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Uses and abuses of macropinocytosis
Gareth Bloomfield* and Robert R. Kay

ABSTRACT
Macropinocytosis is a means by which eukaryotic cells ingest
extracellular liquid and dissolved molecules. It is widely conserved
amongst cells that can take on amoeboid form and, therefore,
appears to be an ancient feature that can be traced back to an early
stage of evolution. Recent advances have highlighted how this
endocytic process can be subverted during pathology – certain
cancer cells use macropinocytosis to feed on extracellular protein,
and many viruses and bacteria use it to enter host cells. Prion and
prion-like proteins can also spread and propagate from cell to cell
through macropinocytosis. Progress is being made towards using
macropinocytosis therapeutically, either to deliver drugs to or cause
cell death by inducing catastrophically rapid fluid uptake.
Mechanistically, the Ras signalling pathway plays a prominent and
conserved activating role in amoebae and in mammals; mutant
amoebae with abnormally high Ras activity resemble tumour cells in
their increased capacity for growth using nutrients ingested through
macropinocytosis. This Commentary takes a functional and
evolutionary perspective to highlight progress in understanding and
use of macropinocytosis, which is an ancient feeding process used by
single-celled phagotrophs that has now been put to varied uses by
metazoan cells and is abused in disease states, including infection
and cancer.
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Introduction
Macropinocytosis is defined functionally as the uptake of fluid
droplets that are visible by light microscopy. It occurs in different
forms in a variety of cell types, for example, in amoebae and
leukocytes as they ingest extracellular material and in neurons when
they perform bulk endocytosis during intense synaptic activity
(Amyere et al., 2001; Clayton and Cousin, 2009). Invariably,
macropinocytosis is dependent on the actin cytoskeleton. During
what we can consider its canonical form, a macropinosome forms
from a ring of actin polymerizing beneath the plasma membrane.
This ring extends as a circular ruffle and eventually closes through
constriction at the top so that membrane fusion produces an internal
vesicle containing a sample of the extracellular fluid (Swanson,
2008) (Fig. 1A). Macropinocytosis resembles phagocytosis closely,
except that the vesicle does not form around a solid object. The
distinction between these two endocytic modes is to some extent
arbitrary because large particles, such as bacteria, can be taken up
into ‘spacious phagosomes’whose membrane is not tightly apposed
to the surface of the particle (Alpuche-Aranda et al., 1995; Kerr and
Teasdale, 2009) (Fig. 1B). It appears likely that macropinocytosis,

neuronal bulk endocytosis, phagocytosis and other large-scale
actin-dependent uptake mechanisms are all homologous processes,
which are related by their descent from feeding mechanisms in the
earliest eukaryotic ancestral cells.

Macropinocytosis was first observed in mammalian tissue culture
cells using light microscopy (Lewis, 1931, 1937) and was called
simply pinocytosis because these findings predated the discovery
of clathrin-dependent endocytosis and other micropinocytic
mechanisms (Clark, 1959; Policard and Bessis, 1962; Roth and
Porter, 1964; Nichols and Lippincott-Schwartz, 2001; Doherty and
McMahon, 2009). Recent work emphasises its roles in several
important processes. One theme is the subversion of normal
macropinocytotic function. For instance, certain bacteria and
viruses use macropinocytosis to invade host cells (Mercer and
Helenius, 2012), and cancer cells are able to use this pathway to
scavenge extracellular nutrients (Commisso et al., 2013; White,
2013). This Commentary will explore examples of physiological
uses and pathological exploitation of macropinocytosis in cancer,
neurodegenerative disease and infection, as well as novel
approaches for possible therapeutic applications. We also bring to
the fore a comparative, evolutionary perspective and, where
possible, relate these large-scale endocytic processes to ancestral
feeding behaviours.

Constructing a macropinosome
Macropinocytosis is an actin-driven process, accompanied by
dramatic rearrangements of filamentous (F-)actin, and is sensitive
to inhibitors such as cytochalasin A (Dowrick et al., 1993; Hacker
et al., 1997; Lee and Knecht, 2002). Macropinosomes must compete
with other F-actin structures, such as pseudopods, for generic
cytoskeletal resources and require mechanisms to direct these
resources to create their unique spatial structure. The most striking
feature of macropinocytosis is the formation of a hollow ring of actin
polymerization of up to several microns in diameter under the
plasmamembrane. This circular ruffle can form through two distinct
routes in different cells. In cells with prolific ruffling, a linear ruffle
sometimes folds back on itself to circularise (Welliver et al., 2011);
alternatively, a circular ruffle can form de novo as an expanding ring
on the plasma membrane (Bernitt et al., 2015). In either case,
outwardly directed actin polymerization must be restricted to the
walls of the circular ruffle and suppressed at the centre.

