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ABSTRACT

Akt plays an important role in cell growth, proliferation and survival.

The specific roles of the three Akt isoforms in somatic cell

reprogramming have not been investigated. Here we report that,

during iPSC generation, enhanced Akt1 activity promotes complete

reprogramming mainly through increased activation of Stat3 in

concert with leukemia inhibitory factor (LIF) and, to a lesser extent,

through promotion of colony formation. Akt1 augments Stat3 activity

through activation of mTOR and upregulation of LIF receptor

expression. Similarly, enhanced Akt2 or Akt3 activation also

promotes reprogramming and coordinates with LIF to activate

Stat3. Blocking Akt1 or Akt3 but not Akt2 expression prohibits cell

proliferation and reprogramming. Furthermore, the halt in cell

proliferation and reprogramming caused by mTOR and Akt

inhibitors can be reversed by inhibition of GSK3. Finally, we found

that expressing the GSK3b target Esrrb overrides inhibition of Akt

and restores reprogramming. Our data demonstrated that during

reprogramming, Akt promotes establishment of pluripotency

through co-stimulation of Stat3 activity with LIF. Akt1 and Akt3 are

essential for the proliferation of reprogrammed cells, and Esrrb

supports cell proliferation and complete reprogramming during Akt

signaling.
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INTRODUCTION
The phosphatidylinositol 3-kinase (PI3K)/Akt (PI3K/Akt)
pathway has important functions in normal cell and cancer cell

development (Manning and Cantley, 2007; Vanhaesebroeck
and Alessi, 2000). Activated by receptor tyrosine kinases,
PI3K converts phosphatidylinositol (4,5)-bisphosphate (PIP2) to

phosphatidylinositol (3,4,5)-bisphosphate (PIP3), which recruits
Akt to the plasma membrane, where Akt is activated by both
phosphoinositide-dependent kinase 1 (PDK1) and mammalian

target of rapamycin complex 2 (mTORC2) (Alessi et al., 1997;
Sarbassov et al., 2005). Activated Akt regulates many
downstream signaling pathways, such as mammalian target of
rapamycin complex 1 (mTORC1), glycogen synthase kinase 3

(GSK3) and forkhead box O transcription factors (FOXO). These
pathways control diverse functions including cell growth,
proliferation, survival and metabolism (Manning and Cantley,

2007; Vanhaesebroeck and Alessi, 2000).

There are currently three known members of the Akt protein

family, namely Akt1, Akt2 and Akt3, each of which is encoded
by a different gene. These isoforms share a similar N-terminal
Pleckstrin-homology domain and a central serine-threonine

kinase domain, and their amino acid sequences are highly
conserved from mice to humans (Yang et al., 2004). Work with
knockout mouse models has shown a role for Akt1 in organismal

growth and cell survival (Chen et al., 2001; Cho et al., 2001b), for
Akt2 in growth regulation and glucose metabolism (Cho et al.,
2001a; Garofalo et al., 2003), and for Akt3 in post-natal brain

development (Tschopp et al., 2005). However, there are also
functional overlaps between the three isoforms. Of note, isoform-
specific Akt deregulation is frequently observed in several
cancers, including amplification of Akt1 in thyroid and non-

small cell lung cancers (Lee et al., 2011; Saji et al., 2011), of
Akt2 in glioma (Zhang et al., 2009), and of Akt3 in melanoma
(Stahl et al., 2004). Despite many studies, the pathways through

which specific isoforms of Akt exert their effects still remain
largely undefined (Chin and Toker, 2011).

Induced pluripotent stem cell (iPSC) technology (Takahashi
and Yamanaka, 2006) holds great potential for regenerative
medicine, by generating embryonic stem cell (ESC)-like cells
directly from somatic cells. Additionally, the short duration of

iPSC generation (2–3 weeks) provides a convenient way to
study mechanisms of cellular dedifferentiation, a process also
associated with tumor development and metastasis (Gabbert

et al., 1985; Herreros-Villanueva et al., 2013; Schwitalla et al.,
2013; Zhang et al., 2013). iPSCs can be induced by ectopic
expression of different sets of transcription factors, e.g. Oct4,

