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ABSTRACT
All cells sense and integrate mechanical and biochemical cues
from their environment to orchestrate organismal development and
maintain tissue homeostasis. Mechanotransduction is the
evolutionarily conserved process whereby mechanical force is
translated into biochemical signals that can influence cell
differentiation, survival, proliferation and migration to change tissue
behavior. Not surprisingly, disease develops if these mechanical
cues are abnormal or are misinterpreted by the cells – for example,
when interstitial pressure or compression force aberrantly increases,
or the extracellular matrix (ECM) abnormally stiffens. Disease might
also develop if the ability of cells to regulate their contractility becomes
corrupted. Consistently, disease states, such as cardiovascular
disease, fibrosis and cancer, are characterized by dramatic
changes in cell and tissue mechanics, and dysregulation of forces
at the cell and tissue level can activate mechanosignaling to
compromise tissue integrity and function, and promote disease
progression. In this Commentary, we discuss the impact of cell and
tissue mechanics on tissue homeostasis and disease, focusing on
their role in brain development, homeostasis and neural
degeneration, as well as in brain cancer.
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Introduction
Differentiated tissues exhibit distinct mechanical properties
(Fig. 1), which direct their structure and function and reflect the
composition and architecture of the extracellular matrix (ECM),
the cytoskeleton and tension of the cellular constituents, as well
as the fluid dynamics and overall organization of the tissue. In
each case, the intrinsic mechanical properties of a tissue
impose structural integrity and are also important for
tissue function. Cells sense and respond to the mechanical
properties of their surrounding tissues through a process termed
mechanotransduction that, once activated, regulates tissue-
specific differentiation, orchestrates development and maintains
tissue homeostasis. Reflecting the specialized cellular constituents
and ECM composition and organization, the brain has unique
mechanical properties that play a crucial role in neural stem cell
behavior, tissue development and homeostasis (Tyler, 2012). Not

surprisingly, diseases, such as neurodegeneration and brain cancer
(Fig. 1), are accompanied by dramatic changes in the ECM and
cellular components that alter the tissues’ tensional homeostasis,
and contribute to the altered pathology of the tissue (Bonneh-
Barkay and Wiley, 2009).

A recent surge of interest in tissue mechanics and
mechanotransduction – collectively termed mechanobiology – has
emerged from the successful collaborative efforts of physical and
life scientists, shedding light on the role that mechanical force
plays in embryogenesis, tissue homeostasis and disease. In this
Commentary, we review an emerging area in mechanobiology – the
regulation of neuronal development, neural stem cell function and
differentiation and disease by brain tissue mechanics. We begin
with a brief overview of the composition and architecture of the
normal brain ECM, then step back to discuss the role of mechanics
in brain development and adult stem cell biology, and concludewith
a perspective on altered mechanics in the development of glioma
and neurodegenerative disease.

Mechanotransduction
Cells are constantly subjected to physical forces from their
microenvironment, and mechanics play an indispensable role in
cell phenotype and behavior. Cells continuously monitor their
microenvironment in order to respond appropriately to changes in
extracellular parameters, such as temperature, oxygen content and
nutrient availability. Likewise, cells sense and modify their
behavior in response to physical cues, such as osmotic pressure,
shear force, compression loading and substrate properties (such as
ECM architecture and rigidity) through a process termed
mechanotransduction. To transform mechanical information into
biochemical signals, cells must be able to detect a force differential
through molecular sensors, and then amplify and propagate this
mechanical signal to elicit a change in cell behavior (Fig. 2), using
processes that are conserved from bacteria to mammals.

Stretch-activated ion channels, which appeared early during
evolution (Martinac and Kloda, 2003), are the first
mechanosensitive molecules to be described and are indispensable
across phyla. In bacteria, these mechanosensitive channels (MSC-L
and MSC-S) permit ion flux between the cytoplasm and
extracellular environment in response to membrane stretching,
thereby regulating osmotic homeostasis and cell growth (Kung
et al., 2010; Lew et al., 2008; Iida et al., 1994). In mammals,
neuronal mechanosensitive transient receptor potential (TRP) ion
channels and members of the degenerin/epithelial sodium channel
(DEG/ENaC) superfamily play an important role in hearing through
detection of sound waves and touch through pressure sensation (Orr
et al., 2006; Christensen and Corey, 2007). Downstream of
mechanically activated ion channel gating, second messengers,
such as kinases and small GTPases, become activated, which
propagate these signals to effectors that ultimately modify cell
behaviors such as migratory behavior (Ranade et al., 2015). Another
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type of mechanosensitive molecule that can transduce and amplify
physical cues is the integrin family of transmembrane receptors,
which are able to bind to the ECM extracellularly and nucleate
intercellular adhesion machinery. By sensing cell deformation
caused by shear stress, integrins regulate the homeostasis of
endothelial cells. Similar to the scenarios discussed below regarding
abnormal forces in cancer progression, abnormal shear stress in the
vasculature can lead to atherosclerosis in a mechanically dependent
fashion (Katsumi et al., 2004; Tzima et al., 2002, 2001).
Many of the signals triggered by mechanical cues also activate

