstrate an interaction between some
phragmoplast microtubules and the cell plate (Austin et al., 2005;
Otegui et al., 2001; Samuels et al., 1995; Segui-Simarro et al., 2004).
Although the linker proteins remain unknown, this interaction could
be facilitated by formins. Formins are capable of connecting cell plate
oligosaccharides and the cytoskeleton through their extracellular
domain, transmembrane domains or membrane-binding domain, and
cytoplasmicmicrotubule-binding domain (Deeks et al., 2010; Li et al.,
2010; Wang et al., 2013). Arabidopsis formins and FH8 and P. patens
formin For2A (Ingouff et al., 2005; van Gisbergen et al., 2012)
localize to the phragmoplast midzone (Ingouff et al., 2005; Xue et al.,
2011; van Gisbergen et al., 2012). Additionally, cytokinetic defects in
formin-knockout mutants demonstrate their importance in cell plate
assembly (Ingouff et al., 2005).

Kinesin motor proteins
Angiosperm kinesins from groups 5, 7, 12 and 14, as well as the
orphan kinesin PAKRP2 localize to the phragmoplast microtubules
or the midzone. Furthermore, the transcription of genes encoding
kinesins from groups 4 and 13, and several ‘orphan’ kinesins are
upregulated during metaphase (Vanstraelen et al., 2006); however,
the localization of these kinesins remains unknown. In contrast, the
systematic analysis of all kinesins in moss P. patens revealed that 18
kinesins from several groups (4, 7, 8 and 12) and the orphan kinesins
KINID1a and KINID1b localized to the phragmoplast midzone, and
14 kinesins of groups 5, 7, 13 and 14 decorate phragmoplast
microtubules (Hiwatashi et al., 2008; Miki et al., 2014). The
abundance of kinesins in the phragmoplast may hint at their
functional significance. Indeed, kinesins could deliver material for
cell plate construction, help to maintain phragmoplast structure,
regulate microtubule dynamics and direct phragmoplast expansion.
Group 5 kinesins are homotetrameric, plus-end-directed motors

with an N-terminal motor domain (Endow et al., 2010). Members of

this group localize to microtubules at the phragmoplast midzone of
both tobacco and carrot (Asada et al., 1997; Barroso et al., 2000).
The Arabidopsis kinesin-5 AtKRP125c interacts with phragmoplast
microtubules, and loss of AtKRP125c causes cytokinetic failure
(Bannigan et al., 2007). However, the morphology of the
phragmoplast is not affected in the absence of AtKRP125c, which
suggests that kinesins from group 5 function in phragmoplast
expansion rather than maintaining phragmoplast structure
(Bannigan et al., 2007).

Group 7 kinesins are plus-end-directed motors capable of
transporting signaling molecules to the phragmoplast midzone.
Hence, they have been detected both on the phragmoplast
microtubules and in the midzone. In tobacco, NACK1 and
NACK2 (TETRASPORE and HINKEL, respectively, in
Arabidopsis) physically interact with and deliver the mitogen-
activated protein kinase (MAPK) kinase kinase (MAPKKK) NPK1
to the phragmoplast midzone (Nishihama et al., 2001, 2002;
Soyano et al., 2003). NPK1 mutants exhibit cytokinetic failure,
malformed embryos and abnormal microsporogenesis (Nishihama
et al., 2002; Söllner et al., 2002; Strompen et al., 2002; Tanaka
et al., 2004). In Arabidopsis, TETRASPORE interacts with the
protein kinase Two-In-One (TIO), which is essential for
cytokinesis (Oh et al., 2014, 2005). Other members of this group
in Arabidopsis, including the isoforms Kin7.1, Kin7.3 and Kin7.5,
target separase (Elongated Spindle Poles) to the phragmoplast
midzone (Moschou et al., 2016a, 2013). Interfering with the
interaction between Kin7 and the separase results in cytokinetic
failure (Moschou et al., 2013). These data suggest that group-7
kinesins function in controlling the cell plate assembly by
facilitating the accumulation of divergent signaling molecules at
the phragmoplast midzone.

