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Eps8 controls Src- and FAK-dependent phenotypes in squamous
carcinoma cells
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ABSTRACT

Eps8 is an actin regulatory scaffold protein whose expression is

increased in squamous cell carcinoma (SCC) cells. It forms a

complex with both focal adhesion kinase (FAK, also known as

PTK2) and Src in SCC cells derived from skin carcinomas induced

by administration of the chemical DMBA followed by TPA (the

DMBA/TPA model). Here, we describe two new roles for Eps8.

Firstly, it controls the spatial distribution of active Src in a FAK-

dependent manner. Specifically, Eps8 participates in, and regulates,

a biochemical complex with Src and drives trafficking of Src to

autophagic structures that SCC cells use to cope with high levels of

active Src when FAK is absent. Secondly, when FAK is expressed in

SCC cells, thereby meaning active Src becomes tethered at focal

adhesion complexes, Eps8 is also recruited to focal adhesions and

is required for FAK-dependent polarization and invasion. Therefore,

Eps8 is a crucial mediator of Src- and FAK-regulated processes; it

participates in specific biochemical complexes and promotes actin

re-arrangements that determine the spatial localization of Src, and

modulates the functions of Src and FAK during invasive migration.

KEY WORDS: Eps8, FAK, Invasion, Autophagy, Src, Actin

INTRODUCTION
Epidermal growth factor receptor kinase substrate 8 (Eps8) was

originally identified as a substrate for receptor tyrosine kinases,

including epidermal growth factor receptor (EGFR), fibroblast

growth factor receptor (FGFR), platelet-derived growth factor

receptor (PDGFR) and ErbB-2 (Fazioli et al., 1993). Through

direct binding of receptor tyrosine kinases, Eps8 is involved in

Rac signaling and receptor endocytosis (Auciello et al., 2013;

Lanzetti et al., 2000). Additionally, Eps8 is a direct binding

partner and phosphorylation target of the Src non-receptor

tyrosine kinase (Cunningham et al., 2013; Maa et al., 1999).

Eps8 exists in two isoforms with molecular masses of 68 kDa

and 97 kDa that are proposed to be alternative splice isoforms or

proteolytic products (Fazioli et al., 1993; Maa et al., 1999),

although their individual functions remain poorly characterized

with most studies referring mainly to the 97-kDa isoform.

Eps8 consists of an N-terminal phosphotyrosine-binding (PTB)

domain, an SH3 domain and a C-terminal effector domain,

through which Eps8 is thought to direct actin regulatory

functions, such as capping barbed ends and promoting bundling

(Disanza et al., 2004; Disanza et al., 2006; Hertzog et al., 2010).

Eps8 binds the adaptor protein Abi-1 through its SH3 domain,

releasing autoinhibitory binding within Eps8 (Disanza et al.,

2004) and promoting actin capping. In addition, the role of Eps8

on stimulation of the Rac signaling pathway is mediated by the

formation of a tri-complex consisting of Eps8, Abi-1 and Sos-1

(Innocenti et al., 2003; Scita et al., 1999).

Biologically, Eps8 regulates cell protrusions (Welsch et al.,

2007), migration of dendritic cells (Frittoli et al., 2011), and

morphogenesis of intestinal cells and microvilli (Croce et al.,

2004; Zwaenepoel et al., 2012). In addition, Eps8 regulates

stereocilia function and length, and Eps82/2 mice are deaf

(Manor et al., 2011; Olt et al., 2014; Zampini et al., 2011). This

role of Eps8 in stereocilia function is supported by the description

of a rare human germinal Eps8 mutation leading to hearing

impairment (Behlouli et al., 2014). Eps8 expression is increased

in several different cancer types, such as pancreatic cancer and

oral squamous cell carcinoma (Chu et al., 2012; Welsch et al.,

2007; Yap et al., 2009). It is proposed to play a role in squamous

carcinogenesis and elevated Eps8 expression correlates with poor

survival of cervical cancer patients (Chen et al., 2008; Wang

et al., 2009). The 97-kDa isoform of Eps8 has been variously

linked to proliferation, migration and oncogenic transformation

(Leu et al., 2004; Liu et al., 2010; Maa et al., 2001; Maa et al.,

2007), implying that the roles of Eps8 role in cancer cell

phenotypes is complex and might be dependent on context.

Here, we have addressed the role of Eps8 in control of FAK-

(also known as PTK2) and Src-dependent phenotypes in a well-

defined cancer cell system. This is because we previously found

that: (1) Eps8 is hugely upregulated in squamous cell carcinoma

(SCC) cells derived from skin carcinomas induced by

administration of the chemicals 7,12-dimethylbenz(a)anthracene

(DMBA) followed by 12-O-tetradecanoylphorbol-13-acetate)

(TPA) [the DMBA/TPA model; driven by mutated oncogenic

H-Ras (Quintanilla et al., 1986)] when compared to normal

keratinocytes and in human SCCs, and (2) it associates with

both FAK and active Src in SCC cells. In previous work, we

found that expression of FAK was also enhanced during SCC

progression (Agochiya et al., 1999), and that genetic deletion

of fak suppressed tumorigenesis, particularly progression to
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malignant carcinoma in the DMBA/TPA model (McLean et al.,
2004). Moreover, we have shown that FAK-dependent cancer cell

phenotypes are associated with polarization and directional
migration that require the scaffolding function of FAK,

including the binding to actin regulatory proteins, such as Arp3
and RACK1 (Serrels et al., 2010; Serrels et al., 2007). In FAK-

deficient SCC cells, we have also shown that active Src (and
other FAK-binding tyrosine kinases such as Ret) are targeted

Fig. 1. See next page for legend.
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away from peripheral focal adhesions into actin-associated

intracellular puncta containing autophagy regulators, permitting
FAK-deficient cells to use non-classical autophagic mechanisms
to cope with high levels of unregulated active Src in the absence

of its ‘tethering partner’ at focal adhesions (Sandilands et al.,
2012a; Sandilands et al., 2012b).

We describe two new roles for Eps8: (1) when FAK is absent,
Eps8 participates in a biochemical complex that controls the

targeting of Src to autophagic structures, probably through effects
on associated actin re-arrangements, and (2) when FAK is present
(and co-upregulated with Eps8), Eps8 and FAK form a complex

that is required for Src- and FAK-dependent cancer cell invasion
in vitro.