feedback mechanisms that ‘hardwire’ phenotypes at the subcellular,

cellular and tissue levels. For instance, cells sense increased
substrate stiffness through integrins, which can induce the assembly
of focal adhesions. Maturation of focal adhesions and integrin
clustering can cause activation of focal adhesion kinase (FAK),
and adhesion plaque scaffolding proteins can activate the Rho-
associated protein kinase (ROCK) cascade to enhance cellular
tension through engagement of actomyosin contractility (Humphrey
et al., 2014; DuFort et al., 2011). These proteins can go on to
activate downstream signals, including mitogen-activated kinases
such as extracellular-signal-regulated kinases (ERKs) and the
Hippo pathway protein YAP (also known as YAP1) (Fig. 2).
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Fig. 1. Mechanical properties of tissues. Young’s,
or elastic, modulus (E) describes the amount of force
required to deform a substance, with units of force/
area (N/m2) or Pascals. E of tissues and cells can be
quantified, revealing their relative stiffness. All
tissues have distinct intrinsic physical properties,
which are important in their structure and function.
The stiffest tissues of the body are tooth and bone
(E≥109 Pa), muscle tissue is intermediate
(E≥104 Pa), and among the softest are lung and brain
(E≤4×102 Pa). For reference, a 2.5% agarose gel is
approximately 35 kPa, whereas a tissue culture glass
is off the scale, in the gigapascal range.
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Fig. 2. Example of mechanoreciprocity. In this example (there are many molecular sensors, amplifiers and effectors of mechanics), an adherent cell senses an
increase in ECM stiffness through integrins. This leads to an increase in focal adhesion formation and activation of focal adhesion kinase (FAK), which propagates
the signal to mitogen-activated kinases, such as extracellular signal-regulated kinase (ERK), and the small GTPase Rho. In response to Rho activation,
actomyosin contractility is elevated, causing the cell to become more spread and tightly adhered to its matrix. Additionally, transcription factors such as Yes-
associated protein (YAP) are mechanically activated through Rho (Dupont et al., 2011), which induce the expression of ECM and ECM-modifying genes.
Signaling downstream of ERK also results in transcriptional activation of proliferation and migration genes. In a physiological context, such as gastrulation or
wound healing, this process is eventually resolved. In disease states, such as cancer, this cascade remains active, driving a vicious cycle of matrix stiffening and
mechanosignaling, thereby contributing to disease progression.
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When chronically activated, elevated cellular tension reinforces
these downstream signaling pathways to potentiate a ‘mechano-
circuit’, which can lead to the production of ECM and ECM-
remodeling proteins that stiffen the local microenvironment and
reinforce mechanosignaling (Samuel et al., 2011). This reciprocal
feedback between tissue mechanics and cellular mechanosignaling
circuits, referred to as mechanoreciprocity, is fundamental to
development, to maintaining tissue homeostasis and to resolving
wound healing (Duscher et al., 2014; DuFort et al., 2011). Owing to
the elastic nature of the brain and its confinement in the skull, small
changes in ECM properties or extracellular fluid pressure in disease
states can lead to marked tissue stiffening and compression,
resulting in a corruption of the fine-tuned mechano-circuitry. The
concept of mechanoreciprocity is illustrated in Fig. 2 and will be a
theme in all sections of this Commentary. The illustrated pathways
are active in many different cell types and are not specific to neural
cells. Although the unique architecture of neurons might result
in differences in how mechanical signals are sensed and responded
to throughout the cell body – e.g. in the axon verses the soma –
such subcellular differences in mechanosensing remain to be
characterized in mechanistic detail.

The extracellular matrix and mechanical properties of the
normal brain
The adult brain ECM, which occupies an estimated 20% of the
organ, is unique in that it is almost entirely composed of
glycosaminoglycans (GAGs), including hyaluronic acid,
proteoglycans such as lecticans and glycoproteins such as
tenascin (Zimmermann and Dours-Zimmermann, 2008;
Nicholson and Sykova, 1998; Ruoslahti, 1996). By contrast, the
majority of peripheral soft tissues are structurally supported by a
network of fibrous proteins, such as fibrillar collagens, and
basement membranes, including laminins and non-fibrillar
collagens (these types of proteins are restricted to the vasculature
and meninges in the brain). The non-fibrillar nature of the ECM
components of the brain contribute to the relatively low elastic
modulus and high compliance of this organ. Our current
understanding of the elastic properties of the brain has been well
described previously (Franze et al., 2013) and, as discussed
throughout this Commentary, these properties change dramatically
during neuronal malignancies (Fig. 1). The viscoelastic nature of the
brain contributes to its unique mechanical properties, and different
ECM compartments of the brain (Cowman et al., 2015), neuronal cell
types and even intercellular compartments could vary greatly in
viscoelastic parameters (Lu et al., 2006). Because these differences
are just beginning to be understood, and often in the context of repair
after traumatic injury (MacManus et al., 2016; Li et al., 2016;
Johnson et al., 2016), we do not address viscoelastic properties in
great detail in this review.
One of the best described functional units of the brain ECM is

the perineuronal net (PNN), which serves as a structural scaffold
to maintain the integrity of adult neuronal wiring and control of
plasticity. These elegant mesh-like structures have been thoroughly
reviewed previously (Soleman et al., 2013; Mouw et al., 2014;
Kwok et al., 2011). Briefly, long chains of hyaluronic acid project
perpendicularly from the neuronal cell membrane at sites where
hyaluronan synthases are located (HAS1–HAS3 in mammals) to
form the bulk of the net (Fig. 3A). Hyaluronic acid chains are bound
along their axis by one end of a lectican (a member of the
chondroitin sulfate proteoglycan family, including aggrecan,
brevican, neurocan and versican), which are cross-linked to
neighboring lecticans at their other end through the glycoprotein

tenascin, most often tenascin-R (TNR; Carulli et al., 2006;
Zimmermann and Dours-Zimmermann, 2008; Spicer et al., 2003).
Alterations within (or mimicry of ) PNNs occur in neuronal
malignancies, leading to changes in brain tissue mechanics and
increased activity of mechanosignaling pathways (Fig. 3B), as
discussed below. To fully understand the dysfunctions inherent to
glioma and neurodegenerative disorders, it is important to discuss
the mechanical properties of tissues (as measured using techniques
outlined in Table 1) and the mechanically regulated signals involved
in brain development and neural stem cell differentiation, which is
addressed in the following section.