The group 12 kinesins Phragmoplast-Associated Kinesin-Related
Protein 1 (PAKRP1) and PAKRP1L also localize to the
phragmoplast midzone (Lee and Liu, 2000; Pan et al., 2004).
Although a mutation in PAKRP1L results in an abnormal
phragmoplast structure and cytokinetic failure in microspores, the
molecular function of these proteins remains poorly understood
(Lee et al., 2007). Two members of this group interact with TIO
kinase through their tail domain and thus can potentially traffic TIO
to the midzone (Oh et al., 2012). Therefore, group 12 kinesins, as
those from group 7, play a non-redundant function in the delivery of
signaling molecules to the midzone.

The calmodulin-binding kinesin-like protein (KCBP) of the
kinesin-14 family decorates microtubules and the midzone in
Haemanthus (blood lily) endosperm cells and localizes to the distal
zone microtubules in tobacco BY-2 cells (Buschmann et al., 2015).
In addition, two other kinesin-14 members, KCA1 and KCA2,
localize to the midzone (Vanstraelen et al., 2004), but the functions
of these kinesins remain unknown. Finally, the orphan kinesin
PAKRP2 localizes to the phragmoplast microtubules and the
midzone. Interestingly, pharmacological disruption of the Golgi
resulted in a reduction of PAKRP2 localization on phragmoplast
microtubules; this kinesin may thus contribute to the delivery of
Golgi-derived vesicles to the cell plate (Lee et al., 2001).

A set of diverse microtubule regulators cooperate to control the
organization and dynamics of microtubules in the phragmoplast.
These microtubules function as a scaffold for the cell plate assembly
by providing structural support to the cell plate, as well as serving as
transport tracks for the kinesins to deliver vesicles and signaling
molecules to the midzone. Such delivery and accumulation of cell
plate assembly components in the midzone generates asymmetry
between midzone and distal zones.
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Signaling components
Cytoskeletal dynamics and cell plate assembly during phragmoplast
expansion are coordinated by as yet poorly understood signaling
networks. Several classes of serine/threonine protein kinases
localize to the phragmoplast microtubules and the midzone, and
below we describe the major kinases and their substrates.

The MAPK pathway
The MAPK cascade is the best-understood phragmoplast signaling
pathway. In tobacco, this pathways consists of theMAPKKKNPK1,
theMAPKKNQK1, and theMAPKNRK1 (Nakashima et al., 1998;
Nishihama et al., 2001, 2002; Soyano et al., 2003). NPK1 is
delivered to the phragmoplast midzone through interaction with the
C-terminus of the group 7 kinesins NACK1 and NACK2. In addition
to the delivery, this interaction activates NPK1 (Nishihama et al.,
2002). Upon reaching the midzone, NPK1 activates MAPKs (i.e.
NRK1 in tobacco;MPK4,MPK6 inArabidopsis; MKK3 in Alfalfa),
which also localize to the midzone and/or phragmoplast
microtubules (Beck et al., 2011; Bogre et al., 1999; Kohoutová
et al., 2015; Kosetsu et al., 2010; Smekalova et al., 2014; Takahashi
et al., 2010). Phosphorylation of MAP65 and EB1 by MAPKs can
diminish their affinity to microtubules (Kohoutová et al., 2015;
Sasabe et al., 2006; Smertenko et al., 2006). The MAPK pathway
appears to be conserved in embryophytes. In P. patens protonemal
cells, the NACK orthologs PpNACKa, PpNACKb and PpNACKc
also localize to the midzone. Similar to what has been found for
NACK mutants in tobacco and Arabidopsis, RNAi-mediated
knockdown of the PpNACK orthologs perturbs phragmoplast
expansion (Naito and Goshima, 2015).

