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The NuRD nucleosome remodelling complex and NHK-1 kinase
are required for chromosome condensation in oocytes

Elvira Nikalayevich and Hiroyuki Ohkura*

ABSTRACT

Chromosome condensation during cell division is one of the most

dramatic events in the cell cycle. Condensin and topoisomerase II are

the most studied factors in chromosome condensation. However,

their inactivation leads to only mild defects and little is known about

the roles of other factors. Here, we took advantage of Drosophila

oocytes to elucidate the roles of potential condensation factors by

performing RNA interference (RNAi). Consistent with previous

studies, depletion of condensin I subunits or topoisomerase II in

oocytes only mildly affected chromosome condensation. In contrast,

we found severe undercondensation of chromosomes after depletion

of the Mi-2-containing NuRD nucleosome remodelling complex or the

protein kinase NHK-1 (also known as Ballchen in Drosophila). The

further phenotypic analysis suggests that Mi-2 and NHK-1 are

involved in different pathways of chromosome condensation. We

show that the main role of NHK-1 in chromosome condensation is to

phosphorylate Barrier-to-autointegration factor (BAF) and suppress

its activity in linking chromosomes to nuclear envelope proteins. We

further show that NHK-1 is important for chromosome condensation

during mitosis as well as in oocytes.

KEY WORDS: Chromosome, Condensation, Drosophila, Oocyte,

Meiosis

INTRODUCTION
During cell division, chromosomes undergo morphological

changes from a cloud-like interphase morphology into rod-like

structures. This transformation is referred to as chromosome

condensation. Chromosome condensation is important for faithful

chromosome segregation during cell division. The organisation of

condensed metaphase chromosomes has been a focus of debate for

a long time, and various models have been proposed (Luger et al.,

2012). One model is that there is a hierarchical organisation,

starting from nucleosomes folded into a 30-nm fibre, which form

larger and larger loops (Belmont et al., 1987; Sedat and

Manuelidis, 1978). Another long-standing, and not mutually

exclusive, model is that there is a chromosome scaffold, which

has been observed after removal of DNA and most of the

chromosome proteins from the metaphase chromosomes (Marsden

and Laemmli, 1979). However, the existence and the biological

role of this scaffold are subjects of continuous discussion. The most

recently proposed model is a polymer model based on data from a

chromosome conformation capture method (Naumova et al.,

2013). This proposes that there is a compressed linear array of

loops without hierarchical organisation.

Among thousands of proteins found in metaphase chromosomes,

condensin complexes and topoisomerase II have been studied most

extensively for their involvement in chromosome condensation

during cell division. The condensin complex was originally found

as the main chromosome condensation factor in Xenopus extract

(Hirano and Mitchison, 1994; Hirano et al., 1997). The involvement

of condensin complexes in this process has been demonstrated in

many systems (Hudson et al., 2003; Ono et al., 2003; Hagstrom

et al., 2002; Steffensen et al., 2001; Sutani et al., 1999). Higher

eukaryotes have two condensin complexes, condensin I and II

(Hirano, 2012). The two complexes appear to have different

localisations and functions. The exact molecular mechanism by

which condensin functions has not been established, but it has an

ability to positively supercoil DNA (Kimura and Hirano, 1997).

It has been demonstrated in several systems that topoisomerase II

is required for chromosome structure as well as correct chromosome

segregation in mitosis and meiosis (Uemura et al., 1987; Spence

et al., 2007; Adachi et al., 1991; Li et al., 2013). Topoisomerase II is

present on chromosomes in mitosis and meiosis (Earnshaw and

Heck, 1985; Maeshima and Laemmli, 2003; Lee et al., 2011) and is

also enriched on centromeres and pericentromeric regions during

meiosis (Lee et al., 2011). Topoisomerase II decatenates supercoiled

DNA by introducing temporary double-strand DNA breaks, and it

has been suggested and demonstrated that topoisomerase II acts in

opposition to condensin and KIF4A (Baxter and Aragón, 2012;

Samejima et al., 2012). Both condensin and topoisomerase II are

required for the correct chromatin structure of the centromere

(Hirano, 2012; Vagnarelli, 2013).

Despite extensive research on the roles of condensin and

topoisomerase II in chromosome condensation, some evidence

casts doubts on whether these proteins are the only major

factors involved in chromosome condensation. In some systems,

chromosomes are still able to condense, with various abnormalities,

after depletion of condensin subunits (Coelho et al., 2003; Hirota

et al., 2004; Hudson et al., 2003; Ribeiro et al., 2009) or

topoisomerase II (Carpenter and Porter, 2004; Chang et al., 2003;

Sakaguchi and Kikuchi, 2004). Depletion of condensin does not

prevent condensation of chromosomes until the initiation of

anaphase, but causes chromosomes to decondense prematurely

during anaphase (Vagnarelli et al., 2006). This has led to a proposal

that there is a ‘regulator of chromosome architecture’ (RCA), an as

yet unidentified factor, which acts redundantly with condensin to

condense metaphase chromosomes (Vagnarelli et al., 2006).