There is increasing evidence that Ras and phosphatidylinositol
(3,4,5)-trisphosphate (PIP3) regulate the early events of
macropinosome formation. The injection of activated (oncogenic)
Ras protein into fibroblasts causes ruffling and macropinocytosis
(Bar-Sagi and Feramisco, 1986; see also below). Genetic ablation of
certain Ras proteins inhibits macropinocytosis in Dictyostelium
amoebae (Chubb et al., 2000; Hoeller et al., 2013), and loss of the
Ras GTPase-activating protein (RasGAP) NF1 increases the
frequency of macropinocytosis and size of macropinosomes in
these cells (Bloomfield et al., 2015; see also below). Ras activates
class-I phosphatidylinositol 3-kinases (PI3Ks) through their Ras-
binding domain, and these enzymes produce the membrane lipid
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PIP3 (Rodriguez-Viciana et al., 1994), which is an ether-linked
plasmanyl inositol inDictyostelium (Clark et al., 2014). When PIP3
production is attenuated either with drugs or genetically,
macropinocytosis is inhibited to striking extents (Araki et al.,
2007, 1996; Buczynski et al., 1997; Hoeller et al., 2013; Zhou et al.,
1998). In both mammalian cells and Dictyostelium, PIP3 is lost
from macropinocytic vesicles shortly after they close, giving rise
first to phosphatidylinositol (3,4)-bisphosphate [PI(3,4)P2],
which (in mammalian cells at least) is then converted to
phosphatidylinositol 3-phosphate as the vesicle progresses
through the endocytic pathway (Araki et al., 2007; Dormann
et al., 2004; Maekawa et al., 2014; Swanson, 2014; Welliver and
Swanson, 2012; Yoshida et al., 2009; Egami et al., 2014). The
evolutionary conservation between mammals and Dictyostelium of
these Ras and phosphoinositides functions shows that they can be
regarded as core features of macropinocytosis, presumably dating
back to the last common ancestor of eukaryotes.
A surprising and significant feature of Ras and PIP3 signalling in

macropinocytosis is that it is not diffuse throughout the plasma
membrane but is restricted to intense patches that form the core of
circular ruffles and appear to extend to their lip, but not beyond it.
The evidence for this includes the observation of PIP3 patches in the
over-sized macropinosomes of axenic strains of Dictyostelium
(Parent et al., 1998, and see below), which coincide with patches of
active Ras (Sasaki et al., 2007; Hoeller et al., 2013), as well as the
patches of active Ras and PIP3 that become prominent in circular
ruffles (Araki et al., 2007; Welliver and Swanson, 2012). These
patches must be maintained despite the expected rapid diffusion of
Ras and PIP3 in the plasma membrane, and most likely depend on
autocatalytic Ras activation and PIP3 production, possibly
combined with the establishment of a diffusion barrier around
macropinosomes (Welliver et al., 2011).
PIP3 can recruit effector molecules, which typically contain

plextrin homology (PH)-domains that bind to it, to the membrane,
and these are likely to have important roles in shaping
macropinosomes. Notably, the protein kinase Akt (encoded by

pkbA) and a set of myosin-I motor proteins are recruited by PIP3 to
macropinosomes in Dictyostelium, and their genetic deletion
strongly impairs macropinocytosis (Rupper et al., 2001; Chen
et al., 2012). In Dictyostelium, myosin-IB, which does not bind to
PIP3, is also recruited to the macropinosome rim, where it forms a
striking ‘bull’s eye’ pattern with the PIP3-binding proteins (Brzeska
et al., 2016). Because Ras activity can control the size of
macropinosomes, it is tempting to speculate that the Ras and/or
PIP3 patches play a direct organizational role in macropinosome
formation by delimiting a membrane region that is marked as active
and operative for macropinocytosis (Fig. 2). One attractive
possibility is that these signals drive actin polymerization at their
periphery and suppress it in their body, as is observed in the related
basal PIP3 patches of Dictyostelium (Gerisch, 2010).

