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ABSTRACT
Proteins of the Wiskott–Aldrich syndrome protein (WASP) family
function as nucleation-promoting factors for the ubiquitously
expressed Arp2/3 complex, which drives the generation of
branched actin filaments. Arp2/3-generated actin regulates diverse
cellular processes, including the formation of lamellipodia and
filopodia, endocytosis and/or phagocytosis at the plasma
membrane, and the generation of cargo-laden vesicles from
organelles including the Golgi, endoplasmic reticulum (ER) and the
endo-lysosomal network. Recent studies have also identified roles for

WASP family members in promoting actin dynamics at the
centrosome, influencing nuclear shape and membrane remodeling
events leading to the generation of autophagosomes. Interestingly,
several WASP family members have also been observed in the
nucleus where they directly influence gene expression by serving
as molecular platforms for the assembly of epigenetic and
transcriptional machinery. In this Cell Science at a Glance article
and accompanying poster, we provide an update on the subcellular
roles of WHAMM, JMY and WASH (also known as WASHC1), as
well as their mechanisms of regulation and emerging functions within
the cell.
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Introduction
Actin monomers are dynamically incorporated into filamentous
actin (F-actin) to perform crucial cellular functions including cell
migration/invasion, cell–cell adhesion, endocytosis/phagocytosis,
cytokinesis and intracellular membrane transport, to name a few.
Over two decades ago, the gene mutated in the rare X-linked
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immunodeficiency Wiskott–Aldrich syndrome was identified to
encode the hematopoietically expressed Wiskott–Aldrich syndrome
protein (WASP; also known as WAS) (Derry et al., 1994). Since
then, the list of mammalian WASP family proteins has grown and
includes five subfamilies: WASP and neuronal-WASP (N-WASP;
also known as WASL), the three WASP family verprolin homolog
isoforms (WAVE1–WAVE3; also known as SCAR1–SCAR3 and
WASF1–WASF3), WASP homolog associated with actin,
membranes and microtubules (WHAMM), WASP and SCAR
homolog (WASH; also known as WASHC1), and junction-
mediating regulatory protein (JMY) (Campellone and Welch,
2010). Although they all share the conserved WCA (for ‘WH2,
connecting and acidic’) domain required for Arp2/3 activation and
F-actin nucleation, they also contain unique domains, which
regulate their assembly into macromolecular complexes, their
subcellular localization and/or their interaction with proteins that
regulate their activity. In this way, branched F-actin formation by the
Arp2/3 complex can be spatially and temporally regulated on
membranes throughout the cell and integrated downstream of a host
of intracellular signaling pathways. The regulation and cellular
functions of WASP/WAVE family proteins have been the topic of
several recent reviews (Burianek and Soderling, 2013; Campellone
and Welch, 2010; Rottner et al., 2010) (Box 1). In addition, several

additional WASP family proteins have been identified in
invertebrates (Box 2). Herein, we will focus on the recently
identified roles for WHAMM, JMY and WASH family members
at organelles, cytoplasmic membranes and emerging roles in
the nucleus.

Regulation and cytoplasmic functions of WHAMM, JMY and
WASH
WHAMM
WHAMM possesses an N-terminal WHAMM membrane
interaction domain (WMD), a coiled-coil (CC) microtubule (MT)-
binding domain, a proline-rich sequence, and a C-terminal WWCA
motif involved in regulating actin nucleation (Campellone et al.,
2008) (see poster). WHAMM has been found to localize to the
endoplasmic reticulum (ER)–Golgi intermediate compartment
(ERGIC) where it regulates vesicle transport (Campellone et al.,
2008). Rab1 (also known as Rab1a) has been shown to inhibit
WHAMM-mediated actin assembly in vitro and regulate WHAMM
membrane recruitment through an interaction with the WMD
(Russo et al., 2016). More recent studies have shown that RhoD
interacts with WHAMM to regulate Golgi structure and the
transport of cargo to the plasma membrane (Blom et al., 2015;
Gad et al., 2012). Cryoelectron microscopy revealed that WHAMM
binds to the outer surface of MT protofilaments via its CC domain
and forms helical head-to-tail structures along MTs (Shen et al.,
2012). MT binding induces a structural change that exposes the
N-terminal WMD for membrane binding and tubulation activity,
while masking the C-terminal WWCA motif, thus preventing actin
polymerization (Liu et al., 2017). In this way, the coordinated
actions of the actin and MT cytoskeletons can regulate membrane
deformation and tubulation to generate cargo-laden vesicles
for transport.