Mechanical signaling in early neuronal development and
neural stem cell biology
Embryonic development requires precise patterning of cells and
tissues, which is driven by coordinated signals that include physical
and chemical cues. This is abundantly true in brain development,
from formation of the ectoderm germ layer during gastrulation to
neural crest formation, neural vesicle development and brain
maturation. The role of force in embryonic development has been
reviewed extensively (Heisenberg and Bellaiche, 2013; Farge,
2011). Nevertheless, much remains to be defined in terms of how
forces synchronize with soluble growth factors and morphogens to
control cell behavior, particularly in the context of the brain.
Although we can gain considerable insight into these processes
using animal models of development, a more tractable approach
to interrogate the underlying molecular mechanisms involves
performing experiments with primary cells from the brain using
culture models with defined mechanical properties. In this section,
we will review what is known about how mechanical forces and
mechanosensitive molecules drive brain development, focusing on
vertebrate organisms. We then discuss how defining in vivo
mechanical niches combined with stem cell mechanobiology
studies have crucially contributed to our understanding of how
neural cell types sense and respond to mechanical cues.

Mechanical forces guide brain development
During gastrulation, the dynamic orchestration of cell differentiation
and migration causes the physical reorganization of a single sheet of
embryonic cells into three distinct tissue, or germ, layers –
ectoderm, mesoderm and endoderm (Solnica-Krezel and Sepich,
2012). Organogenesis proceeds after gastrulation, when cells within
the three germ layers are further compartmentalized and
differentiate to form primitive tissues, then functional organs.
Formation of the nervous system (neurulation) is initiated by the
migration of cells within the neural plate, an ectodermal layer,
giving rise to the neural crest (Mayor and Theveneau, 2013). This
U-shaped tissue layer is eventually pinched off into a hollow neural
tube, the early central nervous system (CNS), leaving behind neural
crest cells outside of this tube that migrate to become the peripheral
nervous system (PNS). Many of the cell rearrangements and
migrations required for these processes are preceded by an
epithelial–mesenchymal transition (EMT), which involves a shift
from a collective static epithelial phenotype to an individual
migratory phenotype (Przybyla et al., 2016b). Once cells arrive at
the appropriate embryonic location, the reverse phenomenon, a
mesenchymal–epithelial transition (MET), occurs (Nieto, 2013) as
cells re-form an epithelial layer. As cells form more complex tissue
structures, their cell–cell and cell–ECM interactions change
dynamically, as do the mechanical forces they experience, which
can reciprocally drive cell behavior. Throughout neurulation,
mechanical changes at the tissue level can initiate and reinforce
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cycles of EMT and MET by altering cytoskeletal contractility and
the ability of cells to bind to ECM components. This can lead to an
increase in the production of ECM proteins and ECM-modifying
enzymes [digestive enzymes such as matrix metalloproteinases
(MMPs) and cross-linking enzymes such as lysyl oxidase (LOX)],
which can further alter tissue-level mechanics (Samuel et al., 2011;
Levental et al., 2009).

As the embryo progresses through neurulation, regions that will
contribute to the brain continue to be shaped by mechanical forces.
Actomyosin-driven contraction of cells leads to stiffening of dorsal
tissues, which is required for vertebrate neural tube closure (Zhou
et al., 2009), and dysregulation of cell adhesion in neural folds, cell
migration from the neural crest, or other mechanically regulated
processes can result in severe neural tube defects (Greene and Copp,
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2009). In the embryonic mesencephalon, β1 integrin activity
enhances neurogenesis through a Wnt7a-dependent mechanism
(Long et al., 2016). These studies indicate that abundant cellular
movements and organizational changes occur during
embryogenesis and as the primitive nervous system forms.
Therefore, cells in the developing embryo must sense and
integrate mechanical cues into their complex signaling
microenvironment, and respond by further altering the biophysical
environment as development progresses, through mechanisms that
we are only just beginning to understand.
Once the brain begins to take shape, neuronal subtype specification

and migration occur, which require additional spatiotemporally
regulated mechanosensitive pathways. Experimental disruption of
ECM, ECM receptors and mechanosignaling proteins in neural cells
can dramatically affect early brain development. For example,
mutation of the subunits laminin β2 and laminin γ3 causes laminar
disruption of the cortex (Radneret al., 2013), andmice lackingFAK in
the dorsal forebrain also exhibit cortical lamination defects, neuronal
dysplasia and abnormal synapse formation (Beggs et al., 2003; Rico
et al., 2004). Although these studies represent manipulations of
proteins involved in mechanosignaling, the resulting effects on cell
adhesion could also directly contribute to the observed phenotypes. In
addition toECM-basedmechanosignals, fluid flowalso contributes to
neural cell organization and differentiation. The proper orientation of
ependymal cells requires forces generated by cerebral spinal fluid
(CSF) flow, and coordinated beating of their cilia drives further CSF
flow in the developing brain (Ohata andAlvarez-Buylla, 2016;Guirao
et al., 2010). The resulting shear forces along the ventricles direct
neuroblast alignment and migration (Sawamoto et al., 2006), and
consistently, physical obstruction ofCSF during development leads to
decreased neurogenesis and severe developmental defects
(Mashayekhi et al., 2002).
Mechanical signals therefore shape the developing brain

throughout morphogenesis, by controlling cell organization within
tissues to initiate and reinforce signaling pathways that regulate cell
behavior. Next, wewill discuss how structural elements of the brain,

including the ECM and cells that serve as scaffolds, contribute to
developmental programs by providing mechanical inputs to
differentiating cells.

