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Actin-binding proteins differentially regulate endothelial cell
stiffness, ICAM-1 function and neutrophil transmigration
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Carlie J. de Vries4, Mat J. Daemen3, Carl G. Figdor2, Jaap D. van Buul1 and Peter L. Hordijk1,*

ABSTRACT

Chronic vascular inflammation is driven by interactions between

activated leukocytes and the endothelium. Leukocyte b2-integrins

bind to endothelial intercellular adhesion molecule 1 (ICAM-1),

which allows leukocyte spreading, crawling and transendothelial

migration. Leukocytes scan the vascular endothelium for permissive

sites to transmigrate, which suggests that there is apical membrane

heterogeneity within the endothelium. However, the molecular basis

for this heterogeneity is unknown. Leukocyte adhesion induces

ICAM-1 clustering, which promotes its association to the actin-

binding proteins filamin B, a-actinin-4 and cortactin. We show that

these endothelial proteins differentially control adhesion, spreading

and transmigration of neutrophils. Loss of filamin B, a-actinin-4 and

cortactin revealed adaptor-specific effects on a nuclear-to-

peripheral gradient of endothelial cell stiffness. By contrast,

increasing endothelial cell stiffness stimulates ICAM-1 function.

We identify endothelial a-actinin-4 as a key regulator of endothelial

cell stiffness and of ICAM-1-mediated neutrophil transmigration.

Finally, we found that the endothelial lining of human and murine

atherosclerotic plaques shows elevated levels of a-actinin-4. These

results identify endothelial cell stiffness as an important regulator of

endothelial surface heterogeneity and of ICAM-1 function, which in

turn controls the adhesion and transmigration of neutrophils.

KEY WORDS: Adhesion, Endothelium, Inflammation,

Transmigration

INTRODUCTION
Cardiovascular diseases, including atherosclerosis, represent

major health problems in the human population and are caused

primarily by chronic vascular inflammation. This inflammation is

characterized by an increased influx of activated leukocytes,

which is stimulated by age-related stiffening of the vascular wall

(Huynh et al., 2011). Chronic, as well as acute, inflammation is

driven by interactions between activated leukocytes and the

endothelium, which lines the veins and arteries. The migration of

activated leukocytes, such as neutrophils, across the inflamed

endothelium involves adhesion and spreading followed by the

breaching of endothelial, pericyte and basement membrane

barriers (Nourshargh et al., 2010). Firm adhesion and spreading

of neutrophils is mediated by binding of b2-integrins to their

endothelial ligand ICAM-1. The adhesive function of ICAM-1

requires its clustering, a consequence of ICAM-1 binding to the

b2-integrins Mac1 (macrophage 1 antigen; also known as aMb2

integrin) or LFA1 (leukocyte function-associated antigen 1; also

known as aLb2 integrin).

In the endothelium of the blood vessel wall, ICAM-1 clustering

induces its association with cytoplasmic actin-binding adaptor

proteins that link ICAM-1 to the F-actin cytoskeleton. These

adhesion complexes promote formation of local membrane

protrusions that surround adherent leukocytes and allow

efficient leukocyte transendothelial migration (TEM) (Barreiro

et al., 2002; van Buul et al., 2007a). Actin-binding proteins, such

as filamin B, cortactin and a-actinin-4, associate with the

intracellular portion of ICAM-1 (Carpén et al., 1992; Kanters

et al., 2008; Oh et al., 2007; Yang et al., 2006). Deletion of this

region inhibits ICAM-1-dependent leukocyte adhesion and TEM

(Lyck et al., 2003). Each of these adaptor proteins regulates actin

dynamics in different ways. Filamins crosslink actin fibers in an

orthogonal fashion and increase cortical membrane stability

(Stossel et al., 2001). Cortactin promotes F-actin filament

branching by activating the Arp2/3 complex, which drives

membrane protrusion and cell migration (Kirkbride et al.,

2011). a-Actinin-4 is an anti-parallel homodimer that crosslinks

F-actin filaments (Courson and Rock, 2010). Thus, differences in

the formation of ICAM-1-based complexes might allow different

local environments to be presented to adherent neutrophils.

Firmly adherent leukocytes spread and crawl over the vascular

endothelium, scanning the apical cell surface for permissive sites

for TEM (Nourshargh et al., 2010). This decision-making

behaviour suggests that these adherent cells sense apical

membrane heterogeneity within the vascular endothelium.

However, the molecular basis for this heterogeneity is unknown.

We questioned here whether apical endothelial heterogeneity,

resulting from distinct complexes of ICAM-1 with different actin-

binding proteins, controls neutrophil TEM. Neither the presence of

such parallel ICAM-1-regulating complexes, nor their functional

relevance for neutrophil TEM, has been investigated previously.

Using a multidisciplinary approach, we show that ICAM-1

forms molecularly and functionally distinct complexes with

filamin B, a-actinin-4 and cortactin in inflamed primary human

endothelial cells. We found that these adaptor proteins, and in

particular a-actinin-4, differentially control endothelial cell

stiffness, which is presented as a nuclear-(low)-to-peripheral

(high) gradient to ICAM-1-bound neutrophils. Finally, we show
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that the endothelium, lining atherosclerotic plaques in mice and
humans, expresses elevated levels of a-actinin-4 protein. Taken

together, our findings identify a-actinin-4 as an important
regulator of endothelial cell stiffness and of ICAM-1-mediated
neutrophil TEM.

RESULTS
Loss of endothelial actin-binding proteins differentially
reduces neutrophil TEM
To define the specific function of ICAM-1-based adhesion
complexes in neutrophil spreading, crawling and TEM (Fig. 1A),
we reduced the expression of filamin B, a-actinin-4 and cortactin

in primary human endothelial cells using validated small
interfering RNAs (siRNAs) (supplementary material Fig. S1A)
(Craig et al., 2007; Kanters et al., 2008; Yang et al., 2006). Next,

the endothelial cells were stimulated with the inflammatory
cytokine tumour necrosis factor a (TNFa), and we quantified
polarization, spreading, adhesion and TEM of primary human
neutrophils, which adhere through their b2-integrins, under

physiological flow. Reduction of either of the three adaptor
proteins significantly reduced neutrophil spreading (Fig. 1B;

supplementary material Movies 1, 2) and polarization (Fig. 1C),
with a consequent reduction of adhesion and TEM (Fig. 1D;

supplementary material Fig. S1B,C). Depletion of endothelial a-
actinin-4 induced the most pronounced effects in all these
experiments. Moreover, the extent of inhibition of TEM
correlated directly with the level of siRNA-mediated reduction

of a-actinin-4 expression throughout the individual experiments
(supplementary material Fig. S1D). siRNA-mediated loss of the
a-actinin-4 homologue a-actinin-1 did not affect neutrophil

spreading or TEM (supplementary material Fig. S1E). Thus,
endothelial actin-binding proteins differentially control ICAM-1-
dependent neutrophil adhesion, spreading, polarization and TEM.