Evidence suggests that there are crucial chromosome

condensation factors other than condensin and topoisomerase II.
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Recently, attempts have been made to find new chromosome
condensation factors. For example, a chromosome condensation

assay allowed high-throughput analysis of genes required for
chromosome condensation in fission yeast (Petrova et al., 2013).
In that study, eight new conditional condensin alleles were
discovered, together with a new role for DNA polymerase e (pol

e) and F-box DNA helicase I in chromosome condensation
(Petrova et al., 2013). In addition, a very recent study has
identified mutations in several genes that cause chromosome

segregation defects similar to those induced by depletion of
condensin. Four out of five of these genes encode components of
the nucleosome-remodelling complexes (Robellet et al., 2014).

In this report, we describe the first use of Drosophila oocytes to
study chromosome condensation. RNA interference (RNAi)-
mediated depletion of a set of chromosomal proteins revealed that

depletion of the nucleosome-remodelling protein Mi-2 and the
protein kinase NHK-1 (Nucleosomal histone kinase-1, also
known as Ballchen in Drosophila) resulted in much more
severe defects than depletion of well-known chromosome

condensation factors. The condensation defects of Mi-2 and
NHK-1 depletion were distinct from each other, suggesting that
these proteins function in different pathways. We found that the

main NHK-1 action in chromosome condensation is to suppress
Barrier-to-autointergration factor (BAF) activity, which functions
to link nuclear envelope proteins to chromosomes.

RESULTS
Identification of chromosome condensation factors revealed
multiple pathways of condensation
Molecular mechanisms of chromosome condensation in cells
remain poorly understood. This is partly because only a limited

number of factors have been identified, and observed
condensation defects are generally mild when factors are

disrupted in mitotic cells (Hirota et al., 2004; Ribeiro et al.,
2009; Carpenter and Porter, 2004; Sakaguchi and Kikuchi, 2004).
We rationalised that the use of Drosophila oocytes might provide
a unique insight into chromosome condensation. For example, as

the volume of Drosophila oocytes dramatically increases after the
last mitotic division, effective depletion of even stable proteins
can be achieved by RNAi.

To identify chromosome condensation factors in Drosophila

oocytes, we knocked down potential factors involved in this process
in oocytes. As the first step, categories of proteins known to be

involved in chromosome-related functions were selected, including
chromatin-modifying enzymes, nucleosome remodelling factors,
chromatin insulators and helicases. Among these, transgenic lines

expressing short hairpin RNA (shRNA) constructs were available
for 51 genes (supplementary material Table S1). The expression of
shRNA was driven in the female germline after the completion of
mitotic divisions and recombination using GAL4 driven by the

maternal a-tubulin67A promoter (Radford et al., 2012). A total of 30
sterile or poorly fertile lines were further selected for cytological
analysis. DNA staining of mature oocytes, which naturally arrest in

metaphase I (Ashburner et al., 2005), revealed that RNAi-mediated
depletion of eight genes gave chromosome condensation defects
(Fig. 1). A reduction in the amount of the corresponding mRNA

was confirmed by quantitative RT-PCR (supplementary material
Fig. S1A). Possibilities of off-target effects were subsequently
excluded for all hits except for topoisomerase II and Aurora B by

testing non-overlapping shRNA for the same gene, shRNA
targeting genes for other subunits of the same complex and/or
perturbation of known substrates (see below).

Fig. 1. RNAi of various chromosomal proteins
causes different chromosome condensation
defects in mature oocytes. (A) Chromosome
morphology (DNA; DAPI staining) and the positions of
centromere 3 (Cen3; Dodeca satellite) in mature
oocytes expressing the indicated shRNA. Arrows and
arrowheads indicate thin DNA threads and Cen3
signals, respectively. Scale bar: 10 mm. (B) The
frequencies of thin DNA thread occurrence in wild-type
oocytes or oocytes expressing shRNA for Smc2,
Smc4, CapD-2, Cap-G, Cap-H, Topoisomerase II

(TopoII) or Aurora B. (C) The frequencies of mono-
orientated centromere 3, in wild-type oocytes or
oocytes expressing shRNA for Smc2, Smc4, Cap-D2,
Cap-G, Cap-H, Topoisomerase II or Aurora B. Cen3
mono-orientation was defined as two Cen3 signals
located on the same side of the chromosome mass or
one unseparated Cen3 signal. NP,0.05; NNP,0.01
compared with wild type.
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These positive hits could be broadly grouped into two categories.

The first category consists of well-known condensation factors,

including condensin I subunits, Topoisomerase II and Aurora B,

which showed mild condensation defects after RNAi (Fig. 1A).

In oocytes expressing shRNA for condensin I subunits and

topoisomerase II, the majority of chromosomes were compacted

into the main chromosome mass but thin threads often emanated

from the main mass (Fig. 1A,B). Fluorescent in situ hybridisation

(FISH) probing a peri-centromeric satellite on the third

chromosome showed that the satellites were often found in the

thin threads (Fig. 1A), suggesting that centromeric and peri-

centromeric regions were the main regions of undercondensation.

In addition, these peri-centromeric satellites were often found at

the same side of the chromosome mass (Fig. 1A,C), indicating

mis-orientation of homologous centromeres. Depletion of four out

of five condensin I subunits showed a similar chromosome defect

but with various frequencies (Fig. 1), suggesting that depletion of

target proteins was achieved by RNAi at a high frequency but that

the levels of depletion might vary. Most oocytes expressing Aurora

B shRNA showed thin chromatin threads connected to condensed

chromosomes (Fig. 1). As Aurora B RNAi resulted in severely

compromised microtubule assembly (Radford et al., 2012;

supplementary material Fig. S1B), the thin chromatin threads are

not due to pulling forces on the chromosomes.