RESULTS
Eps8 expression is increased in SCC cells
We found that Eps8 expression (both isoforms) was elevated in

SCC cells derived from the DMBA/TPA model of chemical
carcinogenesis (SCC 1 and SCC 2 cells; Fig. 1A) when compared
to primary keratinocytes isolated from mouse tails (as described
in Materials and Methods). Two malignant SCC subclones,

derived from one of the SCC cell lines (SCC 1; subclones 1-1
and 1-2) expressed much higher Eps8 levels than primary
keratinocytes. Although the SCC 1 cell line expressed both

isoforms of Eps8, the individual subclones predominantly
expressed one or the other of the two isoforms; specifically,
SCC 1-2 expressed the 68-kDa form, whereas SCC 1-1 expressed

the 97-kDa form, although the functional significance of this
difference is unknown. The SCC 2 cell line expressed both
isoforms to a similar extent (Fig. 1A). To rule out variability
between keratinocytes, we also compared Eps8 expression in

SCC 2 to eight different isolates of primary keratinocytes

(keratinocytes 1–8). The SCC 2 cell line expressed substantially
higher Eps8 when compared to all primary keratinocyte isolates

(Fig. 1B). As Eps8 is reported to be increased in oral SCC (Chu
et al., 2012; Yap et al., 2009), we next investigated whether Eps8
expression levels were increased in human cutaneous squamous
cell carcinoma cells. We tested three cell lines from patients with

metastatic SCC (Fig. 1C,D, labeled Met), two from patients who
had previously received organ transplants (Fig. 1C,D, labeled T)
and so were immune suppressed, and four from patients with

sporadic primary SCC (Fig. 1C,D, labeled IC). Normal human
keratinocytes (NHKs) served as normal counterparts for the
human cell lines (Watt et al., 2011). In eight out of nine human

cell lines, Eps8 expression was enhanced when compared to
NHKs (Fig. 1C). All human SCC cell lines predominantly
expressed the 97-kDa form of Eps8. Enhanced Eps8 expression

can largely be explained by increased transcription: three out of
four mouse and eight out of nine human SCC cell lines showed
increased Eps8 mRNA compared to primary keratinocytes or
NHKs, respectively. One cell line (IC 15) had slightly decreased

Eps8 mRNA expression levels, and that was reflected in no
visible increase in the steady-state level of Eps8 protein
(Fig. 1D). We also confirmed that, although there was general

co-upregulation of Eps8 and FAK, their elevated expression was
not inter-dependent as was proposed previously (Maa et al.,
2007). Reduction of Eps8 by stable or transient knockdown had

no effect on FAK expression (Fig. 1E), and genetic deletion of
FAK did not influence Eps8 levels in SCC cells (Fig. 1E,F).

These data show that Eps8 expression is generally elevated in

SCC cells compared to normal keratinocytes and is independently
co-overexpressed with FAK, which is also increased in DMBA/
TPA-induced murine SCC cells and in human SCC cells
(Agochiya et al., 1999; Frame et al., 2010; McLean et al., 2004).

Eps8 interacts with FAK in SCC cells at focal adhesions
We identified Eps8 as a potential binding partner of FAK in a

proteomic screen (data not shown). This interaction was
confirmed by co-immunoprecipitation (using either anti-Eps8 or
anti-FAK as primary antibody) in SCC cells that were wild-type

(WT) for FAK. These are cells in which WT FAK is re-expressed
to endogenous levels in FAK2/2 SCC cells from which the gene
encoding endogenous FAK had undergone prior deletion by Cre-
mediated recombination of a floxed-fak allele [as we have

described previously (Sandilands et al., 2012a; Serrels et al.,
2010)]. Confirming FAK deficiency, the 125-kDa species
identified as FAK was absent from Eps8 immunoprecipitations

of lysates of FAK2/2 SCC cells (Fig. 1F). We noted that both
Eps8 isoforms (97 kDa and 68 kDa) interacted with FAK. To
investigate whether Eps8 and FAK were both present at focal

adhesions, we isolated these structures from SCC FAK WT and
FAK2/2 cells using hydrodynamic force (as described in the
Materials and Methods). Residual adhesion structures were

confirmed by staining with the focal adhesion protein paxillin
(Fig. 1G, left panels, arrows), and FAK and Eps8 were both
present with 100% colocalization (Fig. 1G, right panels, arrows;
supplementary material Fig. S1A). To examine whether or not

Eps8 was present at nascent focal adhesions, FAK WT and
FAK2/2 SCC cells were treated with blebbistatin – an inhibitor of
cellular contractility (Straight et al., 2003; Zhang and Rao, 2005)

– which reduced the size of focal adhesions as expected
(supplementary material Fig. S1B). In blebbistatin-treated SCC
FAK WT cells, Eps8 appeared to be colocalized with FAK

(supplementary material Fig. S1B, left panel) and active Src

Fig. 1. Eps8 expression is upregulated in SCCs and interacts with FAK.
(A) Primary keratinocytes were isolated from mouse tails, and Eps8
expression was compared to a number of SCC lines by western blotting
using anti-Eps8 antibody. Anti-b-actin (middle panel) and anti-GAPDH (lower
panel) antibodies were used as loading controls. (B) Eps8 expression was
compared between SCC cell line 2 (SCC 2) and independent keratinocyte
cultures by western blotting using anti-Eps8 antibody (upper panel). Anti-b-
actin was used as a loading control (lower panel). (C) Eps8 expression was
compared between SCC 2, human SCC cell lines and a human NHK control
cell line by western blotting using anti-Eps8 antibody (middle panel). Met,
metastatic SCC lines; T, SCC lines from patients who had previously
received organ transplants; IC, SCC lines from patients with sporadic primary
SCC. FAK expression was analyzed employing anti-FAK antibody (upper
panel) and anti-b-actin was used as a loading control (lower panel).
(D) Relative Eps8 mRNA expression in mouse and human SCC cell lines
was analyzed by qRT-PCR using the DDCt method. GAPDH was used as a
control for differences in cDNA input. Results are mean6s.d. *P,0.01;
#P,0.05 (Student’s t-test). (E) FAK expression upon knockdown of
endogenous Eps8 by shRNA (shEps8 E lanes; C lanes show control shRNA)
or two independent siRNAs (siEps8 #1 and #2; siC, control siRNA) was
analyzed using anti-FAK antibody (upper panel). Eps8 knockdown was
confirmed by using anti-Eps8 antibody (middle panel) and anti-GAPDH was
used as a loading control (lower panel). (F) FAK or Eps8 were
immunoprecipitated (IP) from FAK WT and FAK2/2 cell lysates using anti-
FAK antibody conjugated to agarose (clone 4.47) (left panel) or anti-Eps8
antibody (right panel), followed by western blot analysis with anti-FAK and
anti-Eps8 antibodies (lower panels). Eps8 immunoblotting detects both
known isoforms with molecular masses of 97 kDa and 68 kDa. Anti-b-actin
was used as a loading control. (G) Focal adhesions were isolated from FAK
WTand FAK2/2 cells using hydrodynamic force. Left panels: focal adhesions
(arrows) were stained with anti-FAK and anti-paxillin antibodies. Right
panels: focal adhesions (solid arrows) were stained with anti-FAK and anti-
Eps8. Scale bars: 20 mm.
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(phosphorylated at Y416; p-Src, supplementary material Fig. S1B,
right panel) at small, presumed nascent, adhesions. The adhesion