CDKs, Aurora and TIO
Cyclin-dependent kinases (CDKs) appear to be important for
phragmoplast functions because expression of a non-degradable
cyclin B mutant, which leads to constitutive activation of Cdc2, results
in abnormal cytokinesis (Weingartner et al., 2004). In addition, Cdc2
localizes to both the phragmoplast microtubules and the midzone
(Weingartner et al., 2001). CDKs also control microtubule dynamics in
the phragmoplast by phosphorylating MAP65 and group 7 kinesins
(Sasabe et al., 2011; Weingartner et al., 2004).
Plants have divergent homologs of animal Aurora kinase, which

form a separate clade on the Aurora kinase phylogenetic tree
(Demidov et al., 2005). The Arabidopsis genome contains three
Aurora-encoding genes: Aurora 1, Aurora 2, and Aurora 3. Aurora 1
kinase and, to some extent, Aurora 2 localize to the phragmoplast
midzone and the cell plate (Demidov et al., 2005; Van Damme et al.,
2004a). Accordingly, downregulation of Aurora kinases results in
abnormal cell division (Petrovska et al., 2012; Van Damme et al.,
2011). Aurora kinase phosphorylates the C-terminal domain of
MAP65 (Boruc et al., 2017; Smertenko et al., 2006), which in
cooperation with CDKs and MAPKs, diminishes MAP65 binding
to microtubules. Collectively, these pathways increase the
cytokinesis rate (Smertenko et al., 2006). Arabidopsis TIO has the
same type of kinase domain as does the kinase Fused, a key
component of the evolutionary conserved hedgehog signaling
pathway of animals, though its substrates remain unknown (Oh
et al., 2005). Knockout of TIO or ectopic expression of the wild-
type or mutant proteins causes abnormal phragmoplast expansion
and positioning, incomplete cytokinesis, and multicellular or
polyploid pollen grains (Oh et al., 2012, 2014, 2005). As a
consequence, the mutants are sterile. In conclusion, although
phragmoplast expansion is guided by multiple signaling pathways,
our knowledge about the substrates remains limited. Consequently,

the identification of these kinase substrates is essential for our
understanding of phragmoplast expansion.

Phragmoplast expansion
Microtubule dynamics in the phragmoplast are coordinated with the
cell plate assembly. Consequently, three zones are formedwith distinct
patterns of microtubule behavior (Figs 1 and 2). The outer leading
zone is dominated by the formation of new microtubules. Cell plate
assembly initiation occurs in this zone. The transition zone maintains
the balance of microtubule polymerization and depolymerization, but
also contains some stable microtubules (Murata et al., 2013). Here, the
cell plate takes shape through vesicle fusion and tubulation. Third,
there is an inner lagging zone, where the cell plate construction
achieves a threshold of maturity and microtubules depolymerize.
Below, we discuss how microtubule dynamics could be coordinated
with the cell plate assembly in each zone.

The leading zone
Addition of new microtubules in the leading zone depends on
processes associated with nucleation and elongation. The nucleation
events are facilitated by γ-TuRC (Fig. 2). Nucleation on the
microtubule-associated γ-TuRCs results in microtubule branching
(Murata et al., 2013). Plus-end-binding proteins appear to play a key
role in this local microtubule polymerization because mutations in
MOR1 or CLASP result in smaller phragmoplasts (Ambrose et al.,
2007; Kawamura et al., 2006). Moreover, lack of MOR1 causes
fragmented and misshaped phragmoplasts, as well as a premature
termination of cell plate synthesis (Twell et al., 2002). The
phragmoplast length appears to be controlled by katanin, as the
katanin-knockout mutant exhibits extended microtubules (Panteris
et al., 2011). Consistent with this activity, katanin localizes to the
distal zones during both formation and expansion of the
phragmoplast (Panteris et al., 2011).