JMY
JMY was originally identified as a novel p300 (also known as
EP300) transcriptional cofactor that augmented p53-dependent
(p53 is also known as TP53) transcription in response to DNA
damage (Shikama et al., 1999). Subsequently, JMY was found to
posses aWCA domain containing threeWH2 domains (WWWCA),
a proline-rich sequence and a coiled-coil domain at its N-terminus
(Coutts et al., 2009; Zuchero et al., 2009) (see poster). JMY has the
ability to activate Arp2/3 and produce branched F-actin filaments,
but also generates unbranched filaments via its tandem WH2
domains (Coutts et al., 2009; Zuchero et al., 2009). Under non-
stressed conditions, JMY can be seen at the leading edge of the cell,
but upon DNA damage, JMY accumulates in the nucleus (Zuchero
et al., 2009, 2012). The mechanism regulating JMY nuclear import
in response to DNA damage was revealed when a bipartite nuclear
localization signal (NLS) sequence was found within the tandem
WH2 domains (Zuchero et al., 2012). When in the cytosol, G-actin
bound to the tandem WH2 domains obscures the NLS and inhibits
importin binding, thus preventing JMY nuclear accumulation. Upon
DNA damage, there is enhanced cytoplasmic actin polymerization,
which sequesters monomeric actin into F-actin. This effectively
decreases the binding of G-actin to the WH2 domains, thereby
exposing the NLS; this then results in importin binding, JMY
nuclear accumulation and p53-dependent gene expression (Zuchero
et al., 2012).

WASH
WASH (WASH complex subunit 1; WASHC1) contains an
N-terminal WASH homology domain 1 (WHD1), a tubulin-

Box 1. WASP and WAVE regulation and function
The WASP homology 1 (WH1) domain interacts with WASP-interacting
protein (WIP; also known as WIPF1) or other WIP homologs (de la
Fuente et al., 2007; Ramesh et al., 1997) and is required to stabilize
WASP. Direct binding to the GTPase-binding domain (GBD) of WASP by
the GTP-bound form of Cdc42, a member of the Rho GTPase family,
relieves an autoinhibitory fold (Kim et al., 2000). Phosphatidyl-inositol
(4,5)-bisphosphate binding to the N-WASP basic region (BR) promotes
F-actin nucleation synergistically with Cdc42 binding (Rohatgi et al.,
2000). Profilin–G-actin binding to the polyproline region provides a pool
of monomeric G-actin for F-actin generation. While WASP has been
primarily implicated in immune synapse formation in T cells, and
phagocytosis and podosome formation in monocytes (Massaad et al.,
2013), N-WASP has been linked to endocytosis, host–pathogen
interactions and invadopodia (Burianek and Soderling, 2013).

WAVE proteins are intrinsically inactive and exist in a pentameric
complex known as theWAVE regulatory complex (WRC), which includes
ABI1 or ABI2, NAP1 (also known as NCKAP1) or NCKAP1L, CYFIP1 or
CYFIP2 and HSPC300 (Chen et al., 2010; Eden et al., 2002; Ismail et al.,
2009; Stradal et al., 2004) (see poster). Rac1 has been shown to activate
WAVE proteins through an interaction with theWRC component CYFIP1/
2 (Chen et al., 2010). In addition, Arf1 has been found to cooperate with
Rac1 in activating the WRC (Koronakis et al., 2011). Another layer of
activation involves the binding of phosphatidylinositol (3,4,5)-
trisphosphate [PI(3,4,5)P3] to the WAVE BR and phosphorylation of
WAVE, which can further increase their activity toward Arp2/3
(Lebensohn and Kirschner, 2009). Through these interactions, the
WRC can become activated at membranes where it promotes
lamellipodia formation, thereby driving cell migration, metastasis and
invasion in multiple tumor models (Burianek and Soderling, 2013). In
addition, a WRC-interacting receptor sequence (WIRS) was identified in
a number of membrane receptors that directly bind to the WRC
components CYFIP1 and ABI1/ABI2 (Chen et al., 2014). Significantly,
FAT2 (also known as Kugelei) contains such an element, and through
this interaction, the WRC drives collective cell migration in Drosophila
(Squarr et al., 2016).