Adaptor-specific dynamics within the ICAM-1 complex
Next, we used magnetic beads coated with an anti-ICAM-1-

antibody to isolate ICAM-1–adaptor protein complexes (Kanters
et al., 2008). Adhesion of these beads to intact cells prior to
extraction mimics leukocyte adhesion and will cluster cell surface
ICAM-1. In contrast, addition of these beads to lysed cells allows

isolation of non-clustered ICAM-1. We found that filamin B, a-
actinin-4 and cortactin specifically bound to clustered, but not to

Fig. 1. Endothelial ICAM-1–binding proteins
regulate polarization, spreading, adhesion
and TEM of neutrophils. (A) A human neutrophil
scans the surface of a TNFa-treated HUVEC
monolayer, prior to TEM. TEM occurs at between
450 and 490 s. Images are stills from a
representative DIC-based live-cell imaging study
under physiological flow. (B) A TNFa-treated
HUVEC monolayer was transfected with the
indicated siRNA (si-) and spreading of human
neutrophils was observed by DIC. Images are
stills from a representative live-cell imaging
experiment (supplementary material Movies 1, 2).
Insets show magnifications of typical neutrophil
phenotypes. Quantification of spreading index at
t56 min following neutrophil addition (right panel)
shows that loss of a-actinin-4 caused the most
pronounced defect (n55 independent
experiments, 8–17 neutrophils per group). (C) At
the end of the experiments in B, after 25 min,
cells were fixed and neutrophils were
immunostained for ICAM-3 as a polarity marker.
Insets show magnifications of typical ICAM-3
distributions. Quantification (right panel) shows
that loss of endothelial a-actinin-4 caused the
most significant reduction in polarization (n53,
14–71 neutrophils per group). (D) Depletion of a-
actinin-4 also results in the strongest reduction in
adhesion (left panel) and TEM (right) of adherent
neutrophils across a TNFa-treated HUVEC
monolayer under physiological flow, measured at
30 min following neutrophil addition (n55, 148–
255 neutrophils per group). Scale bars: 10 mm.
Data are mean6s.e.m., *P,0.05; **P,0.01,
***P,0.001 (Student’s t-test).
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non-clustered ICAM-1 in TNFa-activated primary human
endothelial cells (supplementary material Fig. S2A,B). In line

with this result and previous studies (Carpén et al., 1992; Celli
et al., 2006; Kanters et al., 2008; Yang et al., 2006), we found that
filamin B, a-actinin-4 and cortactin associated with a peptide
encoding the ICAM-1 intracellular domain (supplementary

material Fig. S2C). Taken together, these data show that
whereas the intracellular domain of ICAM-1 is sufficient for
the association, the clustering of ICAM-1 in live cells is necessary

for efficient binding to these adaptor proteins.
We then studied the dynamics of these ICAM-1–adaptor

protein complexes in live TNFa-stimulated primary human

endothelial cells expressing GFP-tagged fusion proteins. We
found that a-actinin-4–GFP is, similar to filamin-B–GFP (Kanters
et al., 2008) and cortactin–GFP (Schnoor et al., 2011; Yang et al.,

2006), recruited to adherent and transmigrating neutrophils and to
anti-ICAM-1 beads (Fig. 2A,B; supplementary material Movies

3, 4). This recruitment was paralleled by the local accumulation
of ICAM-1 and F-actin (supplementary material Fig. S2D).
Quantification (supplementary material Fig. S2E) revealed
sequential recruitment of the adaptor proteins, with a-actinin-4–

GFP being recruited with the same kinetics as ICAM-1–GFP,
whereas cortactin–GFP and filamin B–GFP were recruited slower
with lag times of ,200 s and ,400 s, respectively (Fig. 2B).

Similar data were obtained in endothelial cells that co-expressed
ICAM-1–mCherry with any of the GFP-linked adaptor proteins
(data not shown). Moreover, we did not detect changes in

cytoskeletal organization upon ectopic expression of the GFP-
tagged adaptor proteins (A.S., unpublished results). To study the
mobility of the GFP-tagged adaptors following recruitment to

Fig. 2. Dynamics of actin-binding
proteins in the ICAM-1 complex.
(A) a-actinin-4–GFP in TNFa-treated
HUVEC is recruited to an adherent and
transmigrating human neutrophil.
Images are stills from a representative
live-cell imaging experiment (n54).
The neutrophil (dotted line in GFP
images) transmigrates after 85 s
(supplementary material Movie 3).
Note that this experiment was
performed using a monolayer of
endothelial cells: the cell in the left
portion of the images did not express
a-actinin-4–GFP. (B) Upon addition of
anti-ICAM-1 beads (DIC image) to
TNFa-treated HUVECs transfected
with ICAM-1–GFP or the indicated
GFP-tagged adaptor, recruitment of
fusion proteins was recorded for
25 min. Still images are shown for a-
actinin-4–GFP (supplementary
material Movie 4). Quantification (lower
left panel) is shown for recruitment of
ICAM-1–GFP (n53), filamin-B–GFP
(n53), a-actinin-4–GFP (n54),
cortactin–GFP (n55) and GFP alone
(n53, t50 s is when beads were
added). Recruitment at t5500 s is
shown in the bar graph (lower right
panel). (C) Mobility of GFP-tagged
adaptors and ICAM-1–GFP was
analysed by FRAP following the
recruitment to anti-ICAM-1 beads. Still
images show bleaching (see insets)
and recovery of a-actinin-4–GFP.
Recovery curves (lower left panel) and
bar graph (lower right panel) of the
mobile fraction, based on the GFP
signal after 40–50 s following
bleaching (a-actinin-4–GFP, n54;
cortactin–GFP, n53; filamin-B--GFP,
n55; ICAM-1–GFP, n54). Each
independent experiment is an average
of two or three cells with one or two
rings per cell. Data are mean6s.e.m.
ns, not significant, *P,0.05; **P,0.01,
***P,0.001 (Student’s t-test). The
asterisk in B and C indicates the bead
position. Scale bars: 5 mm (A);
10 mm (B,C).
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clustered ICAM-1, we performed fluorescence recovery after
photobleaching (FRAP) experiments. We found that filamin B

showed the lowest mobility in the clustered ICAM-1 complex
(Fig. 2C). This is in marked contrast to cortactin, which showed
the highest mobility, with a-actinin-4 displaying an intermediary
phenotype. These results show that each of these actin-binding

adaptor proteins, which are also heterogeneously distributed in
primary endothelial cells (supplementary material Fig. S2F),
show specific dynamics both during recruitment to clustered

ICAM-1 and following complex formation.

ICAM-1 forms molecularly distinct complexes with
adaptor proteins
To test whether filamin B, a-actinin-4 or cortactin bound
independently to clustered ICAM-1, we performed siRNA-

based reduction of expression of these proteins in TNFa-
activated endothelial cells, followed by isolation of clustered
ICAM-1. We found that loss of neither of these adaptor proteins
impaired ICAM-1 binding to the others, supporting the notion

that ICAM-1 clustering induces the formation of molecularly
distinct, F-actin-linked adhesion complexes (Fig. 3A).

Next, we investigated which regions within the intracellular

domain of ICAM-1 bind to these adaptor proteins. The structure
model of the intracellular domain of ICAM-1 shows that the
highly conserved membrane-proximal region forms an a-helix

and the distal, much less conserved region, is unstructured
(Fig. 3B). Previous studies have identified the cluster of basic
residues in the a-helical region as being necessary to regulate the

ICAM-1–a-actinin-4 interaction (Carpén et al., 1992; Celli et al.,
2006). However, published data (Oh et al., 2007) and our own
findings (unpublished data) show that mutation of the residues
Lys508, Lys510 and Lys511 to alanine residues inhibits ICAM-1

surface expression and clustering, precluding efficient association
to any of the adaptor proteins in the cell.

The amino acid sequence of the ICAM-1 intracellular domain

differs for almost 40% of residues (11 residues out of 28) between
mouse and human, mainly in the unstructured membrane-distal
part (Fig. 3B). Whereas binding of cortactin to peptides encoding

the human or murine sequence was similar, interaction of a-
actinin-4 and filamin B to the mouse ICAM-1 peptide was
significantly less as compared to the human peptide
(supplementary material Fig. S3A). This suggests that the

membrane-distal unstructured portion of the intracellular
domain mediates these interactions. As described for other
protein–protein interactions (Bishop and Hall, 2000), such a

region might become structured upon adaptor protein binding,
possibly in an adaptor-specific fashion. This region contains two
lysine residues in human ICAM-1 (Fig. 3B). Although Lys524 is

highly conserved, Lys519 is a glutamate in the murine sequence.
We mutated both lysine residues to alanine residues in full-length
human ICAM-1 and analysed adaptor protein binding following

ICAM-1 clustering. Whereas binding to a-actinin-4 required both
Lys519 and Lys524, binding to filamin B was dependent on
Lys519 and, in contrast, binding to cortactin was unaffected
(Fig. 3C). Control experiments confirmed that surface expression

and clustering of these ICAM-1 mutants and of wild-type (WT)
ICAM-1 was similar (supplementary material Fig. S3B).