ECM in the developing brain
The cell migration patterns and differentiation programs required for
proper brain development rely on mechanical cues that are mediated
by large-scale changes in ECM composition and physical changes in
brain architecture, in addition to soluble signals. ECM proteins in
many tissues are synthesized and deposited by fibroblasts and other
mesenchymal cells, but in the brain, neuronal cells of all types
contribute to ECM production, maturation and structure. The
lecticans mentioned above are deposited by neurons, glial cells and
neuronal stem cells (Abaskharoun et al., 2010a,b). In addition to
ECM, the cells within the developing brain can themselves also act as
scaffolds for cell migration. Radial glial cells (RGCs) represent an
important progenitor population that gives rise to neurons, glial cells
and the progenitor cells of the subventricular zone (SVZ) (Reinhard
et al., 2016; Rakic, 2003). RGCs also serve as a scaffold for
developing brain architecture and neuronal migration, and have key
roles in cerebral cortex folding (Borrell and Götz, 2014). These
progenitor cells therefore play major structural and mechanical roles
in formation of the brain.Migration of neural precursors along RGCs
is effected in part by expression of the glycoprotein tenascin-C
(TNC) by the RGCs (Garcion et al., 2001), and TNC expression is
also associated with increased proliferation of neurogenic precursors
in the developing ventricle (Doetsch et al., 2002). Disruption of other
ECM and mechanosignaling proteins in the RGCmicroenvironment
broadly affects their morphology, migration and differentiation
(Halfter et al., 2002; Fox et al., 1998; Moore et al., 2002), further
indicating that RGC mechanosensing and the mechanics of the
neurogenic environment play important roles in brain development.

During embryogenesis, specific cell types develop and differentiate
within regions that have distinct matrix mechanical compositions. The
same principle holds true for adult stem cells, whose ability tomaintain
their self-renewal and potency depends upon their tissue-specific

Table 1. Methods used for mechanical testing of biological samples

Mechanical test Basis of detection Sample type
Spatial
resolution Limitations References

Atomic force microscopy
(AFM)

Deflection of a cantilever with
known spring constant and
controlled force is
measured upon direct
contact with sample

Live cells and excised
tissues
(ex vivo)

Nanometer Requires specialized skillset,
expensive equipment,
unreliable at E<100 Pa

Gavara, 2016

Magnetic resonance
elastography (MRE)

Shear waves of a known
frequency are applied to the
sample, and their
propagation is measured
by performing magnetic
resonance imaging

Living organisms
(in vivo)

Millimeter Requires specialized skillset,
expensive equipment,
physical measurements
extrapolated indirectly

Mariappan et al., 2010

Shear rheometry Deformation of sample upon
direct application of known
stress is measured

Fluids and excised
tissues (ex vivo)

Millimeter Low spatial resolution Bilston et al., 1997;
Sundaram et al., 2010

Micropipette aspiration Deformation of sample into
pipette with known suction
force is measured

Single cells and
excised tissue
(ex vivo)

Nanometer Requires specialized skillset,
low throughput

Hochmuth, 2000

Microindentation Indentation of a sample by a
probe with known force is
measured

Excised tissues (ex
vivo)

Micrometer Low sensitivity, only applicable
for solid tissues

Jacot et al., 2006
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environment, or niche. The difficulty in maintaining the ‘stemness’ of
isolated stem cells in basic cell culture conditions underscores the
necessity of the niche, which provides context-dependent biochemical
and physical cues to resident stem cells (Moore and Lemischka, 2006).
The ECM composition of the SVZ niche changes over time during
development (Campos, 2005), and the relative abundance of
collagens, glycoproteins and proteoglycans in the niche regulates the
self-renewal and differentiation of neural stem cells (NSCs) (Reinhard
et al., 2016). It has been shown that the makeup of the ECM can affect
stem cell properties by altering cell adhesion or ligand accessibility but
also by mediating biophysical properties, including stiffness. Cell–
ECM adhesion in the NSC neurogenic niche of the SVZ is a
requirement for homeostasis that is mediated by β1 integrin, VCAM
and laminins. Disruption of these molecules leads to unregulated
NSC proliferation, resulting in dysregulated self-renewal and
differentiation (Alvarez-Buylla and Lim, 2004; Tavazoie et al.,
2008). ECM components, including lecticans and heparan sulfate
proteoglycans, might directly regulate growth factor binding (Mercier,
2016). For example, the binding of fibroblast growth factor 2 (FGF2),
which is involved in NSC maintenance, to its receptor (FGF receptor)
is facilitated by heparan sulfate proteoglycans (Rapraeger et al., 1994).
In another recent example, the ECM receptor dystroglycan has been
found to regulate ECM remodeling in the postnatal SVZ, and to
regulate RGC proliferation and differentiation into gliogenic
progenitors (McClenahan et al., 2016). The biophysical properties
and innate stiffness of niches within the brain are also likely to play a
role in cell fate. A recent report noted a pattern of stiffness gradients in
the embryonic brain, as measured using in situ atomic force
microscopy (AFM) (Koser et al., 2016), and the SVZ specifically is
known to stiffen gradually over the course of embryonic development
(Iwashita et al., 2014), although the bulk elastic modulus of the brain
does not appreciably change during development or postnatally
(Majkut et al., 2013). Directly altering brain stiffness or blocking
mechanotransduction during development results in aberrant axonal
growth andmigration (Koser et al., 2016), also implicatingmechanical
signals as regulators of this process. Defining the mechanical
microenvironment of stem cell niches and understanding their
contribution to cell behavior will enhance our ability to generate
in vitro culture conditions that more faithfully mimic physiological
environments. This knowledge will in turn inform approaches
for optimizing culture conditions to drive lineage-specific
differentiation of distinct neuronal cell types.