Finally, oligomerization of WASP andWAVE proteins has been shown
to synergistically increase Arp2/3-dependent F-actin nucleation (Padrick
et al., 2008). This is accomplished by two WCA domains interacting with
two unique sites on the Arp2/3 complex simultaneously to promote actin
nucleation (Padrick et al., 2011).
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binding WASH homology domain 2 (WHD2), a proline-rich region
and C-terminal WCA domain. WASH is intrinsically inactive and
exists in a macromolecular pentameric complex named the WASH
regulatory complex (SHRC) that also includes FAM21A or FAM21C
(WASHC2A and WASHC2C), strumpellin (WASHC5), KIAA1033
(WASHC4) and CCDC53 (WASHC3) (Derivery et al., 2009; Gomez
and Billadeau, 2009; Jia et al., 2010) (see poster). Interestingly, the
SHRC appears structurally related to the WAVE regulatory complex
(WRC), both in terms of complex assembly and the similarity in
shape and size as determined by electron microscopy of the two
complexes (Jia et al., 2010). While studies in Drosophila
melanogaster have revealed a role for Rho1 in activating WASH
(Liu et al., 2009), mammalian RhoA did not activate the SHRC
in vitro (Jia et al., 2010). WASH activity is regulated by K63-linked
polyubiquitylation, which serves to change the conformation of
WASH, resulting in exposure of its C-terminal WCA domain (Hao
et al., 2013). This is mediated by a TRIM27-containing ubiquitin
ligase complex that also contains MAGEL2 and UBE2O, and is
regulated by the deubiquitinase USP7 (Hao et al., 2015). Finally,
although deletion of WASH in Drosophila was initially found to
impair oogenesis and larval development (Linardopoulou et al.,
2007; Liu et al., 2009), a recent study using a differentWASHmutant
showed that homozygous wash mutant flies are viable and fertile
(Nagel et al., 2017). This discrepancy was likely caused by a second-
site lethal mutation in the Drosophila strain used in the former
studies. In contrast, genetic deletion of WASH in mice results in

early embryonic lethality (Gomez et al., 2012; Xia et al., 2013).
Interestingly, mutations in the genes encoding KIAA1033 and
strumpellin have been linked to intellectual disability (ID) syndromes
(Elliott et al., 2013; Ropers et al., 2011), and separate mutations in
strumpellin have been found in patients with hereditary spastic
paraplegia (HSP) (Valdmanis et al., 2007). However, the mechanism
by which WASH deregulation contributes to the pathology of either
disease is unclear.

WASH localizes to endosomes (Derivery et al., 2009; Gomez and
Billadeau, 2009; Harbour et al., 2012; Jia et al., 2012; Monfregola
et al., 2010; Monteiro et al., 2013; Ryder et al., 2013), and WASH-
generated F-actin not only regulates the architecture of the
endolysosomal system, but also spares specific cargo from
lysosomal degradation or missorting (Bartuzi et al., 2016;
Derivery et al., 2009, 2012; Duleh and Welch, 2010; Gomez and
Billadeau, 2009; Gomez et al., 2012; Monteiro et al., 2013; Zech
et al., 2011). WASH is recruited to retromer-positive endosomal
subdomains via the interaction of the extended C-terminal tail of
FAM21 with the retromer subunit VPS35 (Harbour et al., 2012; Jia
et al., 2012). Interestingly, a mutation in VPS35 (D620N) (Vilariño-
Güell et al., 2011; Zimprich et al., 2011) that is associated with early-
onset Parkinson’s disease has been shown to diminish the
interaction of the SHRC with VPS35 and impair vesicular
trafficking from the late endosome (Follett et al., 2013; McGough
et al., 2014; Zavodszky et al., 2014). Studies in Drosophila have
recently shown important roles for WASH in regulating integrin
receptor trafficking and lysosome acidification (Nagel et al., 2017).
A similar role for WASH in the recycling of integrins has been seen
in mammalian cells (Zech et al., 2011). Moreover, WASH regulates
the retrieval of the vacuolar (V)-ATPase from post-lysosomal
compartments, and the recycling of plasma membrane components
from early macropinosomes and phagosomes in Dictyostelium
(Buckley et al., 2016; Carnell et al., 2011). Thus, the ability of
WASH to regulate receptor recycling and lysosome neutralization
has been highly conserved throughout evolution.