Klf4, Sox2 and Myc (OKSM) (Takahashi and Yamanaka, 2006)
or Oct4, Sox2, Nanog and Lin28 (Yu et al., 2007). In mice,
the activation of Janus-associated kinase (Jak)/signal transducer
and activator of transcription 3 (Stat3) is required for the

establishment of pluripotency during somatic cell reprogramming
(Tang et al., 2012; van Oosten et al., 2012). The Jak/Stat3
pathway is activated by leukemia inhibitory factor (LIF), a

cytokine required for the self-renewal of ESCs (Niwa et al., 1998;
Smith et al., 1988; Williams et al., 1988). In ESCs, LIF also
activates both the PI3K/Akt and extracellular-signal-regulated

kinase 1/2 (Erk1/2) pathways (Burdon et al., 2002; Niwa et al.,
2009; Paling et al., 2004). Erk1/2 activity signals differentiation
in ESCs; this activity appears to act as a counter-balance to the

self-renewal signal provided by STAT3 (Burdon et al., 2002;
Burdon et al., 1999). Although Akt1 activation was shown to
have paradoxical roles in reprogramming mediated by cell fusion
or nuclear transfer (Nakamura et al., 2008), forced Akt1

activation was reported to sustain mouse ESC self-renewal in
the absence of LIF (Watanabe et al., 2006) and promote
pluripotent stem cell derivation from mouse primordial germ

cells (Kimura et al., 2008). Akt also maintains pluripotency of
human ESCs by modulating activity of Smad2 and Smad3 (Singh
et al., 2012). However, the exact roles of the different Akt

isoforms during iPSC generation are still unknown.
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By using mouse embryonic fibroblasts (MEFs) harboring the
green fluorescence protein (GFP) expression cassette driven by

the Oct4-promoter (OG-MEF), we investigated the roles of Akt1,
Akt2 and Akt3 in mouse iPSC generation through both gain- and
loss-of-function studies. Our findings revealed the common
and isoform-specific roles of Akt1, Akt2 and Akt3 during the

reprogramming process, and a key role of glycogen synthase
kinase-3 beta (GSK3b)/estrogen-related receptor beta (Esrrb) axis
in reprogramming.

RESULTS
Enhanced Akt1 activity promotes somatic
cell reprogramming
We first asked whether enhanced Akt1 activity could improve
direct reprogramming of MEFs into iPSCs. Using a pMXs-

retroviral vector, we constructed a myristoylated, constitutively
active Akt1 (CA-Akt1) (Nesterov et al., 2001; Watanabe et al.,
2006). Male OG-MEFs reprogrammed with OKSM (day 0) were
transduced with either CA-Akt1 or vector control on day 2 and

cultured with or without LIF. Dome-shaped, ESC-like colonies
started to appear 1 week after OKSM transduction in all treatment
groups (data not shown). By day 11, Oct4–GFP fluorescence

could be observed in CA-Akt1 transduced cells cultured with LIF,
but not in the vector controls with or without LIF (Fig. 1A). Two
and three weeks after OKSM induction, cells expressing CA-Akt1

showed increased GFP-positive colony formation compared to
controls (Fig. 1A,B); the number of GFP-positive colonies was
further augmented in the presence of LIF (,2.8-fold higher than

control at 3 weeks, Fig. 1B). Addition of LIF to the vector
controls had no effect on GFP-positive colony formation at 3
weeks (Fig. 1B), which is likely to be an effect of LIF paracrine
signaling by the MEF feeder cells (Rathjen et al., 1990; Stewart

et al., 1992), and is similar to what we have observed previously
(Tang et al., 2012). Furthermore, CA-Akt1 plus OKSM not only
mildly increased total ESC-like colony formation (Table 1), but

also significantly enhanced the proportion of GFP-positive
colonies as a percentage of total colonies (Fig. 1C). When used
in combination with LIF, the effect of CA-Akt1 on improving

GFP-positive colony ratio was statically significant (74%)
compared to controls that had been treated with or without LIF
(38 or 41%) (Fig. 1C). Therefore, constitutively active Akt1
improves reprogramming by increasing both the total number of

colonies formed and the percentage of pluripotent (GFP-positive)
colonies. This latter effect is reminiscent of the function of Stat3
in somatic cell reprogramming that we described previously