The majority of the microtubule plus-ends are directed toward the
midzone, whereas minus-ends are directed towards the distal edge
(Euteneuer et al., 1982; Euteneuer and McIntosh, 1980).
Consequently, microtubules that interdigitate in the midzone are
mostly of opposite polarities (Euteneuer and McIntosh, 1980;
Smertenko et al., 2011). Overlapping anti-parallel microtubules are
predicted to be crosslinked by MAP65 (Fig. 3) because MAP65
preferentially binds anti-parallel microtubule bundles (Ho et al.,
2011a; Janson et al., 2007). This feature makes MAP65 a marker of
the anti-parallel microtubule overlap. The localization of MAP65
suggests that it has a role in the maintenance of the phragmoplast
structure by stabilizing microtubule overlaps in the midzone. Such a
localization of MAP65 to the phragmoplast midzone in tobacco,
Arabidopsis, Norway spruce and Physcomytrella points to
evolutionary conservation of the anti-parallel overlap (Kosetsu
et al., 2013; Smertenko et al., 2000, 2003, 2004; Van Damme et al.,
2004a,b). The physical presence of the midzone overlap has been
demonstrated by electron microscopy studies in Arabidopsis (Ho
et al., 2011a), Heamanthus (Hepler and Jackson, 1968) and
Physcomytrella (Hiwatashi et al., 2008) phragmoplasts. Electron
tomography analysis of cryofixed phragmoplasts detected the
overlap only during the initial stage of the phragmoplast, but not
during the subsequent expansion stages (Austin et al., 2005; Segui-
Simarro et al., 2004). The latter findings invoked skepticism about
the importance of the anti-parallel microtubule overlap for
phragmoplast function, despite apparent cytokinetic defects in
MAP65-3 mutants (Caillaud et al., 2008; Ho et al., 2011a; Müller
et al., 2004). Austin and colleagues proposed that instead of the
overlap, microtubule interactions with the cell plate assembly matrix
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maintain phragmoplast structure through a stabilization of
microtubule plus ends (Austin et al., 2005). However, this model
does not explain the commonly observed midzone localization of
MAP65, as the electron tomography data suggested that the
phragmoplast mostly lacks microtubules in the midzone.
Resolving this controversy will require more experimental data.
Importantly, anti-MAP65-3 antibody labels sparse hotspots

around the perimeter of the expanding phragmoplast (Ho et al.,
2011a, 2012; Müller et al., 2004; Smertenko et al., 2008), and such
clusters were also observed in live-cell imaging experiments with
MAP65-3–GFP (Smertenko et al., 2008; Van Damme et al., 2004a).
The detection of these sparse microtubule overlaps by electron
microscopy may be challenging: under the assumption that the
phragmoplast structure is stabilized by both anti-parallel
microtubule overlaps and by the cell plate assembly machinery,
the frequency of the overlaps would depend on the cell plate
assembly stage. Furthermore, the mechanical resilience of the
overlaps could also play a role and would be proportional to the
affinity of MAP65 to microtubules. Thus, the overlap frequency in a
given situation could fluctuate as a consequence of: (1) the
phragmoplast expansion stage; (2) the phragmoplast size; and (3)
the number of available MAP65 molecules per dividing cell and
their affinity to microtubules.

The width of the anti-parallel microtubule overlap in vitro is
known to be maintained by a module consisting of MAP65 and
kinesins (Bieling et al., 2010) (Fig. 3). Consistent with this model,
knockout of the kinesins Kin4-Ia and Kin4-Ic results in a wider
MAP65-positive domain in the midzone of the moss Physcomitrella
patens (de Keijzer et al., 2017). Alteration of normal MAP65
localization in the kin4-Ia kin4-Ib mutant background suggests that
the lack of the kinesins results in wider anti-parallel microtubule
overlap. Electron microscopy examination of cytokinesis in kin4-Ia
kin4-Ib revealed a thicker cell plate (de Keijzer et al., 2017). In
contrast to the kin4-Ia kin4-Ib mutant phenotype, the mutation of
MAP65 caused disconnection of the phragmoplast halves in
Arabidopsis and cell plate assembly failure (Müller et al., 2004;
Steiner et al., 2016).