The second category consists of the nucleosome remodelling
factor Mi-2 and the conserved kinase NHK-1, for which RNAi-

mediated depletion caused severe chromosome condensation defects
in oocytes (Fig. 2), in comparison to the well-known chromosome
condensation factors mentioned above. This demonstrated that the
Drosophila oocyte combined with RNAi is an effective system to

identify crucial chromosome condensation factors.

Mi-2 and NHK-1 RNAi showed distinct chromosome
condensation defects
We focused our analysis on chromosome condensation defects in
the Mi-2 and NHK-1 RNAi condition in oocytes, as previous
studies of these two proteins had not revealed their roles in
promoting condensation of metaphase chromosomes. A study
using overexpression of wild-type and dominant-negative Mi-2
has suggested that Mi-2 induces chromosome decondensation in
polytene and mitotic cells (Fasulo et al., 2012). Hypomorphic
female sterile nhk-1 mutants show fully condensed metaphase
chromosomes in mature oocytes (Cullen et al., 2005; Ivanovska
et al., 2005). Furthermore RNAi or mutations of the NHK-1

orthologues has not revealed chromosome undercondensation in
mitosis (Cullen et al., 2005; Ivanovska et al., 2005; Gorjánácz
et al., 2007; Molitor and Traktman, 2014). The apparent
dissimilarities between previous studies and ours might be due
to differences in methodologies and/or systems.

Fig. 2. Mi-2 and NHK-1 RNAi lead to chromosome undercondensation in mature oocytes. (A) Chromosome morphology (DNA; DAPI staining) and the
positions of centromere 3 (Cen3; Dodeca satellite) in mature oocytes expressing shRNA for Mi-2 or NHK-1. Representative images show aligned condensed
chromosomes in wild-type oocytes, misaligned condensed chromosomes and undercondensed chromosomes in Mi-2 RNAi oocytes, and amorphous
chromosomes in NHK-1 RNAi oocytes are shown. Scale bar: 10 mm. (B) Quantification of chromosome morphology in wild-type oocytes or oocytes expressing
shRNA for Mi-2 or NHK-1. ‘Undercondensed’ chromosomes in NHK-1 RNAi oocytes were irregularly undercondensed chromosomes which are distinct from
those seen in Mi-2 RNAi oocytes. NNP,0.01 in the frequency of undercondensed or amorphous chromosomes compared with wild type. (C) The estimated length
of chromosome arms (assuming ten equal sized chromosome arms in diploid oocytes) in wild-type oocytes or Mi-2 RNAi oocytes containing misaligned or
undercondensed chromosomes. Results are mean6s.e.m. **P,0.01 compared with wild type. (D) The number of Cen3 signals in wild-type oocytes, or oocytes
expressing shRNA for Mi-2 or NHK-1. n574, 36 and 19, respectively. NNP,0.01 in the frequency of three or four dots compared with wild type.
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To further characterise chromosome condensation defects, the
chromosome morphology of mature oocytes expressing shRNA

for Mi-2 or NHK-1 was examined in detail. Oocytes expressing
Mi-2 shRNA showed a low, but significant, frequency (13%) of
undercondensation of chromosomes (Fig. 2A–C). In addition, Mi-

2 shRNA induced chromosome misalignment (35%) without

clear condensation defects (Fig. 2A). These undercondensed
chromosomes appeared to be elongated by more than fourfold
in comparison with condensed chromosomes in wild-type or Mi-2

shRNA conditions (Fig. 2C). In contrast, oocytes expressing
NHK-1 shRNA did not have normally condensed chromosomes,
and nearly all of them had amorphous DNA strings without

recognisable individual chromosomes (Fig. 2A,B).
To further investigate the chromosome organisation, FISH

was carried out using a peri-centromeric satellite on the third

chromosome as a probe. Wild-type oocytes had two dots, which
represent a pair of homologous centromeres on the edges of the
chromosome mass, and each dot comprises the signals for closely
located sister centromeres (Fig. 2A,D). In Mi-2 RNAi oocytes,

two dots were found on undercondensed chromosomes highlighting
a bivalent structure with chiasmata (Fig. 2A,D). In contrast, most
(58%) of the NHK-1 RNAi oocytes contained three or four separate

dots (Fig. 2A,D), suggesting compromised attachment between
sister chromatids.

Mi-2 and NHK-1 affect chromosome organisation at
different stages
Next, the chromosome morphology was examined in live

oocytes using maternally expressed Regulator of chromosome

condensation 1 (RCC1) tagged with mCherry as a chromosome
marker (Fig. 3). This expression of RCC1–mCherry alone in a

wild-type background induced chromosome undercondensation
only in 3% of oocytes (Fig. 3C). When Mi-2 shRNA was induced
together with RCC1–mCherry, a high frequency (66%) of
chromosome undercondensation was observed in mature live

oocytes (Fig. 3A,C), and the chromosomes were not only longer,
but also wider, occasionally with some more condensed regions
(Fig. 3A). DAPI staining of fixed oocytes indicated that

expression of Rcc1–mCherry indeed enhanced the Mi-2 RNAi
condensation defect (supplementary material Fig. S2). GFP-
tagged Cid (the Cenp-A orthologue), which highlights