colocalization was confirmed by total internal reflection

fluorescence (TIRF) microscopy (supplementary material Fig.
S1C–E). Taken together, these data show that FAK and Eps8 form

a complex, and colocalize, at focal adhesion sites in SCC cells.

Fig. 2. See next page for legend.
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Eps8 is required for FAK-dependent actin-associated
cancer phenotypes
We next investigated the role of Eps8 in FAK-mediated cancer-
associated phenotypes, such as migration, polarization and
invasion through Matrigel. Two independent small interfering
RNAs (siRNAs) targeting Eps8 (denoted siEps8 #1 and #2) were

used to robustly knockdown endogenous Eps8 expression
(Fig. 2A). We analyzed wound closure by assessing the
migration of cells plated on fibronectin, having first ruled out

that Eps8 depletion did not obviously affect cell proliferation in
two-dimensional culture (supplementary material Fig. S2A,B).
SCC cells required FAK for optimal wound closure, and this was

also suppressed by Eps8 knockdown in FAK WT cells (Fig. 2B).
Wound closure of FAK-deficient cells was not further suppressed
by Eps8 knockdown, suggesting that their effects are linked.

Next, we addressed the role of Eps8 in cell polarization
towards a wound in a confluent monolayer, and in permitting
cancer cell invasion into, and through, Matrigel in response
to serum used as a chemoattractant. Like FAK, Eps8 was

required for cell polarization on fibronectin, as measured by the

Fig. 2. Eps8 regulates polarized cell migration and invasion. FAK WT
and FAK2/2 cells were transiently transfected with two independent Eps8
siRNAs (siEps8 #1 and #2; siC, control siRNA) and (A) lysed 48 h post
transfection and Eps8 expression determined by western blotting using anti-
Eps8 antibody. Anti-b-actin was used as a loading control. (B) Confluent
monolayers of cells plated on fibronectin were wounded using a pipette tip.
Wound closure was quantified at 15 h post wounding. Results are
mean6s.e.m. *P,0.01 (Student’s t-test). (C) Confluent monolayers of cells
plated on fibronectin were wounded using a pipette tip, fixed 3 h later and
stained with anti-GM130 antibody (to label the Golgi) and TRITC–phalloidin.
Polarization was scored using the orientation of the Golgi towards the wound
edge. Solid arrows indicate polarized cells. Dashed arrows indicate
unpolarized cells. Scale bars: 20 mm. Results are mean6s.d. *P,0.001
(Student’s t-test). (D) Cells were seeded on growth-factor-reduced Matrigel in
serum-free conditions. Invasion towards a serum gradient (the distance of
the horizontal z-section from the top of Matrigel is given) was visualized after
72 h by staining the cells with calcein. Results are mean6s.e.m. *P,0.001
(Student’s t-test). Quantification is representative of at least three
independent experiments in all cases.

Fig. 3. Eps8 binds to the C-
terminus of FAK. (A–C) Identification
of the Eps8-binding sequence in FAK.
(A) Overlapping 25-mer peptides
spanning the C-terminus of FAK
(amino acids 981–1053) were spotted
onto nitrocellulose, incubated with
recombinant Eps8 and probed with
anti-Eps8 antibody. (B) The core
binding sequences in peptide a (top
panel) and peptide b (bottom panel)
were identified by alanine scanning
where one amino acid was mutated at
a time. (C) The sequences of the 25-
mer peptides (peptide a and peptide
b) used for the alanine scanning are
underlined and the identified core
binding sites is marked in bold red.
(D) FAK was immunoprecipitated (IP)
from FAK WT, FAK K1001A/K1003A
and FAK2/2 cell lysates using anti-
FAK antibody conjugated to agarose
(clone 4.47), followed by western blot
analysis with anti-FAK, anti-Eps8 and
anti-p130Cas antibodies (lower
panels). Eps8 immunoblotting detects
both known isoforms with molecular
masses of 97 kDa and 68 kDa. Anti-
b-actin antibody was used as a
loading control. (E) Invasion assay.
SCC FAK WT, FAK K1001A/K1003A
and FAK2/2 cells were seeded on
growth factor reduced Matrigel in
serum-free conditions. Invasion
towards serum gradient was
visualized after 72 h by staining the
cells with calcein. Results are
mean6s.e.m. *P#0.01 (Student’s t-
test). Quantification is representative
of three independent experiments.
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Fig. 4. See next page for legend.
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orientation of the Golgi (stained with anti-GM130) towards the
wound (Fig. 2C) (Serrels et al., 2010). As we described

previously, FAK deficiency inhibits invasion through Matrigel,
whereas FAK-expressing SCCs efficiently migrate through
Matrigel (Serrels et al., 2012). Invasion was also strongly

inhibited (more than fivefold) upon depletion of endogenous
Eps8 in SCC cells (Fig. 2D). Similar results were obtained with
stable knockdown of Eps8 by short hairpin RNA (shRNA)

(supplementary material Fig. S2F–H). Thus, FAK and Eps8 are
both absolutely required for polarization and invasive migration.

In order to confirm whether the interaction between FAK and
Eps8, and the biological consequences of their depletion, were

dependent on their direct interaction, we mapped the Eps8-binding
site in FAK by peptide array binding analysis (Fig. 3; we described
the method previously in Serrels et al., 2010; Serrels et al., 2007).