Given that depletion of a-actinin-4 affected neutrophil TEM

most significantly (Fig. 1), we analysed a-actinin-4 binding to
ICAM-1 in more detail. Purified human a-actinin-4 bound
directly and specifically to a biotinylated peptide encoding the

intracellular domain of human ICAM-1-WT, as previously

published (Carpén et al., 1992), but less strong to the peptide
with the K519A-K524A mutation (supplementary material Fig.

S3C), which is in line with the results shown in Fig. 3C.
Secondly, we found that expression of the full-length ICAM-1
K519A-K524A mutant in TNFa-activated primary human
endothelial cells impaired neutrophil polarization and spreading

(Fig. 3D,E). These results show that the intracellular domain of
ICAM-1 encodes adaptor-specific binding sites, which allows
formation of molecularly distinct complexes with filamin B, a-

actinin-4 and cortactin.

The actomyosin network differentially regulates ICAM-1-
adaptor binding
ICAM-1 clustering in endothelial cells regulates cytoskeletal
dynamics, including Rho-mediated actomyosin-based contractility

(Etienne et al., 1998; Lyck et al., 2003; van Buul et al., 2007b).
Conversely, Rho signalling is known to control ICAM-1 function
and leukocyte adhesion to endothelial cells (Wójciak-Stothard
et al., 1999). We analysed the role of Rho signalling further by

inhibiting the Rho-effector Rho kinase (ROCK) with Y27632 and
myosin II with blebbistatin. Inhibition of ROCK or myosin II
significantly reduced the association of filamin B and a-actinin-4,

but not that of cortactin, to ICAM-1 (Fig. 4A; supplementary
material Fig. S3D). Similarly, destabilizing the F-actin
cytoskeleton with low concentrations of cytochalasin B reduced

the interaction of filamin B, a-actinin-4 and actin with clustered
ICAM-1 whereas binding of cortactin increased 2–3-fold (Fig. 4B;
supplementary material Fig. S3E,F). Stabilizing the F-actin

network with jasplakinolide promoted the interaction of a-
actinin-4, cortactin and actin with ICAM-1, but reduced the
binding of filamin B (Fig. 4C; supplementary material Fig. S3G).
Importantly, the amount of clustered ICAM-1 that was isolated, as

well as monolayer integrity was unaffected under any of these
conditions (supplementary material Fig. S3D–G) (van Buul et al.,
2010a). Taken together, these experiments show that ICAM-1

bound to the different actin-binding adaptor proteins is
differentially regulated by F-actin (de)polymerization and
contractility.

Actin-binding proteins differentially regulate endothelial
cell stiffness
Filamin B, a-actinin-4 and cortactin control the organization of

the F-actin cytoskeleton in different ways, such as by crosslinking
(a-actinin-4) or formation of branching (cortactin). These
differences in cytoskeletal organization might translate into

local effects on endothelial cell stiffness, which might control
spreading and migration of adherent neutrophils (Oakes et al.,
2009; Raab et al., 2012). We therefore used atomic force

microscopy (AFM) to measure changes in endothelial cell
stiffness following siRNA-mediated depletion of filamin B, a-
actinin-4 and cortactin. Note that we used a 10-mm polystyrene

bead glued to the cantilever for these measurements. We found
that in primary human endothelial cells, the nuclear area is
relatively compliant as compared to the stiffer periphery of the
cells (Fig. 4D–G). Loss of filamin B had little effect on

endothelial cell stiffness, whereas a-actinin-4 significantly
decreased endothelial cell peripheral stiffness, reducing the
slope of the stiffness gradient provided by the endothelial cell

(Fig. 4E,F). Loss of cortactin also reduced peripheral stiffness,
but to a lesser extent as compared to a-actinin-4 (Fig. 4G).
Finally, we found that depletion of cortactin and especially of a-

actinin-4 led to a reduced mechanosensitive response of the

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 4470–4482 doi:10.1242/jcs.154708

4473

Jo
ur

na
l o

f C
el

l S
ci

en
ce

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.154708/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.154708/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.154708/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.154708/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.154708/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.154708/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.154708/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.154708/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.154708/-/DC1
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.154708/-/DC1


endothelial cells to the AFM probe (Fig. 4H) underscoring the
relevance of these adaptor proteins in endothelial cell
mechanosignaling.

We observed a pre-existing central-to-peripheral gradient of
endothelial cell stiffness (Fig. 4D–G), a phenomenon which has
been observed previously using non-TNFa-treated bovine

Fig. 3. ICAM-1 forms distinct complexes with filamin B, a-actinin-4 and cortactin. (A) Western blots show that depletion (by siRNA, si-) of filamin B,
cortactin or a-actinin-4 in TNFa-treated HUVEC did not affect binding of the other adaptors to ICAM-1 (total cell lysate in supplementary material Fig. S1A). Bar
graphs show quantification of the interactions (n53). (B) Sequence alignment of the intracellular ICAM-1 domain from human, mouse and rat (left panel) and the
structure model of the human intracellular ICAM-1 domain (right panel). Mutated residues Lys519 and Lys524 are indicated by arrows and in stick
representation. TM, transmembrane. (C) Full-length human wild-type (WT) ICAM-1 and indicated mutants were expressed in ICAM-1-deficient HeLa cells, prior
to analysis of binding of endogenous filamin B, cortactin and a-actinin-4 to clustered ICAM-1. Western blots show expression in the total cell lysate (TCL,
left panel) and binding to ICAM-1 [pull-out, right panel; quantification, bar graph (n53)]. (D,E) Neutrophils were added to TNFa-treated HUVECs transfected
with ICAM-1-K519A-K524A. Cells were fixed after 25 min and stained for HA-tagged ICAM-1-K519A-K524A and F-actin (phalloidin). Neutrophils migrating
across HUVECs expressing the ICAM-1 K519A-K524A mutant (green) show (D) less polarization, as deduced from the F-actin distribution (images represent
one out of two experiments) and (E) less spreading (as calculated in Fig. 1B; n52, 10 neutrophils per group). Scale bar: 10 mm. Data are mean6s.e.m. *P,0.05;
**P,0.01, ***P,0.001 (Student’s t-test).
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endothelial cells (Sato et al., 2000). Birukova et al. analysed non-
TNFa-treated human pulmonary arterial endothelial cells using a

30-nm tip as compared to a 10-mm bead, which is similar to the
size of a neutrophil, as used in our assays (Birukova et al., 2009).
They detected, in contrast, hardly any differences in elastic

module between the periphery and the centre of the resting cells.

ICAM-1 binding and localization of a-actinin-4 correlates with
matrix and tissue rigidity
Based on the above findings, we decided to investigate the role of
a-actinin-4 in ICAM-1 function in more detail. Live-cell imaging
showed that the accumulation of a-actinin-4–GFP and F-actin

(LifeAct–GFP) in primary human endothelial cells, in the absence

of adherent neutrophils, reflected the stiffness gradient as
detected under similar conditions by AFM (supplementary

material Fig. S4A). Conversely, we found that loss of a-actinin-
4 induced a prominent reorganization of F-actin in primary
endothelial cells, marked by a reduction of F-actin cables, as

shown by immunofluorescence and by scanning electron
microscopy (supplementary material Fig. S4B,C), which is in
line with the observed reduction in endothelial cell stiffness upon

loss of a-actinin-4 expression (Fig. 4F).
Because we found that the ICAM-1–a-actinin-4 interaction

requires Rho-mediated contractility (Fig. 4A), which regulates as
well as transduces differences in matrix rigidity (Stroka and