centromeres (Schuh et al., 2007), was often associated with
narrower regions of chromosomes (Fig. 3B). This suggests that
Mi-2 RNAi has a different effect on chromosome arms to its

effect on centromeric and peri-centromeric regions. In NHK-1

RNAi oocytes expressing Rcc1–mCherry, we could not reliably
recognise amorphous chromosomes over the background signal.
To quantify the degree of chromosome condensation, the volume

occupied by all chromosomes (the Rcc1–mCherry signal) was
measured in live oocytes (Fig. 3D). We found that the volume of
chromosomes increased after Mi-2 depletion. The median volume

of all chromosomes was increased fourfold.
To gain an insight into when these two proteins function, we

observed the chromosome organisation in late prophase I. Unlike

immunostaining, the live imaging procedure retains the dorsal
appendages of oocytes, which can be used to determine the
oocyte stage. Maturing oocytes at stage 12 or 13 were selected by

their dorsal appendage morphology and chromosomes were

Fig. 3. Live imaging reveals that NHK-1 and Mi-
2 function at different stages. (A) Chromosome
undercondensation in mature oocytes expressing
Rcc1–mCherry alone (no RNAi) or Rcc1–mCherry
and shRNA for Mi-2. Scale bar: 10 mm.
(B) Chromosome morphology and centromere
(Cid) positions in mature oocytes expressing
Rcc1–mCherry, GFP–Cid or Mi-2 shRNA.
Chromosomes were narrower in centromeric bad
pericentromeric regions (arrowheads). Scale bar:
10 mm. (C) Quantification of chromosome
morphology in mature oocytes expressing Rcc1–
mCherry alone (no RNAi), or Rcc1–mCherry and
shRNA for white (an unrelated gene as a control) or
Mi-2. NNP,0.01 in the frequency of undercondensed
chromosomes compared with wild type. (D) The
volume occupied by chromosomes in oocytes
expressing Rcc1–mCherry alone (no RNAi) or
Rcc1–mCherry and shRNA for white (an unrelated
gene as a control) orMi-2. The blue horizontal lines
represent the median. **P,0.01 in the
chromosome volume compared with wild type.
(E) The structure of the karyosome (clustered
chromosomes) in late prophase I oocytes
expressing Rcc1–mCherry alone (no RNAi), or
Rcc1–mCherry and shRNA for Mi-2 or NHK-1. The
karyosome structure in late prophase I was
disrupted in NHK-1 RNAi oocytes, but not Mi-2
RNAi oocytes. Scale bar: 10 mm.
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observed before nuclear envelope breakdown. In wild-type late
prophase I oocytes, meiotic chromosomes clustered together to

form a compact body called the karyosome within the enlarged
nucleus (n513; Fig. 3E). The karyosome organisation of Mi-2

RNAi oocytes appeared normal before nuclear envelope
breakdown (n517; Fig. 3E). In contrast, in nhk-1 RNAi oocytes,

even before nuclear envelope breakdown the karyosome was
severely disrupted (n54) or invisible against nucleoplasmic
background, probably owing to the highly diffused morphology

of the chromosomes (n57; Fig. 3E). This defect in late prophase I
is consistent with previous observations of disrupted karyosomes at
earlier stages in hypomorphic nhk-1 mutants, although metaphase

chromosomes are fully condensed in mature oocytes carrying these
alleles (Cullen et al., 2005; Ivanovska et al., 2005). The differences
in chromosome morphology in prophase I and metaphase I suggest

that NHK-1 and Mi-2 are involved in distinct pathways from each
other in chromosome condensation.

Knockdown of Mi-2 and NHK-1 disrupts spindle formation
To test whether Mi-2 or NHK-1 are required for spindle
formation, RNAi oocytes were immunostained for a-tubulin. A
Mi-2 orthologue, CHD4, has been recently shown to bind

microtubules and to be required for full spindle microtubule
assembly and spindle bipolarity in Xenopus egg extract and
cultured cells from humans and Drosophila (Yokoyama et al.,

2013). In Mi-2 RNAi oocytes, about a half of the oocytes
had abnormal spindles (supplementary material Fig. S3). The
abnormalities include unfocused poles, multiple spindles and

microtubule asters around chromosomes. In hypomorphic nhk-1

mutants, it was previously shown that spindle microtubule
assembly is normal, although multiple spindles are often
formed. In NHK-1 RNAi oocytes, spindle microtubule assembly

was severely compromised (supplementary material Fig. S3). It
remains to be determined whether the spindle assembly defects in
these RNAi conditions are directly caused by a loss of NHK-1 or

Mi-2 activity, or are a secondary consequence of the chromosome
defects.

The NuRD complex containing Mi-2 is responsible for
chromosome condensation
In Drosophila, Mi-2 is a subunit of two separate protein complexes,
the NuRD complex and the MEC complex. The Drosophila NuRD

complex consists of Mi-2, MTA1-like, MBD-like, Caf1, Rpd3 and
p66 (also known as Simjang), whereas the MEC complex consists
of Mi-2 and MEP-1 (Kunert et al., 2009). To determine which

complex promotes condensation, shRNAs corresponding to
specific subunits were expressed in oocytes expressing RCC1–
mCherry. RNAi of MTA1-like, MBD-like and Rpd3 showed

condensation defects similar to Mi-2 RNAi, whereas MEP-1

RNAi did not show clear defects (supplementary material Fig. S4).
As RNAi of 4 subunits of the NuRD complex showed similar

condensation defects, we conclude that the NuRD complex is
responsible for promoting chromosome condensation.