Briefly, overlapping 25-mer peptides spanning the FAK sequence
were spotted onto nitrocellulose, followed by incubation with
recombinant Eps8. The peptide array was washed extensively,

incubated with anti-Eps8 antibody and then subjected to
immunoblotting. Eps8 bound to the focal-adhesion-targeting
(FAT) domain of FAK, spanning the region of the amino acids

981–1053 (Fig. 3A). For the identification of the amino acids in
FAK responsible for binding Eps8, overlapping 25-mers had one
amino acid mutated at a time to alanine. We identified that peptide
‘a’ (amino acids 986–1010) contained the binding amino acids

K1001, K1003 and A1005, whereas peptide ‘b’ (amino acids
1029–1053) contained the binding amino acid K1045 (Fig. 3B,C).
We made several combinations of mutations, and showed that one

of these, FAK K1001A/K1003A, in which the lysine residues at
positions 1001 and 1003 were changed to alanine residues, caused
reduced binding of both isoforms of Eps8 to FAK (Fig. 3D).

However, the interaction between FAK and p130Cas (also known
as BCAR1), which binds FAK at different residues in the proline-
rich regions of FAK [P715, P718, P878 and P881 (Harte et al.,
1996)] was unaffected. When binding of Eps8 to FAK was

suppressed by expression of the FAK K1001A/K1003A mutant in
otherwise FAK-deficient cells, we found that SCC invasion
through Matrigel was significantly impaired (Fig. 3E). This is

consistent with an important role for the FAK–Eps8 complex in
mediating cancer cell invasion as measured in vitro.

Eps8 interacts with active Src at adhesions and
autophagosomes
Next, we addressed whether Eps8 also interacted with Src in SCC

cells. Both Eps8 isoforms bound to active Src (phosphorylated at

Y416; p-Src) in FAK WT and FAK2/2 cells, as shown by
reciprocal co-immunoprecipitations (Fig. 4A–C). Hence, the

complex between Eps8 and active Src did not depend on the
Eps8 interaction with FAK. Furthermore, whereas Eps8 and p-Src
localized in peripheral adhesion structures in FAK-expressing
SCC cells, Eps8 was also colocalized with p-Src in intracellular

puncta in FAK-deficient SCC cells (Fig. 4D). We recently
reported that active Src is trafficked from peripheral adhesions
into intracellular puncta that also contain autophagy proteins in

FAK-deficient cells, as a consequence of improper scaffolding
and tethering of highly active Src at focal adhesions (Sandilands
et al., 2012a). Hence, in SCC cells that do not express FAK, Eps8

is co-targeted with active Src to autophagosomal puncta (Fig. 4D,
left-hand image panels, dashed arrows). This was confirmed by
co-staining with the autophagosomal marker LC3B (also known

as MAP1LC3B) (Fig. 4D, right-hand image panels). Blebbistatin
treatment blocked the trafficking of active Src from focal
adhesions to autophagosomes (supplementary material Fig.
S1B, right panel), suggesting that actomyosin contractility was

required. As SCC cells express both the 68-kDa and 97-kDa Eps8
isoforms, we were able to address whether these differentially
regulated the trafficking of active Src to autophagosomes. To do

this, we tested the two subclones that expressed only one isoform,
namely SCC subclone 1-1 (97 kDa isoform) and SCC subclone 1-
2 (68 kDa isoform). Given that these subclones expressed FAK,

we induced autophagosomal trafficking of Src by suspending the
cells in PBS prior to cytospinning on to glass slides [as described
previously (Sandilands et al., 2012a)]. In both SCC subclones, p-

Src was present in intracellular puncta upon loss of cell–substrate
adhesion, demonstrating that either isoform of Eps8 was
sufficient to permit this intracellular trafficking of active Src
(Fig. 4E).

We also examined whether tyrosine phosphorylation of Eps8
mediated by Src family kinases might be linked to its subcellular
localization. We found that the tyrosine kinase inhibitor

Dasatinib [which effectively inhibits the activities of Src family
kinases (Lombardo et al., 2004)] suppressed Eps8 tyrosine
phosphorylation (supplementary material Fig. S3A) and the

internalization of Eps8 to intracellular puncta upon FAK
deletion, whereas the number of LC3B-staining puncta
remained unaltered (supplementary material Fig. S3B). These
results suggest that tyrosine phosphorylation of Eps8 correlates

with its co-recruitment with Src into autophagosomes, but not to
general autophagy in SCC cells.

Eps8 is required for efficient localization of active Src to
autophagosomes
We next investigated whether Eps8 plays a key role in the

trafficking of active Src to autophagosomes or whether it was co-
trafficked as a ‘passenger’. We used two independent siRNAs to
efficiently suppress expression of endogenous Eps8 as judged by

immunofluorescence and immunoblotting (Fig. 1E; Fig. 2A;
Fig. 5A). Knockdown of Eps8 in FAK WT SCC cells had no
effect on the localization of active Src, which remained at focal
adhesions (Fig. 5A, top panel, solid arrows). However, in FAK2/2

SCC cells, Eps8 knockdown significantly reduced the number of
Src-positive intracellular puncta (Fig. 5A, bottom panels, dashed
arrows). Active Src was now predominantly re-localized to focal

adhesions as indicated by co-staining with paxillin (Fig. 5A,
bottom panel, solid arrows and supplementary material Fig. S3C).
Similar results were obtained by shRNA-mediated stable

knockdown of Eps8 (supplementary material Fig. S3D,E).

Fig. 4. Src–Eps8 complexes localize to autophagosomes in the
absence of FAK. Eps8, Src or Src pY416 were immunoprecipitated (IP) from
FAK WT or FAK2/2 cell lysates using (A) anti-Eps8, (B) anti-Src or (C) anti-
Src pY416 antibodies followed by western blotting analysis with antibodies
as indicated (lower panels). Anti-b-actin antibody was used as a loading
control. (D) FAK WT and FAK2/2 cells were grown on glass coverslips, fixed
and stained using anti-Src pY416 and anti-Eps8 (left hand panels) or anti-
LC3B and anti-Eps8 (right hand panels). Solid arrows indicate focal
adhesions (upper panels) and dashed arrows indicate internalized active Src
or Eps8 (lower panels). Scale bars: 20 mm. Insets show a magnified view of
the boxed area. A quantification is shown below the images. Results are
mean6s.d. *P,0.001 (Student’s t-test). (E) SCC subclone 1-1 and subclone
1-2 cells were suspended in PBS for 1 h and cytospins were prepared and
stained for Src pY416 and DAPI. Solid arrows indicate focal adhesions
(upper panels) and dashed arrows indicate internalized active Src or Eps8
(lower panels). Results are mean6s.d. The quantifications are
representative of 100 cells from three independent experiments. Scale bars:
20 mm.
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Fig. 5. See next page for legend.
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Furthermore, we found that the biochemical complex between
active Src and LC3B in SCC FAK2/2 cells was reduced upon
stable knockdown of Eps8, providing biochemical evidence that

Eps8 function is required to induce the binding of Src to LC3B
during autophagic targeting of Src. Eps8 did not affect general
autophagic flux as judged by immunoblotting for LC3B (Fig. 5B),

including after chloroquine treatment (supplementary material Fig.
S4A,B). These results indicate that Eps8 is required for the
selective trafficking of active Src to autophagosomes.