Neuronal cell mechanical properties and differentiation
Although model organisms provide valuable insights into neuronal
development and stem cell and progenitor niches, our ability to gain
molecular information at the level of individual cells is difficult at
the organismal scale. This is particularly true in the context of cell
and tissue mechanics and mechanosignaling owing to the paucity
of tools and the complexity of the physical microenvironment
in vivo (see Table 1). To address this issue, researchers often resort
to studying neuronal cell mechanosignaling using neuronal cell
types that have been differentiated from more naïve cells, neural
stem cells or primary neuronal cells grown in culture. With cells in
culture, the mechanical responsiveness of cells can be measured and
manipulated by controlling the mechanical environment to which
cells are exposed. To achieve this, cells can be cultured under
perfusion to mimic shear stress, in a bioreactor designed to impart
compressive force, or on hydrogels or micropost arrays of tunable
stiffness to alter the matrix mechanical environment. For example,
studies implementing tunable hydrogels provide evidence that
mechanical forces can act as instructive cues for stem cell behavior

and lineage commitment by modulating the response to signaling
factors that control self-renewal and differentiation (Engler et al.,
2006; McBeath et al., 2004; Przybyla et al., 2016a). This technique
can also be adapted for use in studying brain development and
disease by mimicking physiological tissue properties (Fig. 1).

As might be expected given the importance of the mechanical
properties of the in vivo niche (discussed above), pluripotent
embryonic stem cells (ESCs) favor neurogenesis when plated on
substrates that resemble soft brain tissue (Keung et al., 2012), and
mesenchymal stem cells (MSCs) also upregulate neuronal markers
when cultured on soft substrates in the Young’s modulus range of
0.1–1.0 kPa (Engler et al., 2006). Studies testing the effect of niche
mechanics on the behavior of NSCs isolated directly from the SVZ
show that NSCs on softer substrates that mimic neurogenic brain
regions, such as the dentate gyrus of the hippocampus, tend to
differentiate into neurons, whereas cells on substrates of increased
stiffness foster glial differentiation (Saha et al., 2008; Georges et al.,
2006; Leipzig and Shoichet, 2009). This is seemingly inconsistent
with measurements of the intrinsic stiffness of neuronal cells, as
neurons at ∼1 kPa are approximately twice as stiff as their
neighboring glial cells at 400 Pa (Lu et al., 2006). However, it has
been hypothesized that the soft glial cells serve as a compliant
substrate for neurons to facilitate neuronal plasticity and provide
protection from trauma (Lu et al., 2006). Mechanistically, it appears
that NSCs in stiffer tissue inhibit neurogenesis through increased
activity of RhoA and contractility, as dominant-negative RhoA
prevents stiffness-induced neurogenic suppression in vitro and
in vivo (Keung et al., 2011). In another study, the mechanically
gated ion channel Piezo1 has been found to be responsible for
human NSC neurogenesis versus astrogenesis through a YAP-
mediated pathway (Pathak et al., 2014). Differentiation into more
specialized neuronal subtypes can also be optimized through
mechanical manipulations; for example, motor neuron
differentiation of human pluripotent stem cells is most efficient on
soft versus stiff micropost arrays, and mediated through a YAP-
dependent mechanism (Sun et al., 2014). Functional cellular
properties might also rely on mechanical signals; for example, the
growth of retinal ganglion axons has recently been found to rely on
the ability of cells to sense local tissue stiffness through
mechanosensitive ion channels (Koser et al., 2016). These studies
indicate that the stiffness on which individual neuronal subtypes are
grown could be important to their functionality, so measuring and
mimicking this feature of the in vivo environment can be used to
direct stem cell fate. Collectively, these studies suggest that
mechanotransduction plays an instructive role in stem cell
differentiation; when combined with appropriate soluble factors,
the forces the cell experiences either permit or restrict exit from
self-renewal and commitment to a specific lineage.

It is becoming increasingly clear thatmechanical cues integratewith
other signals in the cellular microenvironment to drive differentiation
and migration during embryonic development, including during
neural specification and brain organogenesis. Obtaining a better
understanding of how mechanical forces contribute to cell
differentiation is important for advancing fundamental knowledge
of brain development, and should also enhance our ability to culture
and differentiate naïve and adult neuronal cell types. Because
regenerative medicine requires the production of specialized cell
types from more-proliferative progenitor populations, optimizing the
differentiation protocols for neuronal subtypes will be important for
clinical development of stem-cell-based therapies. Understanding how
mechanical signals cause cells to organize into tissue-level structures
that are crucial to proper development will also inform studies of how
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de-differentiated cancer cells contribute to tumorigenesis, as discussed
in detail in the following section.