BAF phosphorylation by NHK-1 is required for
chromosome condensation
Next, we investigated the molecular mechanism of NHK-1
function in chromosome condensation. One known NHK-1

substrate is BAF, a linker between DNA and LEM-domain-
containing nuclear envelope proteins (Segura-Totten and Wilson,
2004; Furukawa, 1999). The phosphorylation of BAF has been

previously shown to suppress the BAF interactions with both

DNA and LEM-domain-containing nuclear envelope proteins
(Nichols et al., 2006). To identify the role of BAF phosphorylation

in chromosome condensation, non-phosphorylatable BAF (BAF-
3A; Lancaster et al., 2007) was expressed in otherwise wild-type
oocytes. Most oocytes expressing BAF-3A showed a severe
chromosome condensation defect similar to the one induced by

NHK-1 RNAi, whereas expression of wild-type BAF did not affect
chromosome condensation (Fig. 4A,B).

To determine whether and how much the condensation

function of NHK-1 is mediated by BAF, we have tested
whether depletion of BAF can rescue the condensation defect
caused by NHK-1 RNAi. Double RNAi of BAF and NHK-1 was

compared with single NHK-1 RNAi, single BAF RNAi, and
double RNAi of NHK-1 and an unrelated gene (white) as a
control. Double RNAi of BAF and NHK-1 led to fully condensed

chromosomes (40%), which were not seen in single NHK-1
RNAi. Single BAF RNAi did not show any defects, and double
RNAi of NHK-1 and the unrelated gene did not change the severe
condensation defect of single NHK-1 RNAi (Fig. 4A,B). This

rescue demonstrated that suppression of BAF activity is the main
function of NHK-1 in chromosome condensation in oocytes.

BAF is a small protein which forms a homodimer, and directly

binds to DNA and LEM domains of multiple inner nuclear
membrane proteins (Zheng et al., 2000; Furukawa, 1999;
Shumaker et al., 2001). Residues involved in these interactions

have been identified in other systems (Segura-Totten et al., 2002;
Cai et al., 1998). To test which of these protein interactions are
essential for the BAF-3A effect, crucial residues were mutated in

BAF-3A, and mutant BAF-3A was expressed in otherwise wild-
type oocytes. We found that mutations disrupting binding to
either DNA (‘no DNA’), LEM (‘no LEM’) or to BAF itself
(‘monomer’) abolished the condensation defects caused by BAF-

3A expression (Fig. 4C–E). This indicates that BAF without
phosphorylation prevents chromosome condensation by linking
LEM-containing inner nuclear envelope proteins to DNA.

Involvement of NHK-1 in chromosome condensation
in mitosis
Finally, we addressed the question of whether the role of NHK-1
in chromosome condensation is specific to oocytes. For example,
it is possible that the sole role of NHK-1 is to form the proper
karyosome, which is specific to the oocyte nucleus, and that the

chromosome condensation defect seen after NHK-1 RNAi is
simply a secondary consequence of the karyosome defect in
prophase I.

To address this question, we examined the chromosome
morphology of nhk-1 mutants during mitosis. Central nervous
systems from third-instar larvae were fixed, squashed and stained

for DNA and histone 3 phosphorylated at S10 (phospho-H3), a
mitosis-specific marker. Two lethal nhk-1 mutants, null (E107)
and hypomorphic (E60) alleles (Cullen et al., 2005), were

examined together with the wild type. In wild-type larvae,
all mitotic (phospho-H3 positive) cells showed condensed
chromosomes or were in telophase (Fig. 5). In contrast, in nhk-

1 mutants a significant proportion of phospho-H3 positive cells

had parts of chromosomes that were abnormally undercondensed
(49% in E107 and 14% in E60; Fig. 5). The frequency of
chromosome bridges or lagging chromosomes increased in nhk-

1E60 (10 out of 53 anaphases and telophases versus 1 out of 111 in
wild type; P,0.01). These results support the involvement of
NHK-1 in condensation of mitotic chromosomes, although we

could not exclude the possibility that H3 phosphorylation was

RESEARCH ARTICLE Journal of Cell Science (2015) 128, 566–575 doi:10.1242/jcs.158477

570

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.158477/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.158477/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.158477/-/DC1


Jo
ur

na
l o

f C
el

l S
ci

en
ce

affected in the mutants or that these abnormal figures resulted

from prolonged metaphase arrest.
To test whether this phenotype is mediated by BAF phosphorylation

in mitosis, wild-type BAF and non-phosphorylatable BAF (BAF-3A)

were overexpressed in otherwise wild-type flies (Fig. 5). We found

that both showed abnormally undercondensed chromosomes in a
significant proportion of phospho-H3-positive cells (28% in BAF-
3A and 21% in BAF). This is in contrast to oocytes, in which only