Aranda-Espinoza, 2011; Wozniak et al., 2003), we tested whether

Fig. 4. Adaptor-specific control of endothelial cell stiffness. (A) Inhibition of ROCK by Y27632 or myosin II activity by blebbistatin blocked binding of filamin B and a-
actinin-4, but not cortactin, to ICAM-1 (n52). (B) Destabilization of the F-actin cytoskeleton by cytochalasin B reduced binding of filamin B, a-actinin-4 and actin,
but not cortactin, to ICAM-1 (n53). (C) Stabilization of the F-actin network by jasplakinolide increased binding of cortactin, a-actinin-4 and actin, but not filamin B, to ICAM-1
(n53). Clustered ICAM-1 levels, western blots for total cell lysate and pull-out are in supplementary material Fig. S3D–G; DMSOwas included as control. All experiments
were performed with TNFa-stimulated HUVECmonolayers. Data are mean6s.e.m. (D–H) AFM was used to quantify stiffness at the cell periphery, cell centre and above
the nucleus of TNFa-treated HUVECs transfected with the indicated siRNA (si-) (n53, 7–14 cells per condition). (D) Each data point at the indicated position is an average
of three single probings at the position shown in the diagram. Quantification of the AFM data for endothelial depletion of (E) filamin B, (F) a-actinin-4 and (G) cortactin is
shown in a Box-Whisker diagram. The middle line indicates the median, the box represents the interquartile range and the whiskers represents the 10th and 90th
percentiles. (H) Ratio of the first and the last measurement (probing) was calculated for the peripheral endothelial cell stiffness (medial line and error bars represent
mean6s.e.m.). ns, not significant; *P,0.05; **P,0.01, ***P,0.001 [Student’s t-test (A), Mann–Whitney test (E–H)].
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seeding primary human endothelial cells on matrices with
different rigidity would alter the formation of the complex

between ICAM-1 and a-actinin-4. We used endothelial cells
cultured on relatively stiff (25 kPa) versus soft (0.5 kPa)
matrices. These values are in the range reported for stiff (e.g.
atherosclerotic vessels) or soft (e.g. brain) tissues, and are also

within the range that is relevant for neutrophil TEM in vitro and
in vivo (Huynh et al., 2011; Stroka and Aranda-Espinoza, 2011).
We found that culturing TNFa-activated primary human

endothelial cells for 48 h on a stiff matrix increased binding of
a-actinin-4 to clustered ICAM-1 (Fig. 5A; supplementary
material Fig. S4D). In cells on the 25-kPa matrix, a-actinin-4

showed increased co-localization with F-actin stress fibres
(Fig. 5B). In agreement with these findings, we found that
recruitment of ICAM-1–GFP to anti-ICAM-1 beads, which is

dependent on F-actin (van Buul et al., 2010a), was impaired in
endothelial cells depleted for a-actinin-4 (supplementary material
Fig. S4E). In addition, the effects on ICAM-1 function and
neutrophil TEM caused by the loss of a-actinin-4 were not due to

altered TNFa-induced signalling, as deduced from the increase in
ICAM-1 surface expression or the release of the chemokines IL-6
and IL-8 (supplementary material Fig. S4F,G). We next

investigated the expression level and distribution of a-actinin-4
in the endothelial lining of blood vessels of different stiffness. We
isolated arteries (aorta) and veins (left superior vena cava) from

healthy adult mice and performed an ex vivo confocal staining for
a-actinin-4, together with PECAM-1 as an endothelial marker. As

compared to venous endothelium, a-actinin-4 showed a markedly
increased expression in arterial endothelial cells, correlating well
with increased stiffness in arteries (Fig. 5C). These findings are
indicative for an F-actin-dependent positive feedback loop in

which ICAM-1-induced recruitment of a-actinin-4 increases local
stiffness that in turn stabilizes the ICAM-1–a-actinin-4 complex.

The above findings suggest that increased vascular stiffness, as

documented for ageing or inflamed blood vessels (Huynh et al.,
2011), promotes endothelial ICAM-1 function and, as a result,
leukocyte adhesion, TEM and inflammation. We therefore

investigated a-actinin-4 expression in atherosclerotic lesions,
which are characterized by increased stiffness, local inflammation
and leukocyte TEM (Huynh et al., 2011; Tracqui et al., 2011). We

could readily detect a-actinin-4 in the endothelium, lining the
aortas of ApoE2/2 mice (Fig. 5D; supplementary material Fig.
S4H). To quantify endothelial a-actinin-4, we performed a
double-staining with PECAM-1 to mark the endothelium. This

analysis showed that a-actinin-4 expression levels were
significantly higher in the endothelial lining of atherosclerotic
plaques, as compared to the endothelial lining of ‘non-plaque’

areas in the same murine vessel (Fig. 5E,F). Importantly, we also
detected significantly elevated a-actinin-4 levels in the
endothelium lining atherosclerotic plaques in human aortas

Fig. 5. a-Actinin-4 binding to ICAM-1 and
localization correlate with matrix and tissue
rigidity. (A) Confluent HUVECs cultured on soft
(0.5 kPa) or stiff (25 kPa) matrix were treated
with TNFa. Western blots show total cell lysate
(TCL) and binding of actin and a-actinin-4 to
clustered ICAM-1 (Pull-out). The left bar graph
shows quantification of binding; the right bar
graph shows clustered ICAM-1 levels (a-actinin-
4 n52; actin, ICAM-1 n53). Data are
mean6s.e.m. (B) HUVECs were cultured as in
A, and fixed and immunostained as indicated.
(C) Endothelial lining of an isolated artery (aorta)
and vein (left superior vena cava) of wild-type
mice, which were fixed and immunostained for a-
actinin-4 (green) and PECAM-1 (magenta), as an
endothelial marker. (D) The aortic arch of
ApoE2/2 mice with atherosclerotic lesion (arrow)
was analysed by DAB staining. (E–G) Alkaline
phosphatase staining was used to quantify a-
actinin-4 (red) in the endothelium, marked by
PECAM-1 (blue), of murine (E) or human arteries
(supplementary material Fig. S4I). a-Actinin-4
levels were quantified in the endothelial region of
the atherosclerotic plaque (P, arrow) versus a
control, non-plaque (NP) region of similar size in
the same vessel of ApoE2/2 mice (7 regions, 3
mice) (F) or in human arteries from the same
donor (G) (9 regions, 3 patients). Open symbols,
non-plaque regions; closed symbols, plaque
regions. Line and error bars represent
mean6s.e.m. Scale bars: 10 mm. (B,C); 100 mm
(D,E). ns, not significant; *P,0.05; **P,0.01;
***P,0.001 [Student’s t-test (A), Wilcoxon
test (F,G)].
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(Fig. 5G; supplementary material Fig. S4I). Taken together, these
data show that in vitro matrix stiffness promotes the association

of a-actinin-4 to clustered ICAM-1, and that in vivo expression of
a-actinin-4 is elevated in atherosclerotic plaques, correlating with
increased endothelial cell stiffness and leukocyte infiltration in
these areas (Tracqui et al., 2011).

DISCUSSION
Here, we performed a comprehensive study on the dynamics,

regulation and functional relevance of molecularly and
functionally distinct ICAM-1-based adhesion complexes
comprising the actin-binding proteins filamin B, a-actinin-4 and

cortactin. We show that these actin-binding proteins differentially
regulate endothelial cell stiffness as measured by AFM, and
control both ICAM-1 clustering and neutrophil TEM. We found

that, in contrast to filamin B and cortactin, a-actinin-4 depletion
results in the most significant effects in neutrophil adhesion,
spreading and TEM. Moreover, a-actinin-4 shows similar kinetics
as ICAM-1 upon ICAM-1 clustering and its binding to ICAM-1 is

regulated in a similar fashion as the binding of actin to ICAM-1.
Finally, a-actinin-4 is important for endothelial cell stiffness and
its expression promotes a cell-autonomous stiffness gradient from

the nucleus to cell–cell contacts. a-Actinin-4 contains four a-
helical spectrin repeats that confer flexibility (Golji et al., 2009).
This might allow a-actinin-4 to resist mechanical strain and to

induce RhoA signalling and local changes in the F-actin
cytoskeleton (Lessey-Morillon et al., 2014). Thus, a-actinin-4
might not only mediate F-actin crosslinking (Courson and Rock,

2010) but might also act as a force-transmitting element,
promoting maturation of ICAM-1-based (this study) or integrin-
based (Roca-Cusachs et al., 2013) adhesion complexes.