The above findings reveal that there is an intriguing association
between the dimensions of the MAP65 domain in the midzone and
width of the cell plate. We hypothesize that MAP65 plays a role in
midzone establishment by targeting the membrane trafficking
machinery. Several recent observations support this view. First,
MAP65 can bind vesicles (Zhang et al., 2012). Second, at least two
MAP65 isotypes,MAP65-1 andMAP65-3 (PLEIADE), interact with
subunits of the TRAPPII vesicle tethering complex subunits TRS130
(CLUB) and TRS120 (Steiner et al., 2016) (Fig. 3). Localization of
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MAP65-3 is not affected in single trs120 or trs130 mutants, which
suggests that targeting of MAP65 to the midzone is independent of
the TRAPPII complex. Similarly, the targeting of TRS120 or
TRS130 to the midzone was not perturbed in the MAP65-3 mutant
ple4 which has a reduced affinity for microtubules (Smertenko et al.,
2004; Steiner et al., 2016). It is plausible that TRS120 and TRS130 in
a ple4 mutant background are targeted to the midzone through an
interaction with MAP65-1 or other midzone-localized MAP65
proteins (e.g. MAP65-2 or MAP65-5; Smertenko et al., 2008). It
would be essential to analyze localization of the TRAPPII complex in
higher order MAP65-null mutants before the role of MAP65 in
TRAPPII targeting to the midzone is conclusively established.
However, all available evidence thus far points to an establishment of
anti-parallel microtubule overlap by MAP65 and a subsequent
accumulation of vesicles in the leading zone, which then results in
cell plate initiation.

Transition zone
Cell plate initiation culminates in the establishment of the cell plate
assembly matrix (CPAM) (Segui-Simarro et al., 2004). The exact
constituents of the CPAM remain unknown – it appears as a ∼150-
nm-wide region around the cell plate that lacks ribosomes (Austin
et al., 2005; Segui-Simarro et al., 2004). Some microtubules
terminate inside the CPAM and over 50% of these microtubules
have blunt ends, which is typical for stable microtubules (Austin
et al., 2005). The same work showed a few microtubules terminating
at the cell plate (Austin et al., 2005). Stable microtubules are thought
provide structural support to the phragmoplast morphology and to the
nascent cell plate (Fig. 3A). Live-cell imaging data supports the
existence of stable microtubules in the phragmoplast (Murata et al.,
2013). In addition, the transition zone contains dynamicmicrotubules
(Murata et al., 2013; Smertenko et al., 2011). The factors that are
responsible for microtubule attachment to the CPAM remain
unknown. This role could potentially be performed by formins,
which are capable of binding both membranes and microtubules.
The population of stable microtubules terminating in the CPAM

could be used by kinesins as tracks for the transport of TGN-derived
vesicles to the midzone. For example, the Arabidopsis kinesin-12

PAKRP2 binds phragmoplast microtubules and localizes to the
midzone (Lee et al., 2001). PAKRP2 also associates with vesicles,
as it was found to be enriched in the insoluble fraction of mitotic cell
extracts containing endomembrane systems, including vesicles (Lee
et al., 2001). Furthermore, disruption of the Golgi and other
endomembrane systems with Brefeldin-A causes cytoplasmic
localization of AtPAKRP2 (Lee et al., 2001).

The directionality of vesicle trafficking and their subsequent fusion
could be driven by Ca2+ signaling. Ca2+ was initially detected in the
cell plate following treatment with the Ca2+-precipitating agent
antimonate in electron microscopy studies (Wick and Hepler, 1980).
These results indicate that the highest Ca2+ concentration is in the
midzone and the lowest is in the distal zones. In agreement with this
hypothesis, Ca2+ is essential for the catalytic activity of callose
synthase, which accumulates in the phragmoplast midzone and
produces callose at the cell plate (Aidemark et al., 2009; Him et al.,
2001). Furthermore, a Ca2+ gradient appears to control the spatial
activity of proteins in the phragmoplast, as evidenced by the
localization of the minus-end-directed microtubule motor KCBP.
KCBP binding to calmodulin in the presence of Ca2+ inhibits its
binding to microtubules (Song et al., 1997). This feature makes
KCBP a useful sensor of Ca2+ gradients. Live-cell imaging
demonstrates binding of KCBP to microtubules mostly in the distal
zone, which suggests that the concentration of Ca2+ is higher in the
midzone than in the distal zone (Buschmann et al., 2015).