Knockdown of Eps8 results in loss of actin changes
associated with Src
We previously reported that tyrosine-kinase-containing

autophagosomes are aligned with actin filaments, and colocalize
with what appears in the confocal microscope as actin ‘patches’ or
‘nodules’ [Fig. 5C, dashed arrows (Sandilands et al., 2012b)]. As

Eps8 is a known actin regulator, we found that the actin patches
were no longer visible, as judged by phalloidin staining, when we
induced transient knockdown of Eps8 by two independent siRNAs

(Fig. 5C, solid arrows) and compared to control (untransfected and
transfected with non-targeting siRNA) FAK2/2 SCC cells, in
which internalized active Src colocalized with actin patches

(Fig. 5C, dashed arrows). This demonstrates that Eps8 controls
actin re-arrangements that are associated with Src-containing
autophagosomes, but does not affect general autophagosomes as
judged by the continued presence of LC3B-positive puncta upon

Eps8 knockdown (supplementary material Fig. S4C).
To test this further, we set out to investigate whether trafficking

of Src to autophagosomes was dependent on the known actin

regulatory function of Eps8, mediated by its actin-binding
domains. SCC FAK2/2 cells in which Eps8 had been stably
knocked down using shRNA were reconstituted with either full

length Eps8 (GFP–Eps8 1–821) or Eps8 lacking the SH3 and the
actin-binding domains (GFP–Eps8 1–535) (Welsch et al., 2010;
Fig. 6). Full-length GFP–Eps8 localized to intracellular puncta and
restored the localization of active Src to these in a significant

number of cells, despite restitution of the GFP–Eps8 fusion protein
to only low level when compared to endogenous Eps8 (Fig. 6A,B).
In contrast, the Eps8 mutant lacking the SH3 and actin-binding

domain displayed diffuse cytoplasmic localization, and was
inefficient in restoring active Src localization to autophagic
puncta, despite substantial overexpression when compared with

GFP–Eps8 1–821 (Fig. 6A; note the C-terminal Eps8 epitope
recognized by the Eps8 antibody was lost from the GFP–Eps8
1–535 (Fig. 6B, upper panel), and we detected the endogenous

fusion protein with anti-GFP antibody (Fig. 6B; lower panel).

These data imply that the trafficking of active Src to
autophagosomes is controlled by the actin regulatory function of

Eps8, consistent with loss of rearranged actin when Eps8 is
knocked down (Fig. 5).

Overall, our data indicate a key role for Eps8 as a component
of Src and FAK biochemical complexes that control the FAK-

dependent actin-associated cancer phenotypes of polarization and
invasive migration. However, although Eps8 is clearly an
accessory protein for FAK at focal adhesions, it is also an

important mediator of the spatial targeting of active Src from
focal adhesions to autophagosomes upon FAK deletion or
induction of adhesion stress. This identifies Eps8 as a mediator

of integrin effector signaling and FAK-dependent downstream
phenotypes in SCC cancer cells, likely by controlling the actin
organization in the proximity of Src–Eps8 or FAK–Eps8

complexes.

DISCUSSION
Eps8 is a molecular scaffold that regulates actin by assembling

the complexes that control filament capping and bundling (Croce
et al., 2004; Disanza et al., 2004; Frittoli et al., 2011; Hertzog
et al., 2010). Through multi-protein complexes and signaling to

the Rho GTPases Rac and Cdc42, Eps8 also controls the
generation of membrane ruffles and filopodia, respectively
(Disanza et al., 2006; Goicoechea et al., 2006; Innocenti et al.,

2003). A number of studies have suggested that Eps8 expression
is altered in cancer (for examples, see Maa et al., 2007; Welsch
et al., 2007), and that it has putative roles in tumor cell

proliferation and migration. Its precise role in cancer initiation or
progression in mice has not been elucidated, largely because it
shares redundant biological functions with other family members,
namely Eps8L1, Eps8L2 and Eps8L3 (Fazioli et al., 1993). This

has meant that deletion of the gene encoding Eps8 has no effect
on murine embryonic development (Scita et al., 1999), whereas in
Caenorhabditis elegans, where there is only one Eps8 ortholog,

there is a clear developmental phenotype associated with
impaired apical morphogenesis in the developing intestine. This
is a result of an actin barbed-end capping dysfunction (Croce

et al., 2004).
We studied Eps8 in mouse and human SCCs by using cell lines

derived from: (1) DMBA/TPA (driven by mutated oncogenic H-
Ras) tumors in mice (that also harbored a floxed fak allele)

(McLean et al., 2004), and (2) patients presenting with either
spontaneous SCCs, metastases or transplantation-induced SCCs,
the latter of which were likely as a result of prolonged immune

suppression (Watt et al., 2011). We found unequivocally that
Eps8 gene product(s) are elevated in mouse SCC cell lines when
compared to normal keratinocytes, and in patient-derived

carcinomas, transplantation-induced SCCs and metastases. In
mouse SCC cell lines, expression of either one or both of the
prominent isoforms is increased. In patient-derived SCC cells, it

is predominantly the slower-migrating 97-kDa isoform that is
increased. The significance of selection of one or other for over-
representation is not known, nor is the difference between mouse
and human, although overexpression of the 97-kDa isoform of

Eps8 has recognized oncogenic transforming properties (Maa
et al., 2001). In keeping with our previous data (Agochiya et al.,
1999; McLean et al., 2004), FAK expression was also elevated

in mouse and human SCCs, particularly in transplant-induced
carcinomas and metastases.

We identified Eps8 in an interaction proteomics screen for SCC-

relevant FAK-binding partners, and observed co-immunoprecipitation.