A

B

Fig. 1. Macropinocytosis in feeding amoebae. (A) Dictyostelium discoideum amoebae, showing a single macropinocytosis event. Active Ras, reported by the
GFP-tagged Ras-binding domain of Raf1, was imaged by using confocal microscopy in cells null for the RasGAP NF1 (axeB), which produce over-sized
macropinosomes. Ras is active at a relatively low level as cells extend pseudopodia for movement, but its activity intensifies as the membrane invaginates during
macropinocytosis. Scale bar: 5 µm. (B) Diderma hemisphaericum amoebae feeding on bacteria using macropinocytosis. These myxogastrid amoebae were
bathed in TRITC–dextran in a suspension of Escherichia coli cells. In these conditions, the amoebae do not rely on contact-mediated phagocytosis to feed, but
rather extend large circular ruffles outwards to enclose relatively large volumes of liquid, often capturing several bacteria (arrows) into a single macropinosome
(often referred to as a ‘spacious phagosome’ in this context). Scale bar: 5 µm.
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Fig. 2. Amodel outlining the formation of ‘canonical’macropinosomes. In
Dictyostelium, the initiating event during the formation of a macropinosome
appears to be the establishment of a region of the plasma membrane that is
‘activated’ or primed for macropinocytosis. These regions are marked by high
levels of Ras activity and intense accumulation of PIP3; the events preceding
intensified Ras activity remain unclear. Actin polymerisation is stimulated
around this region, causing a circular ruffle to extend outwards, which will
eventually close to form a macropinosome. From a viewpoint above the
membrane, the ‘active membrane’ region and outer ring of newly polymerised
F-actin form a ‘bull’s eye’ pattern. In some cell types, it is possible that ring
formation occurs before the signal inside it becomes intensified.
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The macropinocytic cup that extends from the cell surface
eventually constricts and closes, with membrane fusion producing
an intracellular vesicle containing a droplet of medium. In some
cases, the macropinosome rim appears to contract in a coordinated
manner, as if powered by a contractile ring (Swanson et al., 1999),
but in other less-regularly-shaped macropinosomes, such a
contractile ring is not so readily apparent. If closure of a
macropinosome occurs after contraction of the rim, membrane
fusion might only occur at a narrow pore and use similar molecular
machinery as in clathrin-mediated endocytosis. However, if fusion
occurs when a membrane flap folds back onto the plasma
membrane, a different mechanism might have to be envisioned.

Macropinocytosis in life and death – roles for Ras
Recent work in amoebae and mammalian cells has revealed the
importance of macropinocytosis in cellular feeding (Fig. 3). The
association of the target of rapamycin complex 1 (TORC1) with
lysosomes (Zoncu et al., 2011) is likely to reflect ancestral modes of
nutrient sensing in phagotrophic predators. In phagotrophic cells,
the food supply is ingested in bulk and concentrated in endosomes,
which fuse with lysosomes so that their contents can be degraded. A
constant flow of prey-derived solutes from these degradative
organelles through transporters into the cytosol is maintained
during the growth of such phagotrophic cells as long as feeding can
continue. Metazoan cells appear to retain a version of this ancient
system (Goberdhan et al., 2005; Nicklin et al., 2009; Wang et al.,
2015; Rebsamen et al., 2015), and it has been recently shown that
delivery of amino acids to lysosomes is required for fast activation
of TORC1 in response to platelet-derived growth factor and
macrophage colony-stimulating factor, with a parallel cytosolic

signal through the Akt protein kinase also being necessary (Yoshida
et al., 2015). Growth factors stimulate anabolic metabolism, but
their efficiency in doing so is modulated by the supply of amino
acids available from macroautophagy and other cell-autonomous
sources, as well as by nutrients delivered from the vasculature. This
is likely to be especially important during cancer, when these
metabolic responses are crucial (Tsun and Possemato, 2015). A
recent report suggests that cancer cells can even boost their ATP
levels directly by ingesting it through macropinocytosis when they
are in microenvironments in which extracellular ATP is abundant
(Qian et al., 2014).