Tissue mechanics in brain cancer microenvironment
The physical stiffening of tissues during cancer progression is an
ancient clinical observation, and is the basis for modern palpation-
based diagnostic methodologies. Physical changes in the tumor
microenvironment occur on many levels, including elevated fluid
pressure (subsequent to edema), cell compression, stiffening of the
ECM, increased cellular contractility and changes in cell membrane
tension (fluidity). These can collectively drive tumor progression
and impede treatment (i) through sustained activation of pro-
tumorigenic mechanosignaling pathways, (ii) or by providing new
‘tracks’ on which tumor cells can migrate and (iii) by compromising
blood vessel integrity, which can influence both the recruitment of
inflammatory cells and the permeability of macromolecules,
including therapeutic compounds (Netti et al., 2000; Jain, 1999;
Pickup et al., 2014; Padera et al., 2004). During metastasis, cancer
cells experience a wide range of forces when moving from one
microenvironment to the next, and the ability to navigate and endure
these forces greatly influences the successful survival and
colonization of the metastatic cell. Although tissue-level stiffening
of tumors is common, the increased compliance of individual cells
is associated with metastatic progression and tumor aggression due
to an enhanced ability to invade through basement membranes and
ECM, and pass through the circulatory system (Barnes et al., 2012;
Cross et al., 2007). Convincing evidence for mechanical regulation
of solid tumors is quickly accumulating, particularly in the context
of breast cancer (Pickup et al., 2014), and studies on the interplay
between brain tissue mechanics and tumor biology are increasing
as well.

Mechanical properties of brain tumor subtypes
The World Health Organization (WHO) defines the criteria for the
clinical classification of brain tumors, which is updated
periodically. Traditionally, brain tumors have been diagnosed
primarily upon examination of hematoxylin and eosin (H&E)-
stained biopsies, and the scoring of mitotic events, necrosis and
microvascular proliferation. In the 2016 WHO update, molecular
factors, such as mutations and chromosomal abnormalities, were
added to brain tumor classification, improving the accuracy of
diagnosis and prognosis (Louis et al., 2016). This section focuses on
gliomas, which are primary (originating in the brain rather than from
a metastasis) brain tumors with a glial phenotype, occurring most
frequently in adults. Gliomas are scored as WHO grades I through
IV; grade I tumors are typically well managed with surgery, whereas
grades II through IV are progressively more difficult to treat and
have worse prognosis, with the median survival of grade IV at less
than two years (Louis et al., 2016). For simplicity, grades II and III
will be referred to as lower grade gliomas (LGGs) and grade IV as
glioblastoma (GBM). Details of the morbidity andmortality of these
tumors can be found on the American Brain Tumor Association
(www.abta.org) and National Brain Tumor Society (www.
braintumor.org) websites.
Early investigations of the physical properties of brain tumors

were conducted in individuals using elastography (see Table 1).
Although many of these studies have shown that tumors are stiffer
than normal brain (Xu et al., 2007; Scholz et al., 2007, 2005;
Chauvet et al., 2015), some have shown the opposite (Reiss-
Zimmermann et al., 2015; Streitberger et al., 2014), and
determination of stiffness differences between tumor grades has
been inconclusive using this technique. Consistent with

observations of stiffening of brain tumors, increased diffusion of
water within a tumor, as measured by magnetic resonance imaging
(MRI), is prognostic of poor outcome and is correlated with
increased expression of ECM genes whose products are expected to
stiffen a tissue (Pope et al., 2012, 2009). Recently, direct
mechanical testing of fresh biopsies has revealed that stiffness of
the associated brain tumor ECM correlates with poor prognosis
(Miroshnikova et al., 2016). Overall, non-tumor gliotic tissue
exhibits the lowest level of ECM stiffness, whereas LGGs and
GBMs were progressively stiffer, although individual-to-individual
heterogeneity was documented (Fig. 3C). This mechanical
heterogeneity has been reconciled by categorizing GBMs by their
isocitrate dehydrogenase-1 (IDH1) status, as IDH1 is a metabolic
enzyme whose mutation is associated with greater progression-free
survival (Cancer Genome Atlas Research et al., 2015; Reitman
et al., 2010). The majority of LGGs are characterized by mutant
IDH1, and the few LGGs with wild-type IDH1 had a stiffness that
resembled that of average GBMs. Conversely, the rare GBMs that
had the mutant form of IDH1 exhibited a stiffness similar to that of
the average LGGs. Nevertheless, once IDH1-mutant LGG or GBM
recurred, they presented with a striking increase in ECM stiffness
that was markedly heterogeneous, emphasizing the need for further
analysis of phenotypic heterogeneity in glioma behavior. It is
important to note that the discrepancy between magnetic-
resonance-elastography- and AFM-based measurements could be
due to the nature of the detection method (imaging versus contact)
and/or the context of the tissue (in vivo versus ex vivo; see Table 1).

Effects of mechanical changes on glioma progression
Stiff GBM tumors with wild-type IDH1 have cores that are usually
necrotic and present with an abnormal and compromised
vasculature, leading to oxygen tension and signaling through
hypoxia-inducible factor-1α (HIF1α), a transcription factor that acts
as a master effector of hypoxia. HIF1α directly binds to the
promoter of TNC, inducing its transcription (Reitman et al., 2010;
Miroshnikova et al., 2016). TNC acts as an ECMmodifier by cross-
linking lecticans, which are non-covalently bound to hyaluronic
acid (Fig. 3B). This hyaluronic-acid–lectican–TNC complex (a
corrupted version of the PNN structure described above and shown
in Fig. 3A) stiffens the tumor tissue relative to normal brain by
limiting the flexibility of the ECM (Mouw et al., 2014; Day et al.,
2004; Kim and Kumar, 2014). Because increased amounts of
hyaluronic acid are produced in GBMs (Fig. 3D), tissue stiffening is
exacerbated in the disease state (Kim and Kumar, 2014). The ability
of IDH1-mutant GBMs to sense hypoxia is blunted, which leads to
dramatically reduced production of HIF1α and TNC, thus
contributing to the softer nature of IDH1-mutant GBMs
(Miroshnikova et al., 2016). Interestingly, ECM stiffening is able
to override this protective effect of blunted hypoxia signaling by
downregulating the HIF1α-targeting microRNA miR-203
(Miroshnikova et al., 2016) (Fig. 3E).