Fig. 5. Eps8 is required for active Src localization to autophagosomes.
(A) FAK WT and FAK2/2 cells were transiently transfected with Eps8
siRNA (siEps8 #1 and #2; siControl, control siRNA), fixed and stained
with anti-Eps8 and anti-Src pY416 antibodies. The quantification is
representative of three independent experiments. Solid arrows indicate
focal adhesions. Dashed arrows indicate active Src in autophagosomes.
Scale bars: 20 mm. Results are mean6s.d. *P,0.01 (Student’s t-test).
(B) FAK2/2 SCC cells were infected with either Eps8 (shE) or non-
targeting (shC) shRNA and LC3B was immunoprecipitated (IP) from cell
lysates. Samples were subjected to western blot analysis using anti-Eps8
and anti-Src pY416 antibodies. (C) FAK2/2 cells were transiently
transfected with two independent Eps8 siRNAs, fixed and stained with anti-
Src pY416 antibody and TRITC–phalloidin. Solid arrows indicate active Src
localization at focal adhesions. Dashed arrows indicate active Src in
intracellular puncta. Scale bars: 20 mm. Insets show a magnified view of the
boxed area.
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Although it has been reported that Eps8 controls FAK expression
(Maa et al., 2007), we did not find any reciprocal inter-dependent
regulation in SCC cells; FAK deletion did not influence Eps8

expression and Eps8 depletion did not repress FAK expression.
Furthermore, in the human SCC cells lines IC 18 and IC 19, there
was evidence of increased Eps8 expression without elevated FAK.
Hence, we conclude Eps8 and FAK are molecular scaffolds whose

expression levels are generally co-elevated in SCC cells, although
their expression does not seem to be inter-dependent. However,
Eps8 and FAK bind to one another directly and are likely part of

larger multi-protein scaffolding complexes in cancer cells.
Eps8 depletion had similar effects on cancer-associated

phenotypes to those seen upon deletion of FAK in SCC cells
(Serrels et al., 2010), including impaired polarization and

Fig. 6. The actin binding region of Eps8 mediates Src trafficking to autophagosomes. SCC FAK2/2 cells, infected either with Eps8 (shE) or non-targeting
(shC) shRNA were transiently transfected with either full-length Eps8 (GFP–Eps8 1–821) or with Eps8 lacking both the SH3 domain and the C-terminal actin
binding region (GFP–Eps8 1–535). (A) Cells were fixed and stained with anti-Src pY416 antibody. The quantification is representative of five independent
experiments. Scale bars: 20 mm. Results are mean6s.d. *P,0.01 (Student’s t-test). (B) Cells were lysed and lysates were analyzed by western blotting analysis
with the indicated antibodies. Immunoblotting with b-actin served as a loading control.
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invasive migration, with there were no visible effects on random
cell migration (supplementary material Fig. S2C–E).

Furthermore, Eps8 depletion did not cause further impairment
over that caused by loss of FAK alone, suggesting that Eps8 and
FAK are promoting their cancer-associated processes by the same
molecular pathway. This is supported by the fact that impairment

of FAK binding to Eps8 inhibits invasion, implying that the
FAK–Eps8 complex is important in cancer cell phenotypes. The
effect of this complex is probably mediated through actin-

regulatory scaffolding complexes at specific subcellular locale,
most likely at integrin-associated focal adhesions, where both
FAK and Eps8 reside in SCC cells. We conclude that although

Eps8 shares overlapping functions with other family members
during mammalian development, its role in cancer cell
polarization and invasive migration cannot apparently be

replaced by other Eps8 family members. Although it has been
reported that Eps8 regulates colon cancer growth (Chen et al.,
2008; Maa et al., 2007), we did not find proliferation to be
dependent on Eps8 in SCCs from mouse or human tumors.

We recently described that highly active Src is removed from
focal adhesions and transported into intracellular puncta when
FAK is absent from SCC cells (Sandilands et al., 2012a).

Essentially, Src [and other highly active FAK-binding tyrosine
kinases, including Ret (Sandilands et al., 2012b)], are targeted
from focal adhesions into intracellular puncta that contain

multiple autophagy proteins, and active Src is restored at the
cell periphery upon suppression of autophagy (Sandilands et al.,
2012a; Sandilands et al., 2012b). We had noticed that

phosphorylated Ret present in the same intracellular puncta
showed a striking colocalization with actin-rich patches. These
appeared to be aligned with bundled actin filaments that were
tethered into focal adhesions (Sandilands et al., 2012b). However,

up to this point we had not identified any actin regulatory proteins
that were co-recruited to the Src- and Ret-containing
autophagosomes, or that were responsible for mediating actin

reorganization leading to formation of the actin-rich patches. In
the present work, we found that Eps8 was a FAK-binding protein
that was co-recruited with p-Src into autophagic intracellular

puncta, and that siRNA- or shRNA-mediated depletion of Eps8
was essential for the efficient intracellular targeting of Src and the
formation of a Src–LC3B complex when FAK was absent. When
Eps8 was depleted, the polymerized actin-rich patches were no

longer visible by phalloidin staining. This identifies a new type of
actin structure that is regulated by Eps8, and which is linked to
the trafficking of active Src from focal adhesions to intracellular

autophagic puncta. Furthermore, both Eps8 isoforms were able to
mediate trafficking of Src to intracellular puncta, suggesting that
the C-terminal actin-binding effector domain, which is present in

both Eps8 isoforms, is required. In keeping with this,
overexpression of an Eps8 mutant lacking both the SH3 domain
and the actin-binding effector region was unable to rescue the

trafficking of active Src to autophagosomes. Eps8 has previously
been found in lysosomes and is subject to chaperone-mediated
autophagy in cancer cells (Welsch et al., 2010), suggesting that its
cellular levels also need to be tightly regulated by lysosomal

degradation pathways.
In summary, Eps8 is independently co-upregulated with FAK

during the development of SCC both in human and mouse. Eps8

and FAK participate in a complex at focal adhesions that
promotes actin-associated cancer phenotypes, including direction
sensing and invasive migration. FAK is required for optimal

targeting of Eps8 to, or its retention at, focal adhesion structures,

and Eps8 binds to the focal-adhesion-targeting sequences of
FAK. However, when FAK is absent, Eps8 is instead co-recruited

with active Src to intracellular puncta that contain autophagy
proteins, which we have previously shown SCC cancer cells use
to deal with highly active Src that is not tethered to FAK. Our
work identifies a new role for the actin regulator Eps8 in the

intracellular targeting of active Src, most likely via the regulation
of actin patches associated with autophagosomes. This provides
another example of a role for Eps8 as a key mediator of the fate of

intracellular kinases, adding to its role in signaling and trafficking
of receptor tyrosine kinases, like EGFR and FGFR (Auciello
et al., 2013; Fazioli et al., 1993).