Mutations in Ras are common drivers in a variety of cancers
(Stephen et al., 2014). These small G-proteins activate a signalling
cascade, including class-1 PI3Ks and the Raf-extracellular signal-
regulated kinase (ERK) pathway. One consequence of Ras
activation is macropinocytosis (Bar-Sagi and Feramisco, 1986;
Amyere et al., 2000; Porat-Shliom et al., 2008). This effect appeared
to be an interesting curiosity until recently when it was shown that
activating mutations in K-Ras promote tumour cell feeding through
macropinocytosis (Commisso et al., 2013). The polypeptides taken
up from extracellular fluid, which is normally rich in protein, are
digested in the endocytic pathway, and allow the growth and
survival of cells that are otherwise limited by the availability of
essential and non-essential amino acids (Commisso et al., 2013;
Palm et al., 2015). TORC1 plays a complex role in regulating these
responses –extracellular amino acids promote growth through
TORC1-mediated signals, whereas amino acids that have been
derived from extracellular protein and have been digested in
lysosomes suppress the proliferation of K-Ras-mutant cells in which
TORC1 is active (Palm et al., 2015) (Fig. 3).
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Fig. 3. The Ras–PI3K–TORC1 pathway during macropinocytotic nutrient uptake. (A) In Dictyostelium cells, Ras activity at nascent macropinosomes is
negatively regulated by the GTPase-activating protein NF1. NF1 activity restrains Ras-mediated activation of PI3K, thereby limiting the intensification of these
signals that drivesmacropinocytosis. (B) In NF1mutants, Ras activity is not globally increased, but rather specifically duringmacropinocytosis (and phagocytosis,
not illustrated here). (C) TORC1 controls the response of cells to nutrients that are taken in by macropinocytosis. In mammalian cells, the free amino acids (‘aa’)
acquired from endolysosomes stimulate cell growth through TORC1 signalling. However, when extracellular protein is broken down into amino acids in
endolysosomes – i.e. after it has been ingested through macropinocytosis – proliferation is not supported unless TORC1 signalling is suppressed; this limits
inappropriate growth when extracellular amino acids are unavailable, for instance in poorly vascularised tumours.
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The roles of oncogenic Ras in tumour cells are strikingly parallel
to the effects of Ras in the feeding behaviour of Dictyostelium
amoebae. Wild isolates of Dictyostelium have only a low rate of
macropinocytosis that is insufficient to support growth in standard
laboratory media. However, most of the widely used strains carry
mutations that promote growth in these media. When the key
mutation was finally identified, it was found to reside in the
RasGAP and tumour suppressor gene NF1 (Bloomfield et al.,
2015). Loss of NF1 results in increased Ras activity at sites of large-
scale endocytosis, resulting in enhanced ruffling, increased rates of
macropinocytosis and larger macropinosomes (Fig. 3). Therefore,
loss of NF1 in an amoeba has results that are analogous to those
upon the activation of Ras in tumour cells, which also feed more
actively than normal cells and so evade growth arrest.Dictyostelium
NF1 mutants also have enhanced phagocytic capacity and are able
to ingest larger particles than wild-type amoebae. These protists
feed in essentially the same way as their early eukaryotic ancestors,
and phylogenomic analysis suggests that NF1 was present in the last
common ancestor of all eukaryotes, implying that this regulator of
cell growth evolved first to control feeding processes.
As well as supporting the growth and survival of certain

malignant cells, macropinocytosis has paradoxically been
implicated in a form of cell death called methuosis, which affects
cells from cancers of the brain and again involves Ras. This non-
apoptotic form of cell death is driven by the accumulation of
macropinosomes that fail to fuse with lysosomes or recycle to the
cell surface, leading to extreme vacuolisation of the cytoplasm
(Fig. 4). Methuosis was first described in glioblastoma cells that
overexpressed oncogenic Ras, which stimulates excessive
macropinocytosis (Overmeyer et al., 2008). A similar form of cell
death occurs in medulloblastoma cells that have been
hyperstimulated with nerve growth factor (Li et al., 2010).
Screens have identified small molecules that can induce this form
of death in malignant cells, offering hope for new treatments of
glioblastoma (Overmeyer et al., 2011; Kitambi et al., 2014). The
precise cause of cell death is not clear in some instances of
methuosis (Maltese and Overmeyer, 2014), but in acute drug-
induced vacuolisation, the cytoplasmic swelling causes the plasma
membrane to rupture (Overmeyer et al., 2011; Kitambi et al., 2014).
The observed Ras-mediated endocytosis, which precedes death in