(Tang et al., 2012).
We then performed additional characterizations to confirm that

the GFP-positive colonies were, indeed, pluripotent. We found

that the CA-Akt1/OKSM-induced GFP-positive colonies shared
similar properties with those of standard ESCs (R1), including the
ability to form tight, compact colonies with strong alkaline

phosphatase (ALP) activity (Fig. 1D). They readily propagated in
2i/LIF medium, the selective medium for ground state pluripotent
ESCs (Silva et al., 2009; Ying et al., 2008). qRT-PCR
and immunostaining revealed that these colonies expressed

pluripotent genes, and surface markers including Oct4, Sox2,
Nanog and SSEA-1 at either greater or comparable levels to those
of ESCs (Fig. 1E; supplementary material Fig. S1–S3), and

showed silenced retroviral Akt1 transgene expression in induced
colonies (supplementary material Fig. S4). They efficiently
differentiated into EBs in vitro (Fig. 1F), and developed into

cells expressing markers of the three germ layers (Fig. 1G;

supplementary material Fig. S4). Moreover, these cells
also formed beating myocardiocytes upon differentiation

(supplementary material Movie 1). Taken together, these results
demonstrate that enhanced Akt1 activation significantly improves
the efficiency of iPSC generation by OKSM.

Akt1 enhances LIF-stimulated Stat3 activation and
complete reprogramming
We then aimed to determine the mechanism by which Akt1

activity promotes reprogramming. It has been shown that
mTOR directly phosphorylates Ser727 of Stat3 to promote
Stat3 activation, as indicated by the increased phosphorylation

of Tyr705 (Yokogami et al., 2000). Expression of an oncogenic
Akt1 mutant or activation of mTORC1 in MEFs resulted in
activation of the Stat3/p63/Notch cascade (Ma et al., 2010),

indicating that the Akt/mTOR axis triggers Stat3 activation,
although it is unclear whether enhanced activation of wild-type
Akt will also stimulate Stat3. The collaborative effect we
observed between CA-Akt1 and LIF in promoting the

establishment of pluripotency during OKSM reprogramming
(Fig. 1B,C), led us to investigate a possible activation of the
Stat3 pathway by Akt1. Western blot analysis revealed that

CA-Akt1-transduced MEFs exhibited increased levels of
phosphorylated Stat3 (pStat3) at Tyr705 in the presence of LIF
(Fig. 2A). In another batch of MEFs, blocking Akt activity in

CA-Akt1-transduced MEFs by applying the specific allosteric
inhibitor MK2206 (Hirai et al., 2010) resulted in a dramatic
decrease in both phosphorylated Akt (pAkt) and LIF-induced

phosphorylation of Stat3 (Fig. 2B,C). Similarly, blocking
mTORC1 activity with a low dose of rapamycin (Heitman
et al., 1991; Laplante and Sabatini, 2012) inhibited
phosphorylation of Stat3 while exerting a minimal effect on

pAkt levels (Fig. 2B,C). These results demonstrate that CA-Akt1
collaborates with LIF to maximize Stat3 activation through the
Akt/mTORC1 axis.

To investigate other possible mechanisms by which Akt1
promotes Stat3 activation, we evaluated the expression level of
LIF receptor (LIFR). qRT-PCR analysis showed that the CA-

Akt1 transduced MEFs expressed significantly higher levels
of LIFR than controls with or without stimulation with LIF
(Fig. 2D). This increase was accompanied by the increased
expression of SOCS3, a direct target of Stat3, with the

highest level of SOCS3 induced by CA-Akt1 plus LIF
(Fig. 2D). Therefore, Akt1 not only directly enhances Stat3
phosphorylation through Akt/mTOR, but also exerts a positive

feedback on LIFR expression, which further enhances the
activities of Stat3 and Akt upon stimulation with LIF.