MATERIALS AND METHODS
Antibodies, inhibitors and DNA constructs
Antibodies used were as follows: anti-Eps8, anti-paxillin, anti-GM130

and anti-p130Cas antibodies (BD Transduction Laboratories, NJ), anti-

FAK, anti-pSrc Y416, anti-Src (clone 36D10), anti-LC3B, anti-GAPDH,

anti-pPaxillin Y118 and anti-b-actin antibodies (Cell Signaling

Technologies, Danvers, MA), as well as anti-FAK antibody conjugated

to agarose (clone 4.47) (Millipore, Billerica, MA) and anti-LC3B for

immunoprecipitations (MBL, Woburn, MA). The anti-TagCGYFP

antibody was purchased from Evrogen (Cambridge, UK). TRITC–

phalloidin was purchased from Life Technologies (Paisley, UK).

Horseradish-peroxidase-conjugated secondary antibodies against rabbit

or mouse IgG were purchased from Cell Signaling Technologies.

Dasatinib was obtained from Bristol Myers Squibb (Princeton, NJ).

The pEGFP-Eps8 1–821 and pEGFP-Eps8 1–535 constructs were a

generous gift from Giorgio Scita (FIRC Institute of Molecular Oncology,

Milan, Italy).

Generation of FAK mutant constructs
FAK mutants were generated by site directed mutagenesis using

PFU Ultra Hotstart DNA polymerase (Stratagene, Amsterdam, The

Netherlands) and the following primers (mutated base pairs are

underlined): K1001A/K1003A (forward 59-CTGAGCTCATTAACGC-

GATGGCGCTGGCCCAGCAGTAC- 39, reverse 59- GTACTGCTG-

GGCCAGCGCCATCGCGTTAATGAGCTCAG- 39). After DpnI

digestion for 1 h at 37 C̊ chemically competent TOP10 bacteria were

transformed.

Cell culture and transfection
FAK-deficient SCC cell lines were generated as described previously

(Serrels et al., 2010). SCCs were maintained in Glasgow minimal

essential medium (MEM) containing 10% fetal calf serum (FCS), 2 mM

L-glutamine, non-essential amino acids, sodium pyruvate and MEM

vitamins at 37 C̊ and under 5% CO2. SCC FAK WT cells were

maintained in 1 mg/ml hygromycin B. Cell lines with stable knockdown

of Eps8 were maintained in 1 mg/ml puromycin. Primary keratinocytes

were isolated from K14-Cre mouse tails as follows: skin was removed

from the tails of adult mice and incubated in 4 mg/ml dispase in PBS for

2 h at 37 C̊. The epidermis was then isolated and cut into small pieces

prior incubation in trypsin for 10 min at 37 C̊. DMEM with 20% FCS

was added and the cells were filtered through a 70 mm nylon cell strainer.

Cells were subsequently cultured in DMEM supplemented with 10% FCS

and 2 mM L-glutamine. All animal experiments were performed

according to approved guidelines.

Human SCC cell lines were described previously (Watt et al., 2011).

Briefly, cells were cultured on Mitomycin C growth arrested 3T3

fibroblasts which were removed by differential trypsinization. Cells

were maintained in RM+ medium [Dulbecco’s modified Eagle’s

medium (DMEM) with Ham’s F12, 10% FCS, 10 ng/ml EGF, 5 mg/

ml insulin, 400 ng/ml hydrocortisone, 5 mg/ml transferrin, 8.4 ng/ml

cholera toxin and 0.0177 nM lyothyronine]. All human samples were

collected after informed, written consent and in accordance with the

Helsinki guidelines.
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siRNAs and shRNAs
Eps8 siRNA (catalog number J-045154-11, 59-ACGACUUUGU-

GGCGAGGAA-39; A-045154-16, 59- UUGGUAUAUGUAAUUUA-

UC-39) or scrambled siRNA (catalog number D-001810-10) were

purchased from Dharmacon, Loughborough, UK. FAK WT or FAK2/2

SCC cells were transiently transfected using HiPerFect (Qiagen,

Manchester, UK), according to the manufacturer’s protocol with a final

concentration of 40 nM siRNA. Cells were analyzed at 48–96 h post

transfection.

SCC FAK WT and FAK2/2 cells with stable Eps8 knockdown were

generated using a lentiviral shRNA Eps8 construct (catalog number

RMM4534; Thermo Scientific, Loughborough, UK). Briefly, HEK293

cells were transfected with Eps8 shRNA along with viral packaging

constructs using Lipofectamine 2000 (Life Technologies, Paisley, UK).

Virus-containing medium was collected twice over a 48-h period, filtered

and diluted 1:1 with fresh SCC complete growth medium supplemented

with 5 mg/ml polybrene (Millipore, Billerica, MA, USA). Cells were

selected for Eps8 shRNA expression using puromycin (Life

Technologies, Paisley, UK) at a final concentration of 1 mg/ml.

Mapping of the Eps8-binding site in FAK
The Eps8-binding site in FAK was identified using peptide arrays as

published previously (Serrels et al., 2010; Serrels et al., 2007). Briefly,

overlapping 25-mer peptides of FAK were spotted onto nitrocellulose and

incubated with recombinant Eps8 (Abnova, Buckingham, UK). After

extensive washes, the array was incubated with anti-Eps8 antibody and

then subjected to western blotting. For the identification of core amino

acids, overlapping 25-mer peptides with one amino acid mutated at a

time were used.

qRT-PCR
RNA from cells was isolated using the RNeasy Mini Kit (Qiagen,

Manchester, UK). 500 ng of total RNA was reverse-transcribed using the

SuperScript First-Strand cDNA synthesis kit (Life Technology, Paisley,

UK). For the PCR amplification in a Step One Plus real-time PCR system

(Life Technology, Paisley, UK), 25 ng cDNA were used in a total

reaction mix of 20 ml containing 10 ml Sensi Fast SYBR Green Hi-Rox

(Bioline, London, UK) as well as 400 nM forward and reverse primer.