methuosis, invites comparison with oncogene-induced senescence
(Fig. 4). Senescence is a physiological process that occurs in certain
differentiated vertebrate cells (Muñoz-Espín and Serrano, 2014) and
involves dramatic changes to their endocytic cycle, often including
vacuolisation of the cytoplasm. Replicative senescence occurs in
cells that have passed through many cell cycles after their
differentiation, and a similar program is executed in some cell
types that have been transformed with oncogenes such as Ras.
Senescence is often linked with changes in autophagy, which differ
between mammalian cell types – basal autophagy is required for
stem cells to avoid senescence (García-Prat et al., 2016), whereas
autophagy is induced during oncogene-induced senescence in
fibroblasts (Young et al., 2009). Recently, macropinocytosis that is
driven by oncogenic Ras and is dependent on PI3K has been
identified as the source of enhanced endocytic activity and
vacuolisation in melanoma cells (Alonso-Curbelo et al., 2015).
These cells evade senescence by maintaining high levels and
activity of Rab7, a small G-protein that functions on late endosomes
to promote their clearance through fusion with lysosomes.
Abnormally aggressive feeding behaviour by tumour cells
probably always depends on compensatory changes that affect
downstream membrane trafficking and fluid clearance pathways.

Although it is likely that these mechanisms vary in different cell
types, they nevertheless could prove to be therapeutic targets. The
overlapping characteristics of senescence and methuosis suggest
that altered endocytic properties of malignant (and perhaps
premalignant) cells might make them vulnerable to well-designed
interventions.

Using macropinocytosis as a route for delivery of
macromolecules
Given its function in bulk uptake and transport, macropinocytosis
could be utilised to deliver therapeutic cargoes into cells. Small
molecules can enter mammalian cells through several potential
routes, whose relative importance is often controversial due to the
diversity of cell types and experimental setups used. Short
interfering RNAs (siRNAs) are a convenient tool for modulating
gene function in the laboratory and can be used to silence genes
involved in disease. Lipid nanoparticles loaded with siRNAs enter
human cells through macropinocytosis, as well as through clathrin-
coated pits and, intriguingly, both entry routes can be used in the
same cells. An initial, small-scale entry by clathrin-mediated
endocytosis is required to induce a later phase of bulk
macropinocytotic uptake, which accounts for most of the siRNA
taken in (Gilleron et al., 2013). Recently developed lipoprotein
vehicles that target hepatocytes with a very high efficiency also
enter the cells through macropinocytosis (Dong et al., 2014).
However, once nanoparticles enter endosomes, their escape into the

Melanoma
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RAS-GTP

RAB7 MIPP, MOMIPP,
Vacquinol-1

Glioblastoma

Methuosis

RAS-GTP

Fig. 4. Comparison between a form of senescence found in melanoma
cells and methuotic cell death. Senescence in melanoma cells can be
induced by oncogenic Ras signalling that drives an accumulation of
macropinosomes in the cytoplasm, causing a characteristic vacuolisation.
These cells avoid senescence by maintaining high levels and activity of the
late-endosomal Rab protein Rab7. Similarly, methuosis of glioblastoma cells
can be induced by oncogenic Ras, which induces macropinocytosis so
strongly that cell death occurs very quickly. Several drugs (MIPP, MOMIPPand
Vacquinol-1) have been developed that stimulate this process, potentially
providing a new means to target these aggressive cancers. The exact
relationship between methuosis and oncogene-induced senescence remains
unclear, but it is possible that they reflect the same underlying process, with
variation existing between different cell types.
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cytoplasm is limited by recycling pathways that transport
endosomal content back to the cell surface (Sahay et al., 2013);
reducing activity of the recycling machinery should thus help to
improve delivery and gene silencing. Nucleic acid aptamers can also
enter cells by using macropinocytosis, in some cases stimulating
their own uptake (Reyes-Reyes et al., 2010).
Ultimately, the efficient targeting of drugs, whether small

molecules or macromolecules, to specific cells and tissues will
require a detailed mechanistic understanding of uptake routes. Cell-
penetrating peptides are also used widely for drug delivery, but their
major route of entry into cells has not always been clear. One new
class of peptides, C-end rule motif peptides (CendRs), has been
characterised in detail and shown to enter cells using
macropinocytosis (Pang et al., 2014, 2015). The sequence of
CendRs is derived from a C-terminal motif of proteins that bind to
Neuropilin receptors (of which there are two isoforms, neuropilin 1
and neuropilin 2). Neuropilins are important during angiogenesis
and axon guidance, where they act as receptors for a number of
extracellular polypeptide signals (Guo and Vander Kooi, 2015).
Uptake of CendR peptides depends both on Neuropilins and the
cytoplasmic protein GIPC1, and involves the extension of
lamellopodia and their inward folding. This mode of
macropinocytosis is inhibited by the TORC1 nutrient-sensing
pathway, and, therefore stimulated by nutrient limitation (Pang
et al., 2014). Its physiological role might be in homeostatic
responses to nutrient deprivation. A recent study has shown that
TORC1 inhibits the utilisation of extracellular protein that has been
ingested through macropinocytosis, suggesting that this growth-
regulatory complex is intimately connected with the control of
macropinocytosis in the context of nutrient acquisition (Palm et al.,
2015). Further investigations into the normal developmental and
homeostatic roles of CendR-mediated macropinocytosis in
vertebrate cells, and its effects on vascular permeability (Pang
et al., 2015), could thus not only lead to its use as a therapeutic tool
but could also help to improve our understanding of its evolutionary
relationships with other uptake mechanisms.
Improvements to delivery protocols allow efficient uptake even