We have previously demonstrated that Stat3 activation is

essential for the establishment of pluripotency in induced
colonies during late-stage reprogramming (Tang et al., 2012).
Results presented here show that enhanced Akt1 activity not only

increases the levels of pStat3, but also increases the percentage of
pluripotent (GFP-positive) colonies, an effect also shown by
Stat3 itself. These data strongly indicate that Akt1 promotes
reprogramming through maximizing Stat3 activity. We then

asked whether Akt1 can establish pluripotency via a pathway
independent of Stat3. We reprogrammed OG-MEFs by using
OKSM together with LIF, CA-Akt1 and Jak inhibitor I (Jaki),

which blocks Stat3 activation (Niwa et al., 2009; Tang et al.,
2012). Inhibiting Stat3 activity blocked almost all GFP-positive
colony formation, even in the presence of CA-Akt1 (Fig. 2E,F),

while having no impact on total colony formation (Fig. 2F)
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(previously reported by Tang et al., 2012). Taken together,

our data illustrate that enhanced Akt1 activation improves
establishment of pluripotency in induced colonies through
maximizing Stat3 activity in concert with LIF. This is achieved

through direct phosphorylation of Stat3 by the Akt/mTOR axis
and through promotion of LIFR expression.

Akt2 and Akt3 also promote reprogramming efficiency, and
stimulate Stat3 activity
To investigate the possible roles of the two other Akt isoforms in
reprogramming, we expressed myristoylated CA-Akt2 or CA-

Akt3 in retroviral pMCs-vectors and tested their effect on OKSM-
induced reprogramming. We found that enhanced activities of

Fig. 1. See next page for legend.
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Akt2 and Akt3 both significantly promoted reprogramming by
increasing the number of GFP-positive colonies compared to

control (,4.26for Akt2 and 2.16for Akt3, Fig. 3A). Also, as for
Akt1, CA-Akt2 or CA-Akt3 expression only slightly increased
the total number of ESC-like, ALP-positive colonies (1.6–1.86)

during reprogramming (Fig. 3B and Table 2).
We then evaluated whether Akt2 and Akt3 also stimulate Stat3

activity. Western blot analysis revealed that both CA-Akt2- and

CA-Akt3-expressing MEFs showed enhanced levels of pStat3
when compared with controls following stimulation with LIF
(Fig. 3C). These data strongly indicate that Akt2 and Akt3 also
collaborate with LIF in maximizing Stat3 activation, and in

promoting reprogramming efficiency.

Akt1 and Akt3, but not Akt2, are essential for cell
proliferation and reprogramming
We further evaluated whether all Akt isoforms are essential for
the reprogramming process. Using lentiviral short hairpin RNA

(shRNA) constructs designed specifically against each Akt
isoform (shAkt1, shAkt2, and shAkt3), we were able to knock
down both Akt1 and Akt2 mRNA levels in MEFs by more than
95% (Fig. 3D). We used two constructs targeting different

mRNA regions of Akt3 to ensure its maximal knockdown
(Fig. 3D). We then transduced OG-MEFs with Akt shRNA

constructs 2 days after OKSM transduction. To avoid possible
interference of lentiviral Akt knockdown on feeders, the cells
were reprogrammed without a feeder layer. We found that
knockdown of either Akt1 or Akt3 dramatically reduced both the

GFP-positive and total colony formation (Fig. 3E,F). This is
correlated with an inhibition of the growth and proliferation of
OKSM transduced OG-MEFs by Akt1 or Akt3 knockdown

(Fig. 3G). By contrast, knockdown of Akt2 had minimal
impact on both total ALP- and GFP-positive colony formation
(Fig. 3E,F), and did not affect the proliferation of OKSM

transduced cells (Fig. 3G).
To find out whether the negligible effect of Akt2 knockdown

on reprogramming is due to a much lower expression of Akt2

compared to the other two Akt isoforms, we evaluated the relative
expression of the three Akt isoforms in MEFs. Interestingly, both
Akt2 and Akt3 mRNAs are expressed at much lower levels than
Akt1 (Fig. 3H). Using isoform-specific antibodies, we detected

strong Akt1 and Akt2 but much weaker Akt3 protein expression
in MEFs (Fig. 3I). These data indicate that the isoform-specific
roles of Akt1-3 in somatic cell reprogramming cannot be

attributed simply to their relative expression levels in MEFs.
Taken together, the functions of Akt1 and Akt3, but not Akt2, are
essential to the proliferation and survival of reprogrammed cells,

despite the fact that all three Akt isoforms can promote
reprogramming and collaborate with LIF to stimulate Stat3
phosphorylation.