Fusion of vesicles at the phragmoplast midzone is followed by the
formation of tubes (tubulation), the extension of the tubes and their
fusion into a network (Samuels et al., 1995; Segui-Simarro et al.,
2004). Tubulation is driven by GTPases from the dynamin-related
protein 1 and 2 (DRP1/2) groups (Fujimoto et al., 2008; Hong et al.,
2003; Konopka et al., 2006; Segui-Simarro et al., 2004).

Vesicle delivery and fusion is accompanied by the synthesis of
polysaccharides. Callose is the most abundant polysaccharide that is
involved in these early stages of cell plate assembly (Drakakaki,
2015; Thiele et al., 2009). It is synthetized by callose synthase, which
might be recruited to the cell plate by DRPs (Hong et al., 2001).
Mutant alleles of the callose synthases MASSUE gsl8, gls9 (Chen
et al., 2009; Töller et al., 2008), and CHOR (Guseman et al., 2010)
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the midzone is determined by the balance of forces generated by kinesin movements and the affinity of MAP65 for microtubules. MAP65 interacts with the
tethering complex TRAPPII. Tethering complexes can initiate cell plate assembly by recruiting vesicles (green circles) to the midzone. In the absence of kinesins
(ΔKinesin), both the midzone and cell plate are wider. In the absence of MAP65 (ΔMAP65), kinesins slide microtubules away from each other. Consequently, cell
plate formation is abrogated. (B) Example picture of the localization of MAP65a-citrine in Physcomytrella caulonemal tip cell. Reprinted from de Keijzer et al.,
2017, with permission from Elsevier. Double knockout of Kin4-Ia and Kin4-Ic results in wider microtubule overlap as evident by MAP65a–citrine localization in
living cells. (C) Example picture of how loss of MAP65-3 activity (Arabidopsis ple-6 allele) leads to a wider phragmoplast midzone. Reprinted from Muller et al.,
2004, with permission from Elsevier. Microtubules were immunostained with anti-tubulin antibody (green). WT, wild type. Scale bars: 5 μm (B), 2 µm (C).
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exhibit impaired cytokinesis (Chen et al., 2009; Töller et al., 2008;
Thiele et al., 2009; Guseman et al., 2010). The deposition of other
major cell wall oligosaccharides, such as cellulose, hemicellulose and
pectin, occurs simultaneously with callose (Baluška et al., 2005;
Dhonukshe et al., 2006; Miart et al., 2014). Several enzymes
responsible for the synthesis of cellulose and hemicellulose localize
to the midzone (Yokoyama and Nishitani, 2001; Gu et al., 2016;
Miart et al., 2014). Pectin synthesis enzymes have not yet been found
in the phragmoplast; however, the midzone DRP1 interacts with an
enzymatic complex that is responsible for pectin biosynthesis
(Atmodjo et al., 2011). Many oligosaccharide-modifying enzymes
are also located in the midzone, which indicates that oligosaccharides
– like the membrane – undergo remodeling in the course of cell
plate shaping. These enzymes include the endo-1,4-β-glucanase
KORRIGAN, which digests cellulose fibers (Zuo et al., 2000), and
endoxyloglucan transferase that remodels the hemicellulose network
by catalyzing splitting and grafting of xyloglucan polymers
(Nishitani, 1995), as well as pectin methylesterase, which controls
stiffness of the cell wall bymodifying pectin (Wang et al., 2016). The
main function of the transition zone is therefore to advance cell plate
biogenesis from its initiation to the tubular network stage (Segui-
Simarro et al., 2004). By this stage, oligosaccharides in the cell plate
could provide structural support to the cell plate.