Intriguingly, filamin B hardly influences endothelial cell

stiffness, and shows slow dynamics in recruitment to ICAM-1
and within the complex following its association to clustered
ICAM-1. Filamin B might sense rather than control endothelial

cell stiffness to convert mechanical stimuli into downstream
signalling events during leukocyte TEM. Filamin B induces an
actin network comparable to an elastic gel (Stossel et al., 2001),

and mechanical strain might stretch filamin B, resulting in spatial
separation of binding sites for TEM-regulating proteins such as
ICAM-1 (Kanters et al., 2008) or the RhoGEF Trio (van Rijssel
et al., 2012). A similar regulatory mechanism was recently

described for FilGAP (also known as ARHGAP24)- and integrin-
binding to filamin A to control cell spreading (Ehrlicher et al.,
2011).

Although to a lesser extent than a-actinin-4, cortactin controls
peripheral endothelial cell stiffness. Of all three adaptor proteins,
cortactin shows the highest mobility in the ICAM-1 complex and its

ICAM-1 binding is stimulated by even small changes in F-actin
polymerization. Cortactin binds to and activates the Arp2/3
complex to induce F-actin filament branching, which promotes

membrane protrusions and cell migration (Kirkbride et al., 2011).
Our findings might thus suggest that cortactin is involved in the
spatio-temporal control of the Arp2/3 complex during leukocyte
TEM.

Previous studies (Oakes et al., 2009; Stroka and Aranda-
Espinoza, 2011) have shown that adherent leukocytes, in
addition to sensing chemokines, are mechanosensitive to global

differences in the stiffness of endothelial cells cultured on rigid or
soft matrices. Here, we show that TNFa-treated endothelial cells
present a stiffness gradient to adherent leukocytes. Our data

indicate that this stiffness gradient is primarily controlled by

a-actinin-4, and only slightly by cortactin and not by filamin B.
We also show that loss of a-actinin-4 leads to a significant

reduction of F-actin cables and ICAM-1 clustering. Based on the
recruitment of a-actinin-4 and F-actin by clustered ICAM-1, it is
attractive to propose that ICAM-1-mediated leukocyte adhesion
further increases a-actinin-4-dependent, local endothelial cell

stiffness. Magnetic twisting experiments were recently used to
show that pulling on ICAM-1 using antibody-coated beads,
increases local stiffness at the level of ICAM-1 (Lessey-Morillon

et al., 2014). It is, however, important to underscore that the
changes in cellular stiffness that we measured using AFM do not
necessarily reflect the stiffness at the level of cell surface ICAM-

1. ICAM-1 stiffness is determined by its connection to the cortical
actin cytoskeleton, which will be further increased by the
integrin-mediated pulling forces exerted by the adherent

neutrophil. Optimal stiffness might promote leukocyte
spreading on endothelial cells, further increasing the cell–cell
contact area and firm adhesion. Leukocyte crawling on the
vascular endothelium is essential for efficient TEM in vitro and in

vivo (Phillipson et al., 2006; Schenkel et al., 2004). This crawling
is mediated by Mac1 and ICAM-1 and correlates temporally with
formation of invadosome-like protrusions (Carman et al., 2007)

or ventral filopodia (Shulman et al., 2009). These protrusive
structures have been suggested to ‘probe’ the endothelial cell
surface in search of permissive sites for transcellular or

paracellular diapedesis. It is remains to be proven that such
leukocyte probing represents the scanning for areas of optimal
stiffness. Intriguingly, most transmigration events occur at the

cell periphery, close to or at cell–cell junctions, which is where
we measured the highest (optimal) stiffness and a-actinin-4
accumulation. A previous study has shown that presentation of
chemokines from intra-endothelial, F-actin-associated vesicle

stores is important for TEM of lymphocytes (Shulman et al.,
2012). Although TNFa-induced release of IL-6 and IL-8 was
unaffected by the a-actinin-4 siRNA, we cannot formerly exclude

that the availability of chemokine-containing vesicles is affected
under these conditions.

Arterial calcification increases vascular stiffness and correlates

with development of atherosclerosis (Huynh et al., 2011).
Atherosclerotic plaques are characterized by increased infiltration
of monocytes and neutrophils, and by high stiffness (Tracqui et al.,
2011). We found that elevated expression of a-actinin-4 correlates

positively with regions of atherosclerosis in both mice and humans.
a-Actinin-4 promotes cellular stiffness, and its increased expression
in endothelial cells on atherosclerotic plaques might increase ICAM-

1 function and leukocyte recruitment, supporting a local cycle of
rigidity-driven inflammation. Previously, we detected an increase in
a-actinin-4 mRNA expression within human atherosclerotic plaques

(Sluimer et al., 2007), in line with the data in Fig. 5F,G. Future work
might establish a-actinin-4 as a novel marker for (early)
atherosclerosis and show whether inhibition of its function

reduces local inflammation at the level of the vascular endothelium.
Based on our data, we propose a model (Fig. 6) in which

endothelial actin-binding adaptor proteins act in a pro-
inflammatory manner by associating to clustered integrin-bound

ICAM-1. These proteins not only anchor ICAM-1 to the F-actin
cytoskeleton but also differentially control local cytoskeletal
dynamics at the sites of leukocyte adhesion. In response to

leukocyte-integrin-mediated pulling forces on ICAM-1, these
adaptor proteins might further promote local endothelial cell
stiffness. This might stabilize ICAM-1-based adhesion, which

promotes leukocyte spreading, crawling and diapedesis.

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 4470–4482 doi:10.1242/jcs.154708

4477

Jo
ur

na
l o

f C
el

l S
ci

en
ce

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.154708/-/DC1


MATERIALS AND METHODS
Constructs
a-Actinin-4 (a gift from Alain Duperray, University of Grenoble, France)

was amplified by PCR using the forward primer 59-GAGATCGAATTCA-

TGGTGGACTACCACGCGG-39 and the reverse primer 59-GAGATCGG-

TACCGTCAGGTCGCTCTCGCCATAC-39. The purified PCR product

was digested with KpnI/EcoRI and directionally cloned into pEGFP-N2

(Clontech), which was digested in the same fashion. Human cortactin (gift

from Ed Schuuring, University of Groningen, The Netherlands) was cloned

into pEGFP-N2 using the same method and reagents, but with the forward

primer 59-GAGATCGAATTCATGTGGAAAGCTTCAGCAGG-39 and the

reverse primer 59-ATCGGTACCGTCTGCCGCAGCTCCACATAG-39.

Human filamin-B–GFP was a kind gift from Arnoud Sonnenberg,

(Netherlands Cancer Institute, Amsterdam). Human ICAM-1–GFP was a

kind gift from Francisco Sanchez-Madrid (University of Madrid, Spain).

ICAM-1–mCherry (van Buul et al., 2010b) and LifeAct–GFP (Riedl et al.,

2008) were previously described. To generate ICAM-1–HA constructs,

a HA tag was cloned into pcDNA3.1zeo (Invitrogen) using a linker which was

generated by mixing equal amounts of the primers 59-GAGATCG-

CTAGCATGTCTAGATACCCATACGATGTTCCAGATTACGCTAA-

GCTTTAGATAACTGAGGGCCCGAGATC-39 and 59-GATCTCGGGC-

CCTCAGTTATCTAAAGCTTAGCGTAATCTGGAACATCGTATGGG-

TATCTAGACATGCTAGCGATCTC-39. The mix was heated to 100 C̊

and allowed to cool slowly back to room temperature for annealing. The

linker was cloned into pcDNA3.1zeo with XbaI/ApaI. ICAM-1 was cloned

into the newly generated pcDNA-HA using the same PCR cloning method as

above with the forward primer 59-GAGATCGAATTCATGGCTCCCA-

GCAGCCCCCG-39 and the reverse primer 59-GAGATCTCTAGAGGGA-

GGCGTGGCTTGTGTGTTCG-39 and the enzymes EcoRI/XbaI. Lysine

mutants were generated with the same restriction enzymes using the same

forward primer but different reverse primers (supplementary material Table S1).