WASH-depleted cells contain cargo-laden tubules (Derivery
et al., 2009; Gomez and Billadeau, 2009) and display a collapse of
the endolysosomal system (Gomez et al., 2012). These observations
have promoted the hypothesis that WASH-generated F-actin
regulates tubule fission through the generation of F-actin-
mediated forces (Derivery et al., 2009). More recently it was
shown that minus-end and plus-end MT motor complexes are
recruited to WASH-labeled sorting domains where they coordinate
a ‘tug-of-war’, causing endosomal tubulation and ultimately fission
of vesicles containing MT1-MMP (also known as MMP14)
(Marchesin et al., 2015). In addition, three reports have implicated
the ER in regulating vesicular scission at WASH-containing
endosomal sorting domains. The first study showed that the ER
contacts FAM21-positive endosomes at sites of constricting tubules
prior to dynamin-mediated fission (Rowland et al., 2014). The
second study demonstrated that the ER-anchored vesicle-associated
membrane protein (VAMP)-associated proteins (VAPs) directly
interact with retromer-associated SNX2 to regulate
phosphatidylinositol 4-phosphate [PI(4)P] levels and WASH
activity (Dong et al., 2016). The final study showed that the ER-
associated MT-severing protein spastin, which is mutated in HSP,
drives endosomal tubule fission at ER–endosome contact sites
(Allison et al., 2017). Interestingly, more tubules or collapsed
tubules were prevalent in the absence of spastin, as was the
acquisition of an abnormal lysosomal morphology. Similar effects
on lysosomemorphology were observed when strumpellin, which is
also mutated in HSP, was depleted (Allison et al., 2017). Thus,

Box 2. WASP family members WHAMY, WAML and WAWH
Evolutionary investigation of WASP family members in other organisms
has revealed at least three other families of WASP proteins known as
WHAMY, WAML (WASP and MIM-like) and WAWH (WASP without WHI
domain) (Kollmar et al., 2012; Veltman and Insall, 2010). WHAMY is
found inDrosophila, whereasWAML andWAWHhave only been found in
amoeba, Apusozoa and the anole lizard (Kollmar et al., 2012). At this
point, functional studies of WAML and WAWH have not been performed.
Interestingly,WAML combines theWCA domain ofWASP family proteins
with the membrane-deforming functions of IRSp53-Mim-homology
domain (IMD)-containing proteins like missing-in-metastasis (MIM) and
insulin receptor tyrosine kinase substrate p53 (IRSp53), thus likely
coordinating F-actin generation with membrane deformation.