in the absence of cell-penetrating peptides. For example, a
combination of hypertonic salt treatment, which by itself induces
macropinocytosis, and a zwitterionic transduction molecule such
as γ-amino-butyric acid, which promotes leakage of endosome
contents, can potently stimulate uptake of extracellular
macromolecules (D’Astolfo et al., 2015). This approach allows
the delivery of proteins and small RNAs and appears to be
applicable to a wide range of cultured vertebrate cell types. Increase
in osmolarity also promotes macropinocytosis in various amoebae
(Brandt, 1958; Chapman-Andresen, 1958; Bowers and Olszewski,
1972; Hacker et al., 1997), although it is not clear whether a
common mechanism is involved.

Contributions of macropinocytosis to transmission of prion-
like proteins
Prions were initially defined in part by their ability to transmit from
organism to organism, and the pathology within an organism
depends on cell-to-cell propagation. Macropinocytosis is now
thought to be an important route for spread of prions and prion-like
proteins (Zeineddine and Yerbury, 2015). Misfolded forms of the
Cu-Zn superoxide dismutase protein SOD1 are linked to the
neurodegenerative disorder amyotrophic lateral sclerosis (ALS),
both in familial forms of the disease in which SOD1 mutations are
frequent, and in sporadic ALS. Aggregates of mutant SOD1 can
enter cells through macropinocytosis, which is dependent on Rac1-

stimulated ruffling (Zeineddine et al., 2015), and trigger the
misfolding of soluble mutant SOD1 present there (Münch et al.,
2011). Correctly folded mutant and wild-type SOD1 can enter
neuronal cells in a similar manner (Sundaramoorthy et al., 2013),
and cell-to-cell transmission of misfolded wild-type SOD1 has
recently been shown to occur either through macropinocytosis of
SOD1 aggregates or through uptake of protein contained within
exosomes (Grad et al., 2014).

A number of neurodegenerative disorders involving the
accumulation of amyloid protein fibrils are now thought to
develop through prion-like propagation of these fibrils between
cells. For instance, the amyloid α-synuclein (the causative agent of
Parkinson’s disease) and huntingtin-derived aggregates, which are
implicated in Huntington’s disease (Zeineddine et al., 2015), both
stimulate ruffling and macropinocytosis. Misfolded tau protein is
linked to a number of neurological diseases and can also enter cells
through macropinocytosis or the related bulk endocytosis process
that occurs at synapses (Wu et al., 2013). In some cases, fibrils
stimulate fluid uptake by specific binding to heparan sulphate
proteoglycans at the cell surface (Holmes et al., 2013). Amyloid
precursor protein (APP), the source of the peptide comprising most
of the amyloid plaques associated with Alzheimer’s disease, can
also enter neuronal cells through macropinocytosis. Following its
uptake, APP is rapidly trafficked to lysosomes in an ARF6-
dependent manner, where it can be degraded into pathological
peptide forms (Tang et al., 2015).

Neurons are specialised to perform extensive endo- and
exocytosis at synapses, including activity-dependent bulk
endocytosis (ADBE) and ultrafast endocytosis, which are used to
recover the large amounts of membrane added to the surface as a
result of synaptic transmission (Clayton et al., 2008; Watanabe
et al., 2013a,b). ADBE also occurs in neurosecretory chromaffin
cells (Gormal et al., 2015). The physiological roles of
macropinocytosis other than ADBE in neurons remain unclear,
although as it occurs at growth cones, it is likely to be important in
neurons during development and after injury (Kolpak et al., 2009;
Kabayama et al., 2011). The processing of extracellular protein in
lysosomes suggests that ancient digestive functions are still used in
these highly specialised cells, and further knowledge of how growth
factors and other extracellular signals modulate these behaviours
would be valuable. Similarly, further characterisation of underlying
mechanisms, beyond the use of inhibitors that can affect more than
one form of large-scale endocytosis, will enable the precise
delineation of which uptake route is used in each instance.