Antibodies
Antibodies were against: actin, a-actinin-1 (BM-75.2), GST, HA and a-

tubulin (Sigma), cortactin [BD Transduction and Milipore (4F11)],

a-actinin-4 (Enzo Life Science), filamin B (Bethyl Laboratories), ICAM-

1 and VCAM-1 (Santa Cruz Biotechnology), VE-cadherin [Beckman

Coulter (TEA 1/31)], ICAM-3 [Dako (KS128) and Immunotech (1601)]

and PECAM-1 [Dako (JC70A) and Dianova (SZ31)]. Alexa-Fluor-488-

labelled mouse PECAM was from R&D Systems. Hoechst 33258,

phalloidin–Alexa-Fluor-488, -633 and -Texas-Red and secondary Alexa-

Fluor-labelled antibodies were purchased from Invitrogen.

Cell culture, treatments and transfections
HeLa cells were cultured at 37 C̊ and under 5% CO2 (Kanters et al.,

2008) and transfected with ICAM-1–HA constructs using Trans IT-LTI

(Mirus) according to the manufacturer’s recommendations. Empty vector

was used as control. Primary human umbilical vein endothelial cells

(HUVECs) were purchased from Lonza and cultured on fibronectin

(Sanquin)-coated dishes in EGM-2 medium, supplemented with

SingleQuots (Lonza) at 37 C̊ and under 5% CO2 until passage 8.

Unless stated otherwise, HUVECs were stimulated with 10 ng/ml TNFa
(Peprotech EC) for 18 h prior to each experiment. TNFa-stimulated

HUVEC monolayers were treated with 100 mM blebbistatin (Sigma) for

30 min, with 10 mM Y27632 (Calbiochem) for 12 min or with indicated

concentrations of cytochalasin B (0–5 mg/ml; Sigma) or jasplakinolide

(0–2 mM; Calbiochem) for 30 min. DMSO was used as control. HUVECs

were transfected with validated siRNAs against filamin B (Kanters et al.,

2008), a-actinin-1 (Craig et al., 2007), a-actinin-4 (Craig et al., 2007) or

cortactin (Yang et al., 2006). As control, siRNA against luciferase (59-

CGUACGCGGAAUACUUCGA-39) was used. Oligonucleotides were

purchased from Eurogentec. HUVECs were transfected with 1.3 nM

siRNA, INTERFERin (Polyplus Transfection) and OptiMEM

(Invitrogen) according to the manufacturers’ recommendations. Cells

were used for assays after 72 h. siRNA no. 2 (A-011988-16) and no. 3

(A-011988-17) against a-actinin-4 were obtained from Dharmacon.

HUVECs were transfected by electroporation (Neon Transfection

System, Life Technologies) or in the case of ICAM-1-K519A-K524A–

HA by Trans IT-LTI (Mirus) according to the manufacturers’

recommendations. Cells were used for assays after 48 h.

Fig. 6. Adaptor protein-specific control of endothelial cell stiffness is a pro-inflammatory event. Schematic model depicting the positive feedback
loop based on the interaction of filamin B, a-actinin-4 or cortactin with integrin-bound clustered ICAM-1. These actin-binding proteins anchor the integrin-bound
ICAM-1 complex to the endothelial F-actin cytoskeleton, differentially control cytoskeletal dynamics and might promote endothelial cell stiffness (outside-in
signalling). Subsequently, local endothelial cell stiffness might stabilize ICAM-1 adhesion, which promotes efficient leukocyte spreading, crawling and TEM
(inside-out signalling).
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Western blot analysis
Samples were analysed by SDS-PAGE and western blotting (van Buul

et al., 2010a). Proteins were visualized with horseradish peroxidase (HRP)-

labelled antibodies (Dako) and enhanced chemiluminescence (ECL; West

Dura, Thermo Fisher Scientific). For quantification, integrated intensity

was calculated from the mean value and area using Image J.

Peptides and proteins
Peptides were synthesized using Fmoc-solid-phase chemistry

(Netherlands Cancer Institute, Amsterdam). N-terminal biotinylated

peptides encode the intracellular domain of human ICAM-1 or VCAM-

1 (Kanters et al., 2008), murine ICAM-1 (NH2-RQRKIRIYKLQKA-

QEEAIKLKGQAPPP-COOH) or human ICAM-1-K524A-K519A (NH2-

RQRKIKKYRLQQAQAGTPMAPNTQATPP-COOH). GST and GST–

a-actinin-4 in pGEX vectors were expressed in Escherichia coli BL21

overnight at 18 C̊ and purified according to the manufacturers’

recommendations (Amersham Biosciences). GST or GST–a-actinin-4 was

eluted with 20 mM glutathione, 50 mM Tris-HCl pH 7.4, 150 mM NaCl,

5% glycerol, 5 mM b-mercaptoethanol from glutathione–Sepharose-4B

beads and dialyzed twice with the same buffer but without glutathione.

Proteins were stored at 280 C̊ upon flash freezing in liquid nitrogen.

Pulldown assays
To analyse the binding to the intracellular domain of human VCAM-1,

ICAM-1 and murine ICAM-1, the synthetic biotinylated peptides were used in

pulldown assays (Kanters et al., 2008). TNFa-treated HUVEC monolayers

were washed with PBS containing 1 mM CaCl2 and 0.5 mM MgCl2 and lysed

for 10 min on ice in NP40-buffer (25 mM Tris-HCl pH 7.4, 100 mM NaCl,

10 mM MgCl2, 10% glycerol and 1% NP40), supplemented with a

phosphatase inhibitor cocktail (Sigma) and protease inhibitor mixture tablets

(Roche). After cell lysis and centrifugation (10,000 g, 10 min, 4 C̊),

supernatant was incubated with streptavidin–agarose beads (Sigma) and

5 mg biotinylated peptide for 3 h at 4 C̊ under continuous mixing. Beads were

washed five times with NP40 buffer, resuspended in SDS sample buffer and

proteins were detected by western blotting. To test for direct binding, the

biotinylated peptide encoding the intracellular domain of human wild-type

ICAM-1 or its K519A-K524A mutant coupled to streptavidin–agarose beads

was incubated with purified GST–a-actinin-4 in NP40-buffer for 1 h at 4 C̊

under continuous mixing. Beads were washed and resuspended in SDS sample

buffer and analysed by western blotting. GST was used as control.

Preparation of antibody-coated beads
For immunofluorescence, 10-mm polystyrene beads (Polysciences) were

coated with mouse monoclonal antibody (mAb) anti-ICAM-1 (BBIG-l1;

R&D) (Kanters et al., 2008). For pull-out experiments, 10-mm magnetic

goat anti-mouse-IgG1 antibody-coated Dynabeads (Invitrogen) were coated

with mouse mAb anti-ICAM-1 (BBIG-l1), anti-VCAM-1 (Immunotech) or

IgG1 control (Sanquin) according to the manufacturers’ protocol.

Pull-out clustering experiments
Pull-out clustering experiments were performed using beads coated with

anti-ICAM-1, anti-VCAM-1 or IgG1 control (Kanters et al., 2008). To

induce clustering, 45 ml antibody-coated beads were added to HeLa cells or

to TNFa-stimulated HUVECs in a 10-cm dish and incubated for 25 min at

37 C̊ and under 5% CO2. Cells were washed with PBS containing 1 mM

CaCl2 and 0.5 mM MgCl2, lysed for 5 min with RIPA buffer (50 mM Tris-

HCl pH 7.4, 150 mM NaCl, 10 mM MgCl2, 1% Triton X-100, 0.1% SDS

and 0.25% deoxycholic acid) and incubated for 1 h at 4 C̊ under continuous

mixing. Beads were isolated using a magnetic holder, washed twice with

RIPA buffer, three times with NP40 buffer and resuspended in SDS sample

buffer. For ‘non-clustered’ conditions, beads were added to the cells upon

cell lysis, washed as described above and resuspended in SDS sample

buffer. Protein levels were analysed by western blotting. Quantified signals

were normalized to the clustered condition.