WHAMY was originally suggested to be a WHAMM and JMY family
member (Veltman and Insall, 2010). However, it was recently shown that
WHAMY arose in Drosophila as a result of an N-WASP gene duplication
(Brinkmann et al., 2016). It is of interest that WHAMY possesses two
GBDs at its N-terminus, which have specificity for active Rac1 and not
Cdc42. WHAMY was found to localize to the leading edge of migrating
cells and on cytoplasmic vesicles that were positive for Rab11.
Interestingly, WHAMY localization to the leading edge and filopodial
tips of spreading cells required the two GBD motifs, and deletion of
WHAMY in macrophages showed an important role in generating
membrane protrusions and regulating cell migration. Significantly,
WHAMY did not stimulate Arp2/3 actin nucleation in vitro, but instead
promoted fast filament growth that was stimulated by active Rac1,
suggesting that WHAMY may exist in an auto-inhibited conformation.
Further studies revealed that WHAMY interacts with N-WASP and could
potentiate N-WASP activity toward Arp2/3 in vitro. Taken together, it was
proposed that WHAMY works together with N-WASP where WHAMY
might generate linear mother filaments near Arp2/3 to promote N-WASP
branched F-actin generation. Indeed, genetic studies in Drosophila are
suggestive of synergistic interactions between WHAMY and N-WASP in
actin nucleation regulation, sensory organ development and myoblast
fusion during embryonic muscle formation. Thus, although WHAMY is
related to N-WASP and has retained the functions of WASP in
development, it has also gained new functions in cell motility.
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vesicle scission at WASH-containing endosomes requires not only
F-actin, but also the coordinated involvement of MTs, their
associated motor and severing proteins, and the ER.
Centrosomal F-actin was previously observed (Hubert et al.,

2011), but it was not until recently that WASH was identified as the
nucleation-promoting factor involved in its generation (Farina et al.,
2015). Farina et al. found that the accumulation of WASH on
centrioles required pericentriolar material protein 1, MTs and
dynein. Significantly, depletion of WASH impaired centrosomal
F-actin nucleation (Farina et al., 2015). However, the mechanism by
which WASH is activated at the centrosome, as well as the
contribution of F-actin nucleation to centrosome architecture,
positioning and organelle interaction, and the impact of F-actin on
primary cilia formation and function remain to be determined.

Role of the WASP family proteins in autophagy
JMY and WHAMM
Autophagy is an evolutionarily conserved catabolic process used by
cells to degrade cytoplasmic proteins and organelles in the lysosome
(Kroemer et al., 2010). Although the formation of autophagosomes
can occur at multiple cellular membranes, ER subdomains enriched
in phosphatidylinositol 3-phosphate [PI(3)P], called omegasomes,
are a major site for the generation of nascent autophagosomes
(Feng et al., 2014). A central question in autophagosome formation
is how the omegasome membrane shape is initiated and ultimately
elongates and matures into an autophagosome. It is known that the
actin cytoskeleton is required during the early events of
autophagosome formation (Aguilera et al., 2014), but whether
Arp2/3 or any WASP family members are involved in this process
was unknown. Recently, two independent groups have identified
roles for JMY and WHAMM in autophagosome biogenesis (Coutts
and La Thangue, 2015; Kast et al., 2015) (see poster). JMY was
found to promote the formation of elongated membranes containing
LC3 (MAP1LC3B), a marker of autophagosomes (Coutts and La
Thangue, 2015). Significantly, the authors identified an LC3-
interacting region (LIR) in the N-terminus of JMY, which was
required for the recruitment of JMY to LC3-containing
autophagosomes. Mutation of the LIR prevented JMY
colocalization with foci of F-actin following autophagy induction,
suggesting that JMY was involved in generating F-actin at sites of
autophagosome formation. Indeed, JMY harboring a W981A
mutation, which abrogates its ability to activate Arp2/3, did not
impact its ability to localize with LC3, but did diminish the extent of
F-actin nucleation at the autophagosome. Since JMY can nucleate
F-actin by Arp2/3-dependent and -independent mechanisms (Coutts
et al., 2009; Zuchero et al., 2009), it is likely that the residual F-actin
present at the autophagosomes is being generated by the WH2
domains of JMY. Consistent with this, re-expression of a
ΔWWWCA JMY mutant in JMY-depleted cells resulted in
decreased LC3 cleavage compared to that seen with the W981A
mutant and reduced cell viability under conditions of autophagy
(Coutts and La Thangue, 2015). Taken together, these data indicate
that JMY influences autophagosome formation and cell viability in
an actin-mediated manner via Arp2/3-dependent and -independent
mechanisms.
A separate study revealed an important role for WHAMM in