Macropinocytosis in immunity and infection
The best-studied roles of macropinocytosis are immunological, both
in normal immune-cell function and as a host process that is
subverted by invading pathogens. Antigen-processing cells use
macropinocytosis, as well as phagocytosis, to sample potential
antigens for presentation to T lymphocytes (Liu and Roche, 2015).
Immature dendritic cells perform constitutive macropinocytosis and
pass ingested polypeptides to endolysosomes for digestion so that
potential antigens can be presented to helper T cells. Immature
dendritic cells can also store unprocessed material in late endosomes
and recycle it back to the cell exterior for detection by B cells once
they reach lymph nodes (Roux et al., 2012). A subset of dendritic
cells also cross-present peptides that have been derived from
material they have gained through macropinocytosis to cytotoxic T
cells (Schuette and Burgdorf, 2014); this cross-presentation is
important to establish immunity against many viruses as well as
against cancerous cells.
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Recently, it has been shown that cell motility and
macropinocytosis are mutually incompatible (or at least in
competition with each other) in dendritic cells and amoebae.
Major histocompatibility complex II (MHC-II)-dependent
rearrangements of myosin II, which are required for efficient
macropinocytosis at the cell anterior in dendritic cells, are
incompatible with cell migration (Chabaud et al., 2015). This is
similar to the situation in amoebae, where chemotaxis towards folic
acid is impaired when high-frequency macropinocytosis occurs,
again highlighting the broad similarities that could extend back to
the common ancestors of Metazoa and amoebae (Veltman et al.,
2014). As large-scale endocytosis depends on many of the same
components of the actin cytoskeleton as those required for
pseudopodial protrusion during cell migration, it appears that it is
difficult for both processes to occur simultaneously, perhaps
because different configurations of cortical actin are required in
endocytic and migratory pseudopodia.
Macrophages mainly use phagocytosis to process antigens, but

inflammatory signals stimulate the use of macropinocytosis to
enable a more rapid clearance of certain pathogenic bacteria, which
are ingested in bulk without engaging phagocytic receptors
(BoseDasgupta and Pieters, 2014). The main role of macrophages
it to clear apoptotic ‘corpses’ by using efferocytosis, a process that is
related to both macropinocytosis and phagocytosis. This clearance
mechanism limits inflammation and can also result in the
destruction of pathogens that trigger apoptosis (Martin et al.,
2014). Efferocytosis relies on the presence on the surface of dead
and dying cells of molecules (often referred to as ‘eat-me’ signals)
that are not present on healthy cells, notably phosphatidylserine.
Perhaps inevitably, these signals have been subverted by pathogens,
including viruses, to promote their entry into host cells (reviewed in
Amara and Mercer, 2015). For example, when Listeria bacteria exit
infected cells, they generate phosphatidylserine-containing vesicles,
which promote their subsequent uptake into macrophages
(Czuczman et al., 2014). Pathogenic bacteria, such as Salmonella,
can also induce macropinocytosis in order to invade macrophages,
dendritic cells and B cells (Rosales-Reyes et al., 2012). There, the
bacteria remain within ‘spacious phagosomes’, which they
reconfigure to avoid fusion with lysosomes. Entry through this
route involves a number of host proteins, including Arf signalling
and the SCAR/WAVE complex (Davidson et al., 2015).
Viruses have evolved a variety of strategies to enter eukaryotic

cells (Mercer et al., 2010b), and recent findings that the large
nucleocytoplasmic DNA virus Marseillevirus can enter host
amoebae by using phagocytosis and macropinocytosis again
suggests that many of these mechanisms stem from co-option of
ancestral feeding behaviours (Arantes et al., 2016). In mammalian
cells, the flexibility of viral strategies means that different strains of
the same poxvirus can use multiple forms of macropinocytosis for
invasion, entering through macropinosomes that are initiated by
either ruffles or blebs (Mercer et al., 2010a). Ebola virus also
stimulates macropinocytosis for cell entry (Saeed et al., 2010;
Nanbo et al., 2010) and, recently, the two-pore membrane channels
involved in maturation of the resulting macropinosomes have been
identified as potential drug targets to combat Ebola and the related
Marburgvirus (Sakurai et al., 2015). The lentivirus human
immunodeficiency virus strain 1 (HIV-1) provides an interesting
example of the complexity of viral interactions with the host
endocytic mechanisms. HIV-1 can enter macrophages and
endothelial cells through macropinocytosis (Maréchal et al., 2001;
Liu et al., 2002), but its transmission to T cells, which are permissive
for its replication, can be boosted by a process called cross