GAPDH was used to control for differences in cDNA input. The

following primers were used: mouse Eps8 (forward 59-GTCAACT-

CCTAATCACCAAGTAG-39, reverse 59-CTGTTCCTCGCCACAAAG-

39), mouse GAPDH (forward 59-CGTCCCGTAGACAAAATGGT-39,

reverse 59-TTGATGGCAACAATCTCCAC-39), human Eps8 (forward

59-GCCAACTTCTAATCGCCATA-39, reverse 59-TCACTGTTGTTC-

CTTGCTAC-39) and human GAPDH (forward 59-CCCCGGTTTCTA-

TAAATTGAGC-39, reverse 59-CACCTTCCCCATGGTGTCT-39).

Relative expression was calculated according to the DDCt

quantification method. Each sample within an experiment was

performed in triplicate and the experiment was carried out three times.

Immunoblotting and immunoprecipitation
Cells were washed twice in ice-cold PBS and then lysed in RIPA buffer

(50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.1% SDS

and 0.5% sodium deoxycholate) or in NP40 lysis buffer (50 mM Tris-

HCl pH 8.0, 150 mM NaCl, 0.5% NP40) supplemented with PhosStop

and Complete Ultra Protease Inhibitor tablets (Roche, Welwyn Garden

City, UK). Lysates were cleared by centrifugation at 9300 g for 15 min

and analyzed by western blotting. Protein concentration was calculated

using a BCA protein assay kit (Thermo Scientific, Loughborough, UK).

For immunoprecipitation, 1 mg cell lysates were incubated with 2 mg of

unconjugated or 10 ml of agarose-conjugated antibodies at 4 C̊ overnight

with agitation. Unconjugated antibody samples were incubated with

10 ml of Protein-A–agarose or Protein-G–agarose for 1 h at 4 C̊. Beads

were washed three times in lysis buffer and once in 0.6 M LiCl,

resuspended in 20 ml 26 sample buffer (130 mM Tris-HCl pH 6.8, 20%

glycerol, 5% SDS, 8% b-mercaptoethanol and Bromphenol Blue) and

heated for 5 min at 95 C̊. Samples were then subjected to SDS-PAGE

analysis using the Bio-Rad TGX pre-cast gel system. Proteins were

immunoblotted using the Bio-Rad Trans-blot Turbo transfer system,

blocked in 5% BSA in TBS supplemented with 1% Tween-20 (TBST),

and incubated with primary antibody overnight at 4 C̊. Blots were washed

three times in TBST, incubated with horseradish-peroxidase-conjugated

secondary antibody for 45 min at room temperature, washed as above,

developed using Clarity Western ECL Substrate (Bio-Rad, Hemel

Hempstead, UK) and imaged using a Bio-Rad ChemiDoc MP Imaging

System (Bio-Rad, Hemel Hempstead, UK).

Immunofluorescence microscopy and image analysis
Cells were grown on glass coverslips for 24 h and washed once in TBS

prior to fixation (3.7% formaldehyde, 100 mM PIPES pH 6.8, 10 mM

EGTA, 1 mM MgCl2 and 0.2% Triton X-100) for 10 min. Cells were

subsequently washed twice in TBS supplemented with 0.1% Triton X-

100 (TBStx) and blocked in TBStx block (TBStx supplemented with

3% BSA). Fixed cells were incubated with primary antibodies in TBStx

block overnight at 4 C̊, followed by 36 5 min washes in TBStx, and

incubated with Alexa-Fluor-labeled secondary antibodies diluted 1:200

in TBStx block (Life Technologies, Paisley, UK) and washed as before

prior to being mounted in Vectashield-mounting medium containing

DAPI (Vector Labs, Peterborough, UK). Cells were imaged using a

FV1000 Confocal microscope (Olympus, Southend-on-Sea, UK). For

the total internal reflection fluorescence (TIRF) microscopy, an

inverted IX81 microscope (Olympus, Southend-on-Sea, UK) with a

1506 1.45 NA UAPON TIRF objective using 491 nm and 561 nm

excitation lines was used. Colocalization was analyzed using the

ImageJ plugin JaCoP (Bolte and Cordelières, 2006). For quantification

of internalized p-Src or Eps8, 100 cells from three independent

experiments were counted.

Focal adhesion isolation
Focal adhesion isolation was performed following the protocol described

in Kuo et al. (Kuo et al., 2012). Briefly, cells were rinsed with PBS and

incubated with TEA buffer (0.2 M triethanolamine, pH 8.0) for 5 min. To

apply hydrodynamic force, the cells were rinsed with PBS for 10 s using

a Waterpik dental flosser set at 2 (Waterpik, Reigate, UK). After another

wash with PBS, the remaining attached focal adhesions were fixed for

immunofluorescence analysis.

Cell migration assays
Cell migration was analyzed as described previously (Serrels et al.,

2012). 106 cells were grown on fibronectin-coated six-well plates for

15 h until cells were confluent. The cell monolayer was wounded with a

pipette tip. Wound closure was monitored with an Olympus ScanR/CellR

microscope (Olympus, Essex, UK). Images were taken every 15 min for

15 h and wound closure was analyzed using TScratch (Gebäck et al.,

2009). The experiment was carried out three times.

Cell polarization assays
Cell polarization assessing the orientation of the Golgi in wounded cell

monolayers was examined as described previously (Serrels et al., 2010).

Briefly, 36106 cells were plated on fibronectin-coated coverslips in 12-

well plates for 3 h. The cell monolayer was wounded with a pipette tip,

incubated in full SCC growth medium for 1.5 h and then fixed and stained

with anti-GM130 antibody. The experiment was carried out three times.

Invasion assays
Invasion was analyzed as described previously (Serrels et al., 2010).

Briefly, growth factor reduced Matrigel (BD Biosciences, Oxford, UK)

was diluted 1:1 in cold PBS and allowed to set at 37 C̊ in transwells.

26104 cells were seeded onto the underside of the transwell. After 4 h the

transwells were washed in PBS and placed into serum free SCC growth

medium. Full growth medium containing 10% FCS was added on top of

the Matrigel. After 72 h cell invasion was assessed by staining with 5 mM

calcein (Life Technologies, Paisley, UK) for 1 h. Horizontal z sections

through the Matrigel were acquired at 10 mm intervals with an Olympus

FV1000 confocal microscope. The images were evaluated using ImageJ

software. The experiment was carried out three times.
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