Lagging zone
Microtubule depolymerization at the lagging edge of the
phragmoplast appears to be irreversible because de novo formation
of microtubules along the cell plate behind the lagging zone has not
been reported yet. Therefore, the dismantling of the phragmoplast
must be coordinated with the assembly of the cell plate to avoid a
premature loss of the microtubule scaffold. Two non-exclusive
mechanisms could facilitate the loss of microtubules in the lagging
zone: (1) activation of microtubule severing, and (2) inhibition of
microtubule nucleation and stabilization. The second mechanism fits
better to our current knowledge, because microtubule-destabilizing
factors have thus far not been implicated in the processes in the
lagging zone. Katanin localizes to the distal zone and appears to
control attachment of phragmoplast to the forming nuclear envelope,
division plane orientation and the phragmoplast expansion rate
(Komis et al., 2017; Panteris et al., 2011), whereas the catastrophe-
promoting Arabidopsis kinesin Kin13 associates with the Golgi in
root apical meristem cells and plays a role in trichomemorphogenesis
(Desai et al., 1999; Lu et al., 2005).
Several signaling pathways control microtubule stability in the

phragmoplast. As discussed above, the MAPK pathway leads to the
phosphorylation of the highly divergent MAP65-1 C-terminal
domain (Sasabe et al., 2006; Smertenko et al., 2006). Since the
NACK kinesin and NPK1 kinase complex is delivered to the
phragmoplast midzone along microtubules, the number of NPK1
molecules delivered to the plus-end of a microtubule would be
proportional to the lifetime of a microtubule. Microtubules of a long-
life nature would ultimately accumulate more kinase molecules and
consequently have higher kinase activity at their plus-ends. This
would diminish activity of the plus-end microtubule-stabilizing
proteins. Such a ‘clock’ mechanism could define microtubule ‘age’
and stimulate the disassembly of microtubules that have been
persisting for a long time.
The MAPK pathway is unlikely to be the sole regulator of

MAP65 because mimicking phosphorylation of MAP65 by MAPK
results in only a marginal decrease of its affinity to microtubules,
indicating the involvement of other signaling pathways (Smertenko
et al., 2006). Aurora kinases and Cdc2 also phosphorylate the

C-terminus of MAP65 in vitro and in vivo; thus, MAP65 integrates
the activity of multiple signaling pathways and has the potential to
translate these signals into microtubule stability (Smertenko et al.,
2006; Boruc et al., 2017; Fig. 3B). However, the combined activity
of all three kinase pathways only accounts for six out of the nine
predicted phosphorylation residues ofMAP65, and futurework thus
may reveal additional regulatory mechanisms (Smertenko et al.,
2006). For example, TIO kinase interacts with the NACK kinesin
homolog TETRASPORE and also with kinesin-12 through two
distinct regions located in the non-catalytic C-terminus (Oh et al.,
2012, 2014). TIO might therefore phosphorylate MAP65 directly,
or by promoting the formation of complexes between the kinesin
andMAPKKK that phosphorylate MAP65 or other substrates. Such
a combination of regulatory pathways would constitute a truly
intricate mechanism to prevent the premature destabilization of
phragmoplast microtubules.

In Arabidopsis, the microtubule-associated protein RUNKEL
(RUK) contains an apparently inactive serine/threonine kinase
domain (Krupnova et al., 2009). Although RUK does not localize to
the midzone, a ruk knockout has abnormal phragmoplasts and
cytokinesis defects (Krupnova et al., 2009). In addition, expression
of a dominant-negative RUK construct caused partial displacement
of the kinesin-7 HINKEL (a homolog of TETRASPORE and
NACK) from the midzone to the phragmoplast microtubules and
resulted in abnormal cytokinesis (Krupnova et al., 2013). These
findings raise the intriguing possibility that RUK cooperates with
TIO in regulating MAPK activity.

Phosphorylation events also control other microtubule regulators.
For example, phosphorylation appears to inactivate the kinesin-7
HINKEL, as the ectopic expression of its phosphomimetic mutant
was unable to complement the cytokinetic defects of hinkel (Sasabe
et al., 2011). In vitro assays demonstrate that MAPK also may
reduce microtubule stability by phosphorylating EB1c (Kohoutová
et al., 2015).