autophagosome biogenesis (Kast et al., 2015). There, the authors
observed that during starvation conditions WHAMM was recruited
to ER membranes. Interestingly, WHAMM appeared to propel the
movement of autophagosome puncta through the generation of actin
comet tails in a manner that required its activity toward Arp2/3.
Silencing of WHAMM resulted in far fewer actin comet tails, and

impaired the size and number of autophagosomes. They further
found that the N-terminal WMD domain of WHAMM was
sufficient for its recruitment to the ER, suggesting it harbors an
ER-targeting motif. Why autophagosome biogenesis requires both
WHAMM and JMY remains to be resolved, but they could either
be coordinating F-actin nucleation efforts in regions where
autophagosomes are generated, or participate at distinct steps in
the process.

WASH
The role of WASH in autophagy is controversial. It has been shown
that WASH deficiency in mice results in extensive autophagy,
which likely leads to early embryonic lethality (Xia et al., 2013).
WASH was found to associate with autophagosomes independently
of its nucleation-promoting factor (NPF) activity and other
components of the WASH complex, where it prevented the
ubiquitylation of Beclin-1 by AMBRA1, an event required for the
activation of VPS34 (also known as PIK3C3) (Xia et al., 2013). A
follow-up study revealed another layer ofWASH regulation; WASH
recruited the E3-ligase RNF2, which ubiquitylated AMBRA1
leading to its degradation, thus preventing autophagy induction (Xia
et al., 2014a). In contrast, siRNA-mediated silencing of WASH in
neuroblastoma cells impaired ATG9A trafficking, an event required
for autophagosome biogenesis, resulting in increased cell death of
WASH-depleted cells in response to starvation conditions
(Zavodszky et al., 2014). These results implicate WASH as a
positive regulator of autophagy. It is unclear how to reconcile these
two disparate findings, but it was recently shown that genetic
deletion of WASH in Drosophila also leads to excessive autophagy
(Nagel et al., 2017). Thus, the conservation of WASH as an
inhibitor of autophagy in invertebrates and vertebrates is suggestive
of an evolutionary conserved function. Clearly more work will be
needed to understand autophagy regulation meditated by WASH in
different species.

WASP family proteins in the nucleus
WASP
In addition to the role of JMY in the nucleus as a co-factor for p53, a
number of recent studies have identified actin-dependent and actin-
independent nuclear functions for other WASP family proteins,
from regulating nuclear shape to acting as a scaffold in chromatin-
remodeling complexes (CRCs), to gene regulation (for a detailed
review, please see Verboon et al., 2015b). These observations have
revealed unexpected functions for WASP proteins in the nucleus
and have provided insight into their roles in disease.

Loss-of-function mutations in WAS can result in X-linked
thrombocytopenia, a bleeding disorder associated with platelet
dysfunction, or Wiskott–Aldrich syndrome, where in addition to
thrombocytopenia, patients also develop immunodeficiency.
Paradoxically, despite having immunodeficiency, Wiskott–
Aldrich syndrome patients develop autoimmunity (Massaad et al.,
2013). Vyas and colleagues revealed the reason for this paradox in a
series of elegant studies. In the absence of WASP, T-helper (TH0)
cells primarily developed into TH2 cells, which are more prone to
promoting autoimmunity. They showed that WASP accumulates in
the nucleus of TH0 cells that have been activated through their T-cell
receptor and stimulated to polarize toward a TH1 phenotype, which
is driven by the expression of the transcription factor T-BET
(encoded by the TBX21 gene) (Taylor et al., 2010). WASP was
found to associate with the TBX21 promoter, where it recruited the
pre-initiation complex, chromatin-remodeling factors and subunits
of the SWI/SNF CRC (Sarkar et al., 2014; Taylor et al., 2010).
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WASP SUMOylation converts WASP from a transcriptional
coactivator into a corepressor of nuclear factor (NF)-κB in cells
that are differentiating into TH1 cells (Sarkar et al., 2015).
Interestingly, mutants within the WH1 domain, which are
associated with full-blown Wiskott–Aldrich syndrome,
compromised the recruitment of these factors and impaired TH1
polarization. This was not seen with mutants located in the WCA
domain, which are associated with X-linked thrombocytopenia (and
not Wiskott–Aldrich syndrome), suggesting that the nuclear effects
of WASP in driving TH1 development were independent of its
activity toward Arp2/3 (Sadhukhan et al., 2014). Taken together,
these data have revealed a novel role for WASP in the nucleus and
have begun to explain how disease-causing mutations can
determine disease manifestations. Clearly, the nuclear roles of
WASP in regulating the differentiation and functions of other
immune cell types will be an area of interest for future studies.