Confocal laser scanning microscopy
HUVECs were cultured on fibronectin-coated glass coverslips, washed,

fixed, immunostained and mounted as described previously (Kanters

et al., 2008). Images were recorded with a Zeiss LSM510-META

confocal laser scanning microscope (636/NA 1.4 oil objective). Image

acquisition was performed with the Zen2009 software.

Live-cell confocal imaging
Recruitment to neutrophils
HUVEC monolayers transfected with a-actinin-4–GFP were cultured on

fibronectin-coated 30-mm glass coverslips and placed in a heating chamber at

37 C̊ and under 5% CO2. GFP and differential interference contrast (DIC)

signals were monitored using a Zeiss LSM-510-META confocal laser

scanning microscope (636/NA 1.4 oil objective). After 2 min, 500,000 freshly

isolated neutrophils were added and imaging was performed for 40 min with

intervals of 5 s and z-sections at three positions (2.9-mm intervals).

Recruitment to anti-ICAM-1-coated beads
To study recruitment to anti-ICAM-1-coated beads, HUVECs were

transfected as indicated and experiments were performed as described

above. Here, beads were added after 2 min and imaging was performed

for 25 min with intervals of 10 s. Fluorescence intensity was quantified

in a donut-shaped area positioned at the centre of the bead and corrected

for background, bleaching and transfection efficiency for each cell, time

point and confocal plane using Zen2009 software, Image J and Prism5

(Graphpad). For normalization, the average of the saturated signal was set

at 100% and the time point of adding the beads was designated as 0 s.

Protein distribution and cell volume
To determine the distribution of a-actinin-4–GFP and LifeAct–GFP in

the context of the cell volume, TNFa-activated HUVECs were

transfected with indicated GFP construct and with mCherry vector

(volume marker) and cultured until confluency on fibronectin-coated

glass slides. Live-cell imaging was performed with a maximal pinhole

and a 406oil objective, using a confocal microscope. Double-transfected

cells were analysed using Image J. Fluorescence intensities were

corrected for background and the ratio of GFP signal to mCherry

signal was determined and shown in a rainbow representation from 0

(black) to 5 (white). For quantification, the ratio of the GFP to the

mCherry signal in three regions of the same size was measured and

averaged. This was performed for areas at the nucleus, cell centre or

periphery of each cell (n52, 10–13 cells per condition).

Fluorescence recovery after photobleaching studies
Upon recruitment to anti-ICAM-1-coated beads, FRAP assays were

performed in the area of accumulated fusion protein directly next to the

bead. Experiments were performed using 50 iterations with 488-nm laser

illumination, at maximum power (25 mW) and a confocal laser scanning

microscope. Fluorescence recovery was measured by timelapse imaging

for 70 s with intervals of 0.395 s. The signal was corrected for

background and bleaching for each cell and time point. For

normalization, the average of the saturated signal was set at 100%.

Cell culture on different matrices and widefield microscopy
At 24 h prior to stimulation with TNFa, HUVECs were seeded on

collagen-I-coated hydrogels bound to a 10-cm dish (Matrigen), for pull-out

experiments, or bound to 10-mm glass bottom in a 35 mm dish (Matrigen),

for immunofluorescence. Pull-out assays were performed or cells were

fixed and immunostained as described above and analysed using an upright

Zeiss ImagerZ2 widefield microscope and the ZenBlue software (Zeiss).

FACS analysis
Cells were detached with Accutase (Sigma), stained with mouse anti-

ICAM-1-FITC (R&D) or isotype IgG1 control antibodies (Sanquin) and

analysed by flow cytometry (FACS CantoII, BD Biosciences) and Flowjo

software (Treestar).

Chemokine-release ELISA studies
Supernatants of HUVEC monolayers (12-well-plate) were analysed using

PeliKine human IL-6 and IL-8 ELISA kits (Sanquin) according to the

manufacturers’ recommendations.
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Neutrophil isolation
Polymorphonuclear neutrophils were isolated from whole blood derived

from healthy donors (with informed consent) by 1:1 dilution with 10%

trisodiumcitrate in PBS (Sigma) and a Ficoll-Paque plus density gradient

(GE Healthcare). After erythrocyte lysis in cold lysis buffer (155 mM

NH4Cl, 10 mM KHCO3, 0.1 mM EDTA, pH 7.4), neutrophils were

washed once with lysis buffer, once with 10% trisodiumcitrate in PBS

and suspended in HEPES medium [20 mM HEPES pH 7.4, 132 mM

NaCl, 6 mM KCl, 1 mM MgSO4, 1.2 mM K2HPO4, 1 mM CaCl2, 5 mM

Glucose (Sigma) and 0.4% human serum albumin (Sanquin)] and kept at

room temperature for not longer than 5–6 h until use. Neutrophils were

activated by incubation at 37 C̊ for 15 min.

Neutrophil polarization, spreading, adhesion and TEM studies
HUVECs cultured in a fibronectin-coated 10-cm dish were transfected

with the indicated siRNAs. Cells were trypsinized after 32 h and half of

them were seeded on a fibronectin-coated 30-mm glass coverslip

(Thermo Fisher Scientific) and the other half in a fibronectin-coated m-

slide VI0.4 (Ibidi). Cells were cultured for 2 days until confluency and

stimulated with TNFa 18 h prior to experiments.

Studies under static conditions
500,000 freshly isolated neutrophils were added to HUVEC monolayers

cultured on the coverslip and placed in a heating chamber at 37 C̊ and

under 5% CO2. Live-cell imaging under static conditions was performed

for 25 min with intervals of 10 s using DIC at the confocal microscope

(636/NA 1.4 oil objective). Neutrophil spreading was determined after

6 min by calculating the length–width ratio of the cell. TEM was

determined after 25 min in nine random fields by calculating

transmigrated cells/(transmigrated+non-transmigrated cells)6100 and

was normalized to control. To quantify neutrophil polarization, cells

were fixed after 25 min, stained for ICAM-3 and analysed by confocal

microscopy (see above). Polarization was calculated as ICAM-3

polarized neutrophils/(polarized+non-polarized cells)6100 in six

random fields.

HUVECs transfected with ICAM-1-K519A-524A–HA were cultured

on fibronectin-coated 30-mm glass coverslips. 500,000 freshly isolated

neutrophils were added under static conditions and cells were fixed after

25 min and analysed by confocal microscopy (see above). Neutrophil

spreading was determined by measuring the length–width ratio as

described above, using DIC images of four random fields. Cells were

stained for F-actin and, for transfected HUVECs, with anti-HA mAb and

secondary Alexa-Fluor-labelled antibody. Polarization of adherent

neutrophils was determined based on F-actin distribution.

Studies under flow conditions
16106 freshly isolated neutrophils in HEPES medium were perfused over

HUVEC monolayers in an Ibidi m-slide (see above) at 1.0 dyne/cm2 at

37 C̊ and under 5% CO2. After 3 min, solution was replaced by HEPES

medium. Live-cell imaging under flow was performed for 30 min at

intervals of 10 s and recorded in two random fields using a Zeiss

Axiovert 200 widefield microscope (106 objective) and the Zeiss

Axiovert 4.7 software. To determine neutrophil adhesion, neutrophils

were counted after 6 min upon neutrophil addition to the flow chamber,

independent on their transmigration behaviour. Numbers were

normalized to those of cells expressing the Ctrl siRNA (set at 100%).

Neutrophil TEM was calculated by transmigrated neutrophils/

(transmigrated+non-transmigrated cells)6100. Transmigrated neutrophils

were distinguished from adherent cells by their bright to phase-dark

transition.