Although protein kinases localize to the midzone as early as during
initiation of the cell plate assembly, microtubule loss occurs only the
in the lagging zone. This suggests the existence of a ‘licensing
mechanism’ that prevents microtubule loss before the cell plate
assembly reaches a certain threshold. It is conceivable that long-lived
microtubules in the lagging zone may be destabilized by the ‘clock’
mechanismmentioned above. However, experimental data shows that
a clock mechanism is not sufficient to trigger microtubule
depolymerization. Inhibition of cell plate assembly by caffeine or
Brefeldin A prevents microtubule depolymerization in the lagging
zone (Yasuhara and Shibaoka, 2000; Yasuhara, 2005), giving rise to
giant, disk-shaped phragmoplasts, where microtubules persist for
hours (Yasuhara and Shibaoka, 2000; Yasuhara, 2005). Therefore,
the licensing mechanism, in addition to the microtubule age, would
also be expected to rely on the status of cell plate assembly. For
example, a certain mechanical resilience threshold must be achieved
before microtubule disassembly can proceed. Testing this hypothesis
would require the measurement of the impact of oligosaccharide
deposition on the mechanical resilience of the cell plate, which is
currently not possible with the available tools.

In summary, microtubule loss in the lagging zone appears to be a
highly regulated process, which depends on: (1) accumulation of
protein kinases from multiple signaling pathways in the midzone;
(2) yet unknown chemical or mechanical stimuli related to the
deposition of callose or other oligosaccharides in the cell plate; and
(3) convergence of multiple signaling pathways on the key
microtubule regulators. As such, this zone provides an exciting
paradigm to understand the crosstalk between microtubule dynamics
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and cell wall deposition. Importantly, synchronized microtubule loss
in the lagging zone and addition of new microtubules in the leading
zone provide the lateral asymmetry that, in combination with the axial
asymmetry, drives phragmoplast expansion. Whether these
asymmetries act in concert or independently remains to be
determined.

Concluding remarks
The complex three-dimensional structure, as well as the cytoplasmic
tubulin that surrounds the phragmoplast prevents the tracking of
individual microtubules by current microscopy techniques. To date,
fluorescence recovery after photobleaching and imaging of drug-
treated cells have been used to gain insight intomicrotubule dynamics
in the phragmoplast (Smertenko et al., 2011; Murata et al., 2013).
Subsequent validation using models and simulations can increase the
value of these indirect experimental approaches (Smertenko et al.,
2011). Thus, further progress in unravelling the complex processes
governing the functions of the phragmoplast zones will require not
only better materials and technologies to measure microtubule
dynamics, but also more advanced modeling tools.
One of the most intriguing questions is what makes phragmoplast

a plant-specific microtubule array. The majority of known
phragmoplast proteins are highly conserved among eukaryotic
lineages. Moreover, these proteins also govern the organization of
other plant-specific arrays such as the PPB and cortical microtubules.
The identification and functional characterization of plant-specific
proteins in the phragmoplast would help to answer this question.
Certainly, the nature of the signaling mechanisms is a significant

unknown that remains in phragmoplast biology. Despite our
knowledge on the protein kinase pathways in the phragmoplast,
the information about the substrates of these kinases remains
limited. A novel direction in our understanding of phragmoplast
signaling has been highlighted by the discovery of the midzone
localization of the caspase-domain protease separase in both
angiosperm and gymnosperm species (Moschou et al., 2016b,
2013). Identification of separase substrates could demonstrate how
spatially restricted proteolysis contributes to the regulation of
phragmoplast expansion. A better understanding of these signaling
mechanisms would advance the model of phragmoplast expansion,
and, ultimately, facilitate the engineering of phragmoplasts with
faster cell plate synthesis.
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Töller, A., Brownfield, L., Neu, C., Twell, D. and Schulze-Lefert, P. (2008). Dual
function of Arabidopsis glucan synthase-like genes GSL8 and GSL10 in male
gametophyte development and plant growth. Plant J. 54, 911-923.

Twell, D., Park, S. K., Hawkins, T. J., Schubert, D., Schmidt, R., Smertenko, A.
and Hussey, P. J. (2002). MOR1/GEM1 has an essential role in the plant-specific
cytokinetic phragmoplast. Nat. Cell Biol. 4, 711-714.

Van Damme, D., Bouget, F.-Y., Van Poucke, K., Inzé, D. and Geelen, D. (2004a).
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