Fig. 4. NHK-1 suppresses the activity of BAF in linking nuclear envelope proteins to DNA. (A) DNA staining of mature oocytes expressing non-
phosphorylatable BAF-3A, shRNA for NHK-1, or shRNAs for both NHK-1 and BAF. The condensation defect caused by NHK-1 RNAi is phenocopied by
expression of non-phosphorylatable BAF and is rescued by BAF RNAi. Scale bar: 10 mm. (B) Chromosome morphology in wild-type oocytes, oocytes
overexpressing BAF or BAF-3A, or oocytes expressing shRNA for NHK-1, NHK-1 and white, BAF, or NHK-1 and BAF. NNP,0.01 between the indicated pairs in
the frequency of undercondensed or amorphous chromosomes. (C) The sequence of human and Drosophila BAF, together with amino acid mutations shown or
predicted to disrupt interactions with DNA (no DNA), the LEM domain (no LEM) and BAF itself (monomer) in human BAF and the equivalent mutations in
Drosophila BAF. (D) Chromosome morphology of mature oocytes expressing BAF-3A and BAF-3A variant containing each mutation. These interactions are
required for non-phosphorylatable BAF to prevent chromosome condensation in oocytes. NNP,0.01 in the frequency of undercondensed or amorphous
chromosomes compared with BAF-3A expression. (E) Diagram of BAF variants and their overexpression effects on chromosome condensation. + and 2

indicate proper condensation and severe undercondensation, respectively.

Fig. 5. NHK-1 is important for chromosome
condensation in mitosis. (A) Mitotic figures positive for
phospho-H3 (at S10) in CNSs from wild-type larvae, wild-
type larvae overexpressing BAF-3A or larvae that had one
of two lethal mutant alleles of nhk-1. The null allele E107

was examined in homozygotes and the hypomorphic
allele E60 was examined over a deficiency uncovering
nhk-1. +colchicine indicates mitotic figures from the larval
central nervous systems incubated with colchicine.
Scale bar: 10 mm. (B) Frequencies of chromosome
morphology classes in phospho-H3-positive cells in larval
CNSs from wild type, nhk-1E60, nhk-1E107 or flies
overexpressing BAF-3A or BAF. **P,0.01 in the
frequency of abnormally undercondensed chromosomes
compared with wild type. (C) The frequency of mitotic
(phospho-H3 positive) cells. Results are mean6s.e.m.
derived from biological triplicates. **P,0.01 compared
with wild type.
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the non-phosphorylatable BAF prevented chromosome condensation.
It is possible that overexpressed wild-type BAF might remain

unphosphorylated in mitosis owing to limited NHK-1 activity.
Nevertheless, our results suggest that the NHK-1 substrate BAF is
involved in chromosome condensation also in mitosis. These
results show that NHK-1 is important for chromosome

condensation not only during meiosis in oocytes but also during
mitosis in somatic cells.

DISCUSSION
In this study, we used Drosophila oocytes as a new model
system for chromosome condensation. Knockdown of potential

chromosomal proteins or regulators by RNAi in oocytes has
identified new factors promoting chromosome condensation (the
NuRD complex and NHK-1) as well as known factors (condensin

I, topoisomerase II and Aurora B). Depletion of the protein
kinase NHK-1 and the NuRD nucleosome remodelling complex
containing Mi-2 caused severe chromosome condensation defects
that were distinct from each other. Further study revealed that

BAF is the main substrate of NHK-1 for its chromosome
condensation function and that NHK-1 promotes chromosome
condensation by suppressing the linker activity of BAF between

nuclear envelope proteins and DNA. Finally, we showed that
NHK-1 is also important for chromosome condensation in
mitosis.

This report is the first to use Drosophila oocytes to study
chromosome condensation. We argue that the Drosophila oocyte
combined with RNAi is an excellent system for research of

chromosome condensation, which complements commonly used
mitotic systems. Firstly, Drosophila oocytes grow enormously
in volume between completion of pre-meiotic mitosis and
recombination and chromosome condensation (Cummings and

King, 1969). shRNA expression can be induced after the protein
executes its role in the previous mitosis and/or recombination but
prior to oocyte growth (Radford et al., 2012). Even if the target

protein is stable, it becomes sufficiently diluted before
chromosome condensation in oocytes. This is in contrast to
mitotic cycles where cells only double in size between divisions.

Secondly, Drosophila oocytes arrest in metaphase of the first
meiotic division (Ashburner et al., 2005). This allows
chromosome defects to be studied in the first division after the
target protein is depleted, rather than as a mixture of defects

accumulated through multiple divisions caused by a gradual
decrease of the protein. Finally, as oocytes are large, the
condensation state of chromosomes can be clearly observed

without mechanical treatment such as squashing or spreading.
Therefore, RNAi in Drosophila oocytes could be a powerful
system to study chromosome condensation, although negative

results should be interpreted with caution as they might be caused
by insufficient depletion, genetic redundancy or cell-type-specific
function.

Indeed, in this study, a small-scale survey of chromosomal
proteins, new chromosome condensation factors were identified
in addition to well-known ones, demonstrating the effectiveness
of Drosophila oocytes as a research system. Well-known factors,

including condensin I subunits, topoisomerase II and Aurora B,
showed milder chromosome condensation defects. Knockdown of
topoisomerase II or condensin I showed similar condensation

defects, and appeared to affect mainly centromeric and/or
pericentromeric regions. The previous reports in mitosis are
consistent with our result, suggesting that these two factors are

not the main condensation factors in mitosis or in meiosis (Hirota

et al., 2004; Ribeiro et al., 2009; Carpenter and Porter, 2004;
Sakaguchi and Kikuchi, 2004).