Alterations in extracellular fluid flow and pressure also influence
glioma cell behavior. In the normal brain, the interstitial fluid
pressure is low, below 15 mmHg (Narayan et al., 1982; Stocchetti
and Maas, 2014). During glioma progression, alterations in ECM
and elevated hypoxia signaling lead to a compromised and leaky
vasculature with poor perfusion. As extracellular fluid accumulates,
interstitial fluid pressures can rise dramatically (Alberti et al., 1978;
Kullberg and West, 1965; Narayan et al., 1982; Stocchetti and
Maas, 2014) and, as this fluid moves down its pressure gradient, into
the healthy brain, local increases in fluid shear forces are
experienced by tumor cells (Munson and Shieh, 2014). Increased
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fluid pressure causes tissue compression, which leads to increased
migration and transcriptional changes in cancer cells (Butcher et al.,
2009). Elevated shear forces have been shown to induce GBM
migration, in the direction of fluid flow, through mechanical
activation of chemokine receptors (Munson et al., 2013). Changes
in fluid pressure and flow are difficult to study in vivo and have thus
been overlooked in glioma research. A better understanding of the
combined effects of ECM- and fluid-based tissue mechanics
promises to reveal therapeutic targets to improve treatment outcome.

Tissue mechanics drive tumor progression through regulation of
cellular plasticity
ECM stiffness influences GBM invasion by facilitating the binding
between CD44 and hyaluronic acid, which results in pro-migration
signaling downstream and also influences the binding of integrins to
their ECM substrates (Kim and Kumar, 2014; Knupfer et al., 1999).
Enhanced ECM stiffness also drives GBM cell proliferation and a
phenotype reminiscent of EMT, which further enhances GBM
invasion (Ulrich et al., 2009; Cancer Genome Atlas Research et al.,
2015). GBMs exhibit extreme cellular and molecular heterogeneity,
and in an effort to tailor therapy to individuals, molecular profiling
has been used to stratify GBMs into subclasses, which represent
different stages of neuronal development (Phillips et al., 2006;
Verhaak et al., 2010). Mesenchymal GBM cells, which resemble
migratory cells of the neural crest, are associated with increased
treatment resistance, and when GBM recurs after standard-of-care
therapy, mesenchymal cells are observed at a higher frequency (Lu
et al., 2012). Cells which have undergone EMT often present with
an altered glycocalyx, the saccharide–protein network on the cell
surface (Roy et al., 2011; Porsch et al., 2013;Moustakas and Heldin,
2014). A strong glycocalyx elicits pro-tumorigenic effects by
enhancing focal adhesion formation and downstream signaling
(Paszek et al., 2014), and has also been implicated in resistance to
small-molecule and antibody therapies because it provides a
physical shield to the cell membrane and its associated receptors
(Yang et al., 2013; Thompson et al., 2010; Singha et al., 2015).
Indeed, in GBMs, we find that glycocalyx bulk augments
mechanical signaling (unpublished data). Examples of tumor
mechanoreciprocity, whereby mechanosignaling drives ECM
production to stiffen the microenvironment and reinforce
mechanical activation of pro-survival and -invasion pathways,
have been demonstrated in other tumors (Samuel et al., 2011),
perhaps revealing a fundamental principle in tumor progression
(illustrated in Fig. 3E) that could be exploited in the treatment of
GBM. For instance, targeting FAK, effectors of EMT or
components of the glycocalyx, each of which are being examined
as targets in clinical trials (Hingorani et al., 2016; Traber et al., 2013;
Serrels et al., 2015), could improve disease outcome when
combined with standard-of-care treatment. These findings also
suggest that, similar to what has been shown for solid tumors
(Acerbi et al., 2015), mechanical testing or assessment of
mechanosignaling of gliomas can extend the repertoire of
conventional molecular biomarkers, thereby improving
predictions of response to therapy.

Altered tissue mechanics in neurodegenerative diseases
Because mechanics play important roles in brain development and
homeostasis, acute changes in forces sensed by brain cells might
have far-reaching consequences on brain function. This can be a
consequence of physical damage to cells and tissues after brain
trauma but also of disruption to fluid flow and mechanical
regulation of the niches required to replenish damaged cells. The

inability of cells to return to homeostasis can result in problems,
such as dementia and neurodegeneration that can manifest several
years later (Smith et al., 2013). Brain degeneration is associated
with problems in protein folding and clearance (Hetz and
Mollereau, 2014), and recent findings also demonstrate a
correlation between ECM composition and/or mechanical
changes, altered CSF dynamics and the onset of
neurodegenerative diseases, such as Alzheimer’s disease and
Parkinson’s Disease (Bonneh-Barkay and Wiley, 2009; Tyler,
2012; Simon and Iliff, 2016).