WASH
It is noteworthy that Drosophila WASH, as well as strumpellin and
SWIP were originally defined as components of the core promoter
transcription complex containing TRF2 (also known as TBPL2),
which associates with CRCs to regulate the expression of DNA
replication-related element-containing genes (Hochheimer et al.,
2002). WASH has a highly conserved bipartite NLS and nuclear
export signal (NES) (Linardopoulou et al., 2007), and the observed
subcellular localizations of WASH inDrosophila cells, as well as in
mouse hematopoietic stem cells, range from primarily cytosolic to
mostly nuclear (Verboon et al., 2015a; Xia et al., 2014b). In addition
to WASH, all components of the SHRC, apart from CCDC53,
contain predicted NLS motifs. In fact, nuclear FAM21, but not
WASH, is involved in the transcription of NF-κB target genes in
pancreatic cancer cells (Deng et al., 2015).
In line with the role of DrosophilaWASH in the TRF2 complex,

mouse WASH was recently found to almost exclusively localize to
the nucleus in long-term hematopoietic stem cells (LT-HSCs) where
it associates with components of the nucleosome-remodeling factor
(NURF) complex to regulate cellular differentiation (Xia et al.,
2014b). In the absence of WASH, the number of LT-HSCs
significantly increased as a result of their inability to activate the
Myc gene, which is required to drive their differentiation. It is worth
noting that WASH directly interacts with the Rbbp4 subunit of the
NURF complex and this interaction was required for Rbbp4
recruitment to the Myc promoter (see poster). Moreover, wild-type
WASH, but not a mutant lacking the WCA domain could rescue
Rbbp4 recruitment to the Myc promoter and consequently
repopulation of bone marrow HSCs (Xia et al., 2014b). Thus,
these data point to an important WCA-dependent role for WASH in
regulating Myc gene expression in LT-HSCs.
It was recently found that Drosophila WASH has an important

role in maintaining the global architecture of the cell nucleus, as
WASH-depleted cells or those expressing mutant WASH exhibited
defects, including the mislocalization of proteins that mark
nuclear compartments, such as the nucleolus, cajal bodies and
heterochromatin territories (Verboon et al., 2015a). Interestingly,
the link to heterochromatin territories involves a newly described
interaction ofWASHwith the nuclear protein lamin Dm0 (CG6944;
a Drosophila B-type lamin). In the absence of either WASH or
lamin Dm0, the accessibility of DNA to heterochromatic regions is
increased, without any effect on transcription start sites. These
observations, together with the role of WASH in mouse LT-HSCs
described above, suggest that WASH exerts multi-faceted functions
in the nucleus, not only impacting on nuclear shape and chromatin

organization, but also regulating gene expression. The contribution
of the other SHRC components to this regulation, as well as the
impact on other transcriptional programs in other cell types will be
an area of interest going forward.

Conclusions
Since the discovery of the WAS gene and the function of WASP as
an actin-nucleating promoting factor two decades ago, the WASP
family has expanded to eleven members and it has become clear that
this family of proteins has evolved to regulate Arp2/3-generated
F-actin dynamics and perform other cellular tasks at virtually every
organelle in the cell. Significantly, while the vast number of studies
onWASP family proteins has focused on their regulation of Arp2/3,
emerging findings indicate that WASP proteins and their associated
partners have substantial Arp2/3-independent functions. Clearly
there remain several unknowns regarding WASP family proteins
and future research into the biology of these proteins and complexes
is expected to reveal not only new functions throughout the cell,
but also mechanisms by which deregulation contributes to
human disease.
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