A previous study of Mi-2 in Drosophila suggested that it
promotes decondensation of chromosomes because overexpression
of wild-type Mi-2 results in chromosome decondensation in
polytene or mitotic cells and overexpression of dominant-negative

Mi-2 results in overcondensation (Fasulo et al., 2012). In our
current study, Mi-2 RNAi in oocytes showed chromosome
decondensation, whereas in our preliminary study in neuroblasts

Mi-2 RNAi did not show chromosome decondensation. The
difference from the previous study might be due to the method of
disrupting the Mi-2 function or cell types used for the studies. We

argue that the phenotype caused by RNAi in oocytes is a better
reflection of the in vivo function. RNAi of other NuRD subunits
indicated that the NuRD complex is important for chromosome

condensation.
How does the NuRD complex promote chromosome

condensation? It is possible that nucleosome remodelling is
directly required during chromosome condensation. For example,

proper positioning of nucleosomes might be important for full
chromosome condensation. Indeed, other nucleosome remodelling
complexes have been suggested to be involved in chromosome

condensation in fission yeast (Robellet et al., 2014). Alternatively,
histone deacetylase acivity of the NuRD complex might be
important for chromosome condensation, as histone modifications

are a major way to regulate chromosome structure (Wang and
Higgins, 2013). We also cannot exclude the possibility that NuRD
acts through transcription of other chromosome condensation

factors, as it is known to regulate gene transcription (Ramı́rez and
Hagman, 2009). Further studies using more sophisticated
mutations would help to distinguish these possibilities.

We found that knockdown of NHK-1 resulted in severe

chromosome condensation defects in nearly all oocytes.
Previously, involvement of NHK-1 or its orthologues in
metaphase chromosome condensation has not been reported,

although overexpression of the human orthologue disrupts
chromatin organisation in interphase (Kang et al., 2007). None
of the three female sterile nhk-1 mutants showed chromosome

condensation defects in metaphase I in oocytes (Cullen et al.,
2005; Ivanovska et al., 2005). This might be because the minimal
NHK-1 activity required for producing viable adults is sufficient
to allow chromosome condensation in oocytes. Female-germline-

specific RNAi is likely to have achieved greater depletion of
NHK-1 in oocytes. We showed that phosphorylation of BAF, thus
inactivating its linking of DNA to LEM-domain-containing inner

nuclear membrane proteins, is the major role of NHK-1 in
chromosome condensation in oocytes. However, NHK-1 might
regulate multiple pathways during condensation, for example, it

has been shown that it is required for histone 2A phosphorylation
and condensin recruitment in prophase I oocytes (Ivanovska
et al., 2005).

A crucial question is whether the chromosome condensation
defect is a direct consequence of NHK-1 loss or a secondary
consequence of a karyosome defect in prophase I oocytes.
Evidence indicates that the compact karyosome in the prophase I

nucleus and chromosome condensation in metaphase I are at least
partly independent. In female-sterile hypomophic nhk-1 mutants,
chromatin organisation in prophase I oocytes is defective, but

metaphase I chromosomes are properly condensed in mature
oocytes (Cullen et al., 2005; Ivanovska et al., 2005). By contrast,
in Mi-2 RNAi oocytes, the karyosome is normal in prophase I,

but chromosomes become undercondensed after nuclear envelope

RESEARCH ARTICLE Journal of Cell Science (2015) 128, 566–575 doi:10.1242/jcs.158477

572



Jo
ur

na
l o

f C
el

l S
ci

en
ce

breakdown in some metaphase I oocytes. Furthermore, as
chromosome condensation in mitosis is also defective in nhk-1

mutants, the role for NHK-1 in chromosome condensation must
be at least partly independent from meiosis-specific chromatin
organisation. Therefore, release of LEM-containing nuclear
envelope proteins from chromosomes might be a prerequisite

for proper chromosome condensation.
In conclusion, our targeted survey using RNAi in Drosophila

oocytes has already identified new factors required for chromosome

condensation. Further analysis provided new insights into the
molecular mechanism of condensation including the release of
nuclear envelope proteins from chromosomes and nucleosome

remodelling and/or histone deacetylation as essential steps for
condensation. In future, a larger scale screen of putative
chromosomal proteins might prove to be fruitful.

METHODS AND MATERIALS
Handling of Drosophila melanogaster
Standard methods of fly handling were used (Ashburner et al., 2005). Fly

lines for RNAi used in this study were designed to express shRNA under

the UASp promoter and were generated by the Transgenic RNAi Project

at Harvard Medical School (Ni et al., 2008; Dietzl et al., 2007). They are

shown in supplementary material Table S1. To express shRNA in the

female germlines, fly lines expressing GAL4 under the maternal a-

tubulin67A promoter (V37) and shRNA under UASp promoter were

crossed and transheterozygous female progeny were examined. For

observation of fixed mature oocytes, ,1-day-old adult female flies were

cultured with males on fresh food with dry yeast pellets for 3–5 days at

25 C̊. To overexpress BAF and BAF-3A, controlled under the UASp

promoter in larval CNS, the GAL4 driver 167Y (Manseau et al., 1997)

was used. nhk-1E60 was examined over Df(3R)ro80b. Details of genes and

mutations are as described previously (Lindsley and Zimm, 1992) and as

in FlyBase (St. Pierre et al., 2014).