Mechanical changes resulting from traumatic brain injury
Traumatic brain injury (TBI) is associated with irreversible cognitive
dysfunction and progressive neurodegeneration, but little is known
about how TBI leads to the upregulation of mechanosensitive
signaling pathways, or how cellular mechanics are altered
downstream of injury. On a large scale, interruption of CSF flow
can lead to an increase in intracranial pressure, resulting in tissue
ischemia and brain herniation (Smith et al., 2013). This is further
exacerbated by inflammation resulting from neutrophil recruitment
due to a loss of endothelial cell adhesion integrity (Carlos et al.,
1997), which dramatically affects cell and tissue function. The
breakdown and remodeling of the ECM has been implicated in
modulating injury responses to brain trauma (Lo et al., 2002), but the
molecular pathways involved are unknown. In one example,
mechanically mediated Na+ channel activation downstream of
acute mechanical injury has been shown to lead to Ca2+-mediated
excitotoxicity (Wolf et al., 2001), but that study did not address how
this might lead to long-term effects on brain function. Importantly,
damage that results in remodeling and activation of the adult SVZ
neurogenic niche after injury can contribute substantially to long-
term problems with neuronal replenishment and brain functionality
(Chang et al., 2016), which provides clues as to how acute brain
injury can lead to chronic disease. There is also evidence that TNC is
upregulated in a discrete region around sites of brain lesions (Laywell
et al., 1992) and that it is induced in CSF after injury-mediated
aneurysmal subarachnoid hemorrhage (Suzuki et al., 2015). Because
TNC is able to stiffen the ECM and cause cells to reciprocally
remodel their mechanical environment (as discussed above), TNC
upregulation as a result of injury could contribute to long-term
deleterious effects on brain structure and function.

Mechanotransduction breakdown in neurodegenerative disorders
Although brain stiffness generally increases with age, it decreases in
neurodegenerative disorders, which could be related to a loss of
adult neurogenesis (Klein et al., 2014), although it is likely that
changes in the ECM or a loss in myelin content also contribute.
Slowing of CSF flux through the brain is also associated with
increasing age (Kress et al., 2014), which might affect cell functions
that are dependent on sensing shear flow. However, although
mechanical changes are associated with age and disease states, the
extent to which they drive pathology is unclear. The ECM
composition is changed in the brains of individuals with
Alzheimer’s disease (Lau et al., 2013), and such changes can
either directly or indirectly lead to synaptic and neural loss (Bonneh-
Barkay and Wiley, 2009), which could be due to a loss of matrix
molecules that are necessary to maintain the progenitor cell niches.
Regional changes in brain stiffness in individuals with Alzheimer’s
disease have also been documented (Murphy et al., 2016), and in
this context, the overall decrease in stiffness, as measured by
performing three-dimensional magnetic resonance elastography,
could serve as a noninvasive diagnostic tool (Murphy et al., 2011).
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Similarly, during Parkinson’s disease progression, changes in the
stiffness or elasticity of the substantia nigra can be detected by using
ultrasound hyperechogenecity, even before individuals develop any
motor impairment (Berg, 2011). Clearly, gaining additional insights
into how these changes occur and what they mean for cellular and
organ function could enhance our ability to diagnose and treat these
diseases. Indeed, preliminary results indicate that mechanical
stimulation might improve autonomic control in individuals with
Parkinson’s disease (Bassani et al., 2014). During development of
multiple sclerosis, which is characterized by loss of neuronal
myelination, CNS basement membranes become discontinuous and
abnormal, and levels of fibrillar collagens increase, leading to
perivascular fibrosis (Mohan et al., 2010). This is associated with
increased deposition of several ECM components, including
chondroitin sulfate proteoglycans and hyaluronic acid (Yiu and
He, 2006), which impede remyelination and oligodendrocyte
progenitor cell proliferation (Back et al., 2005).
Neurodegenerative diseases and brain injury are therefore
associated with dramatic changes in ECM properties, and the fact
that either an increase or decrease in ECM deposition or stiffness
can lead to severe neurological defects highlights the importance of
maintaining a mechanically homeostatic equilibrium.

Conclusions and future perspectives
The conservation of mechanotransduction from bacteria to mammals
underscores the necessity of cells to convert mechanical cues into
physiological information that dictates phenotype and behavior. As
discussed throughout this Commentary, tissue mechanical forces are
generated by processes that include collective cell tractions, fluid
movement and changes in ECM composition. Through
mechanotransduction, these forces regulate the development of the
brain by orchestrating the compartmentalization of cells and shaping
of tissues, and by instructing fate decisions of neural stem and
progenitor cells. In the developed brain, tissue mechanics contribute
to homeostasis and function by regulating neurotransmission and
stem cell renewal and differentiation in specialized niches. As with
any important cell-signaling regulator, perturbation of tissue
mechanics can lead to changes in tissue function and development
of disease. In this review, we discussed how physical cues
reciprocally contribute to the progression of malignant brain
tumors, and how acute mechanical perturbations can result in
chronic disruption of homeostasis. An emerging theme is that
physical changes in the tumor microenvironment activate signaling
pathways that lead to transcriptional changes and ECM remodeling
that positively feed back to enhance pro-tumorigenic
mechanosignaling, leading to therapy resistance and poor
prognosis. A closer examination of this mechanoreciprocity circuit
will allow researchers to identify new biomarkers and therapeutic
targets. Although the role of mechanobiology in neurodegenerative
diseases is less understood, it is becoming clear that physical changes
to brain tissue and corresponding mechanosignaling pathways are
intimately involved in the progression of Alzheimer’s disease,
multiple sclerosis and Parkinson’s disease. Finally, changes to brain
tissuemechanics resulting from traumatic brain injury are likely to be
crucial to the development of cognitive and motor defects associated
with sports and combat-related injuries. The extent to which
mechanosignaling coordinates brain development and function is
only beginning to be fully appreciated and many questions remain.
For example, it would be of great value to better understand how
ECM mechanics, fluid flow and mechanosensitive ion channels
synchronize with soluble growth factors and cytokines to control cell
migration and direct differentiation in the embryonic and adult brains.

Such knowledgewould aid in the development of neural regenerative
medicine approaches and in the battle against brain cancer and
neurodegenerative diseases.
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