enhancement (or cross infection), whereby virions are first collected
by dendritic cells. Rather than entering these antigen-processing
cells, HIV-1 virions remain attached to the surface of actin-rich
dendrites, from where they travel to T lymphocytes when they make
contact with the dendritic cells (Ménager and Littman, 2016).
Disrupting dendrite structure promotes macropinocytosis into
dendritic cells and so prevents cross-enhancement. This provides
an example of how the normal physiological cellular use of
macropinocytosis contrasts with the pathological use put to it by
many other viruses as a cell entry strategy.

Perspectives and conclusions
The formation of circular ruffles in organisms as diverse asMetazoa,
amoebae and Naegleria (Boschek et al., 1981; John et al., 1984;
Hacker et al., 1997) suggests that the network of core components
necessary for macropinocytosis is extremely ancient. The ability of
these diverse cells to perform very similar forms of phagocytosis
reinforces this idea. The common ancestor of all of these cells was
almost certainly a bacterivorous protist that relied mostly on cilia for
directed movement, suggesting that pseudopodia evolved first as
feeding structures that were later co-opted for cellular propulsion
(Cavalier-Smith, 2013). In that biological context, the parallel
evolution of phagocytosis and macropinocytosis would have
enabled the development of a range of feeding strategies for
ingesting bacteria, viruses and other eukaryotes, as well as dissolved
and colloidal macromolecules. Amoebae retain forms of these
feeding modes and can use macropinocytosis as well as
phagocytosis to feed on bacteria (Fig. 1). In Metazoa, complex
multicellularity allows food to be efficiently digested extracellularly,
reducing the need for endocytosis of complex food sources. At the
same time, multicellularity permits the division of labour that
enabled specialisations of different cell types, which give rise to new
uses for these ancient endocytic processes, for instance in antigen
processing and in neuronal communication.

Investigations into macropinocytosis in cancer cells and feeding
processes in social amoebae independently converged on the Ras
pathway as a crucial controlling factor (Bar-Sagi and Feramisco,
1986; Chubb et al., 2000; Commisso et al., 2013; Bloomfield et al.,
2015). This conservation of function again suggests an ancient role
for these signalling components that act upstream of PI3Ks and
regulate the actin cytoskeleton. Their central roles during amoeboid
feeding suggest that the initial function of Ras and PI3K might have
been in defining active areas of plasma membrane and driving the
formation of pseudopodia. It will be interesting to explore how Ras
and its regulators, such as NF1, act in metazoan processes that
evolved from endocytic feeding behaviours but that are no longer
connected with feeding or growth. For example, is Ras activity
important in all of the uptake processes discussed above? The use of
Ras-binding-domain reporters confirm localised Ras activity at
circular ruffles in macrophages, as well as in social amoebae (Sasaki
et al., 2007; Welliver and Swanson, 2012; Bloomfield et al., 2015).
The Ras subfamily in metazoans includes many poorly-
characterised proteins, so a close examination of family members
beyond the ‘canonical’ Ras proteins could lead to new insights into
bulk endocytic mechanisms, such as the recently defined function of
the Ras subfamily small G-protein TC21 in trogocytosis – a form of
phagocytosis involving the transfer of small portions of a target cell
into the phagocyte (Martínez-Martín et al., 2011). In Dictyostelium,
NF1 appears to function specifically as a regulator of Ras signalling
during macropinocytosis and phagocytosis, which raises the
possibility that it has a conserved function in controlling
endocytosis in metazoan phagocytic cells.
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As a cellular process, macropinocytosis has been viewed
predominately within the context of membrane trafficking and
signal transduction. It is also valuable to take a broader view in
which macropinocytosis is seen as having been derived from an
ancient feeding process used by the common ancestor of Metazoa
and amoebae, but that has now been adapted for a variety of
purposes. Although it is likely that core components are conserved,
cells as diverse as free-living amoebae, dendritic cells and neurons
are certain to perform large-scale bulk endocytosis in considerably
different ways. A comparative approach – defining the core
processes and cataloguing the specializations – will eventually
give a rounded picture of macropinocytosis and its related
processes. The recent renaissance of macropinocytosis has
revealed surprising insights, and we can face the future expecting
many more interesting developments.
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