Site-directed mutagenesis and molecular cloning of
BAF-3A variants
DNA encoding BAF-3A (Lancaster et al., 2007) or BAF-3A (monomer)

with a stop codon was cloned into pENTR/D-Topo (Invitrogen) and the

missense mutations leading to the amino acid changes were introduced

to BAF-3A by site-directed mutagenesis using the QuikChange kit

(Agilent). After confirming the sequences, unmutated and mutated BAF-

3A were transferred into pUASp using the Gateway vector pPWG and LR

Clonase (Invitrogen), and used for P-element-mediated transformation of

w1118 by Genetic Service Inc. Five insertions were tested for each construct

and gave similar results.

Quantification of RNAi efficiency
Total RNA was purified using an RNAeasy kit (Qiagen) from 5–10 pairs

of ovaries, which were dissected in Robb’s medium from adult females

matured for 4–8 days at 25 C̊. After genomic DNA was digested with

DNase I (Qiagen), cDNA was generated using primers corresponding to

target genes and Superscript III reverse transcriptase (Invitrogen). Real-

time RT-PCR was performed in LightCycler 480 (Roche) using a pair of

primers corresponding to target genes and SYBR Green Master mix

(Roche). In parallel, a pair of primers corresponding to actin 5C gene

were used as a control for normalisation.

Cytological methods
Fluorescent in situ hybridisation of oocytes was carried out as described

in Meireles et al. (Meireles et al., 2009) (except oocytes were fixed in 8%

paraformaldehyde) using a fluorescently labelled probe generated by the

following method. A 44-mer oligonucleotide, (CCCGTACTGGT)4,

corresponding to the dodeca satellite (Abad et al., 1992) was incubated

with terminal deoxynucleotidyl transferase (1.5 U/ml; Promega), Alexa-

Fluor-546–dUTP (0.1 mM) and dTTP (0.8 mM) in transferase buffer

(Promega) at 37 C̊ for 1 hour and 70 C̊ for 10 minutes, and purified

through a G25 Mini Quick Spin Oligo Column (Roche). The

chromosome arm length in wild-type was estimated as half of the

distance between the Cen3 signals (2.1660.84 mm). The arm length of

undercondensed chromosomes in Mi-2 RNAi was estimated by

measuring the length of all visible chromosomes using the polygonal

chain measurement tool in LSM Examiner (Zeiss) and dividing it by the

number of visible arms for Mi-2 RNAi (9.0162.40 mm). The length of

misaligned condensed chromosomes in Mi-2 RNAi estimated by the

above method (2.0760.37 mm) was not statistically different from that of

wild type. Mature oocytes were immunostained as described in Cullen

and Ohkura (Cullen and Ohkura, 2001) using an anti-a-tubulin antibody

(1:250 DM1A; Sigma) and counterstained with DAPI (0.2 mg/ml; Sigma).

The fixed oocytes were examined under PlanApochromat (636, 1.4NA;

Zeiss) using LSM510Exciter (Zeiss) attached to an Axiovert 200M (Zeiss).

Typically, a series of z-sections were taken using 0.5-mm intervals. All

images are shown as maximum intensity projections. Immunostaining of

the squashed larval CNS was carried out using an anti-phospho-H3 (S10)

antibody (1:1000; 06-570; Upstate Biotechnology) and DAPI (0.2 mg/ml;

Sigma) as described in Pimpinelli et al. (Pimpinelli et al., 2000) except that

the dissected CNSs were fixed in 45% acetic acid for 30 seconds and 60%

acetic acid for 30 seconds before squashing. For colchicine treatment, larval

CNSs were incubated with 3 mg/ml colchicine in 0.7% sodium chloride for

30 minutes before hypotonic shock in 0.5% sodium citrate. The anti-

phospho-H3 antibody faithfully highlighted mitotic cells in wild type and

under BAF-3A overexpression, as all phospho-H3 positive cells show c-

tubulin accumulation at centrosomes (97/98 in wild type and 78/78 under

BAF-3A overexpression). nhk-1E60 might affect H3 phosphorylation,

as some phospho-H3-positive cells (6/96) had no c-tubulin accumulation

at centrosomes. Images of fixed CNSs were captured under a

PlanApochromat lens (636, 1.4 NA; Zeiss) attached to an Axioplan 2

microscope (Zeiss) using a CCD camera (Orca; Hamamatsu) operated by

OpenLab (Improvision).

For live imaging, oocytes from ,1-day-old female flies matured with

males at 18 C̊ for 3–5 days were dissected in halocarbon oil (700, KMZ

Chemicals) on a coverslip. The morphology of dorsal appendages was

used for staging of oocytes, mature stage-14 oocytes were typically used

unless stated otherwise. Images were taken using a PlanApochromat lens

(636, 1.4 NA; Zeiss) attached to an Axiovert 200M microscope (Zeiss)

with a spinning disc confocal scan head (CSU-X1; Yokogawa) operated

and analysed using Volocity (PerkinElmer). Typically a series of z-

sections were taken covering the entire spindle volume using 0.8-mm

intervals. All images are shown as maximum intensity projections. The

contrast and brightness were adjusted uniformly across the entire field

without changing, removing or adding features of images. The

chromosome volume was measured using Volocity after the surface

was determined automatically and adjusted by manually fine-tuning the

pixel intensity threshold. Chi-square or Fisher’s exact test and a modified

Wilcoxon test were used for statistical analysis of categorical and

parametrical data, respectively.
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