Scanning electron microscopy
Confluent TNFa-treated HUVECs transfected as indicated were grown

on fibronectin-coated glass coverslips, fixated in McDowell’s fixative for

1 h at room temperature, and further processed for scanning electron

microscopy (van Buul et al., 2010a). Samples were mounted on

aluminium stubs (Quorum Technologies), sputter coated with gold and

palladium using the coating unit Emitech K550X (Quorum Technologies)

and examined on a PhenomPro scanning electron microscopy (Phenom

World).

Atomic force microscopy
TNFa-treated HUVEC monolayers transfected as indicated were cultured

in a fibronectin-coated 55-mm glass-bottomed dish (Willco Wells). Cells

were probed by AFM in EGM-2 medium at 37 C̊ on a Catalyst BioScope

(Bruker) coupled to a confocal microscope (TCS SP5II; Leica) using the

Nanoscope software (Bruker). A 10-mm polystyrene bead (Polysciences,

Inc.) was glued to a cantilever (NP-S type D, nominal spring constant of

0.06 N/m; Bruker) by a two-component polyurethane glue (Bison) and

dried overnight (Krause et al., 2013). Prior to every stiffness

measurement, each newly mounted cantilever was calibrated by

measuring the deflection sensitivity on glass and subsequently the

thermal tune module was used to determine the spring constant using the

thermal noise method (te Riet et al., 2011). All steps were carried out in

the same dish. To determine the stiffness, cells were probed three times

for every position (cell periphery, centre and above the nucleus) using the

DIC signal of the confocal microscope and by applying contact forces of

2 nN for 0.5 s. 7–14 cells in a monolayer were analysed for every

condition. Approach-retraction distances and velocities were 5 mm and

5 mm/s in a closed z-loop. Force–distance curves were obtained and

converted into force-indentation (F-d) curves (the distance was corrected

for the cantilever deflection caused by the piezo movement) to quantify

deformation depending on the applied force. F-d curves were fitted over

the 0–1.5 nN range using a custom algorithm written in IgorPro6

(Wavemetrics) to calculate the stiffness with the Hertz model for spheres

in contact with a flat surface (Lin et al., 2007):

F~
4E

ffiffiffiffiffiffi

Rc

p

3 1{n2ð Þ|d
3
2,

where F, force in Newtons (N); Rc, bead radius in meters (m); E, elastic

modulus or stiffness in Pascals (Pa); n, Poisson ratio of 0.5; and d,

indentation in meters (m). To study the mechanosensitivity at the cell

periphery of HUVECs transfected with the indicated siRNAs, the ratio of

the F-d curves of the first and the third probing was calculated and

normalized.

Mice
For ex vivo staining, arteries (aorta) and veins (left superior vena cava)

were isolated from healthy adult mice (FVB background). Mice were

purchased from Jackson Laboratories (Bar Harbor, USA). For

immunohistochemical stainings, atherosclerotic aortic arches were

obtained from five-month-old male ApoE2/2 mice (C57BL/6

background, chow diet). Mice were bred by the animal facility at the

Academic Medical Center, University of Amsterdam and killed with CO2

prior to the experiments. Mice were a kind gift of Esther Lutgens

(University of Amsterdam, The Nertherlands). Experiments were

approved by the Committee for Animal Welfare of the Academic

Medical Center, University of Amsterdam and were carried out in

compliance with guidelines issued by the Dutch government.

Human tissues
Human aortic material was obtained with informed consent from organ

donors, according to protocols approved by the Medical Ethics

Committee of the Academic Medical Center, University of Amsterdam.

Immunohistochemical analysis
Mouse and human material was fixed in paraformaldehyde, paraffin-

embedded and cut in 5-mm thick sections. Sections were dewaxed in

xylene and rehydrated in graded alcohol. Immunohistochemical double

stainings were performed as previously described (de Boer et al., 2010).

Antibodies for murine and human a-actinin-4 (incubated for 1 h at room

temperature), for murine PECAM-1 (clone SZ31, 16 h at 4 C̊) and for

human PECAM-1 (clone JC70A, 16 h at 4 C̊) were used. Heat-induced

epitope antigen retrieval was performed in citrate pH 6.0 (a-actinin-4) or

Tris-EDTA pH 9.0 (PECAM-1). As second step, sections were incubated

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 4470–4482 doi:10.1242/jcs.154708

4480

Jo
ur

na
l o

f C
el

l S
ci

en
ce



with alkaline-phosphatase-conjugated anti-mouse-IgG or rabbit-IgG

polymer (Immunologic, 30 min at room temperature) for a-actinin-4

and PECAM-1 (clone JC70A). For PECAM-1 (clone SZ31), sections

were incubated with rabbit anti-rat-IgG antibody (Southern Biotech,

30 min at room temperature) followed by alkaline-phosphatase-

conjugated anti-rabbit-IgG polymer. a-Actinin-4 reactivity was

visualized using VectorRed and PECAM-1 using VectorBlue (Vector

Labs). Negative controls were performed without primary antibodies and

with matched species serum using similar immunoglobulin

concentrations. For diaminobenzidine (DAB) staining of a-actinin-4 in

mouse tissue, endogenous peroxidase activity was blocked with methanol

supplemented with 0.3% peroxide after deparaffinization and

rehydration. Heat-induced epitope antigen retrieval was performed in

citrate (pH 6.0) and the same secondary antibodies were used as

described above. Peroxidase activity was developed using a

DAB+chromogen system (Dako). For quantification, digital images of

the specimens were obtained using a Leica DFC500 digital camera

mounted on a Leica DM5000B microscope. Image analysis was

performed using Image-Pro Premier 9.0 (MediaCybernetics). Mean

intensity of VectorRed (a-actinin-4) positivity in the VectorBlue

(PECAM-1) positive areas was measured as optical density (OD). OD

values of plaque and non-plaque regions of the same vessel (mouse

tissue) or the same donor (human tissue) were compared.

Ex vivo confocal staining
Isolated arteries (aorta) and veins (left superior vena cava) were washed

twice with PBS containing 1 mM CaCl2 and 0.5 mM MgCl2. Upon

opening, vessels were fixed with 4% paraformaldehyde for 20 min at

room temperature and stored in PBS containing 1 mM CaCl2 and

0.5 mM MgCl2 at 4 C̊. Blood vessels were permeabilized with 0.5%

Triton X-100 and 5% glycerol for 10 min at room temperature, blocked

with 2% BSA in PBS for 30 min at room temperature and washed with

PBS containing 1 mM CaCl2 and 0.5 mM MgCl2 and incubated with

primary [a-actinin-4, Alexa-488-labelled PECAM-1 (FAB3628G)] and

secondary antibodies in 0.5% BSA and PBS each for 1 h at room

temperature. After each step, the vessels were washed three times with

PBS containing 1 mM CaCl2 and 0.5 mM MgCl2. The mounting was

performed with Mowiol overnight at room temperature. Images were

recorded with the Zeiss confocal microscope (636/NA 1.4 oil objective).

Structural homology modelling
The structure homology model of the intracellular domain of human

ICAM-1 (residues 503–532) was generated using the Phyre protein

structure prediction server (Kelley and Sternberg, 2009). Top-scoring

events were the structures of the intracellular domain of ICAM-2 (from

the complex ICAM-2 with Radixin-FERM; PDB-ID, 1J19), the protein

phosphatase subunit a4 (PDB-ID, 3QC1) and the PHAT domain (PDB-

ID, 1OXJ). The figure was prepared with PyMOL (Molecular Graphics

System, Schroedinger, LLC).

Statistical analysis
Mean6s.e.m. of the indicated number of independent experiments (n)

were calculated. P-values were determined using an unpaired Student’s t-

test (Prism5). Statistical significance for the immunohistochemical

stainings was determined by a paired Wilcoxon test and for the AFM

data by a Mann–Whitney test. P,0.05 was considered as statistically

significant.
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