Inhibiting GSK3 activity reverses the suppression of cell
proliferation and reprogramming by Akt or mTOR inhibition
Both GSK3 and mTORC1 are downstream Akt targets.

Suppressing mTORC1 activity with rapamycin has been shown
to inhibit the generation of mouse iPSCs at the level of both ALP-
and Oct4–GFP-positive colony formation (He et al., 2012). This

is very similar to our results with Akt1 and Akt3 knockdown
(Fig. 3E,F). GSK3 is directly phosphorylated and inhibited by
Akt (Cross et al., 1995), resulting in cell growth and proliferation.

Because GSK3b also downregulates mTORC1 through activation
of the negative regulator tuberous sclerosis 2 (Tsc2) (Inoki et al.,
2006), we investigated whether inhibiting GSK3 would abrogate
the effect of mTOR and Akt inhibition on reprogramming.

Two days after OKSM induction, the mTOR inhibitor
rapamycin or the Akt inhibitor MK2206 were added to OG-
MEFs, with or without the addition of the GSK3 inhibitor

CHIR99021 (Ying et al., 2008). On day 17, we observed obvious
inhibition of cell proliferation by rapamycin or MK2206,
compared to the DMSO-control (Fig. 4A). However, this was

reversed by the addition of CHIR99021 (Fig. 4A). By 3 weeks,
inhibition of Akt activity by MK2206 had greatly suppressed
GFP-positive colony formation (Fig. 4B,C). A similar effect

was observed by direct inhibition of mTOR using rapamycin
(Fig. 4B,C), as was reported previously (He et al., 2012).
However, in both cases, complete reprogramming was fully
recovered with the addition of CHIR99021, as demonstrated by

the number of GFP-positive colonies induced (Fig. 4B,C). These
data strongly indicate that inhibition of GSK3 is an important
component of the stimulation of cell proliferation and

reprogramming by the Akt pathway.
To test whether blocking Akt activity affects the survival of

reprogrammed cells, we analyzed the cell death 8 days after

OKSM transduction, following treatment with MK2206, or

Fig. 1. Enhanced Akt1 activation promotes MEF reprogramming.
(A) Representative colonies induced by transduction of OG-MEF with OKSM
in combination with CA-Akt1 or vector control, followed by growth in LIF-
containing (LIF+) reprogramming medium for 11 or 21 days after the initial
OKSM transduction. Expression of the Oct4–GFP-positive reporter indicates
activation of the endogenous Oct4 gene (Scale bar: 250 mm). (B) Number of
GFP-positive colonies at 2 or 3 weeks after transduction of OG-MEF with
OKSM plus retroviral vector control or CA-Akt1, followed by growth in
reprogramming medium with (+) or without (2) LIF. Activated Akt1 had a
collaborative effect with LIF on the development of GFP-positive colonies.
(C) GFP-positive colonies as a percentage of total ESC-like colonies induced
by OKSM plus retroviral vector control or CA-Akt1. Colonies were counted 3
weeks after OKSM transduction. Together, stimulation with LIF and
constitutively active Akt1 (CA-Akt1) increased the proportion of GFP-positive
colonies during reprogramming. (D) GFP fluorescence and ALP staining of a
representative iPSC line induced by OKSM and CA-Akt1 reprogramming and
cultured in 2i/LIF-containing medium for five passages. ALP staining is also
shown for a control ESC cell line (R1). (Scale bar: 610 mm). The iPSC
colonies strongly expressed ALP. (E) Relative levels of mRNA for
endogenous Oct4, Sox2 and Nanog in two representative iPSC lines at
passage 6. The values were normalized to the expression of GAPDH and
expressed relative to the control ESC line R1. These iPSC colonies
expressed endogenous pluripotent gene mRNAs at greater levels than
ESCs. (F) Morphology and GFP expression in the original iPSC colonies
(day 0) and 1, 4 or 7 days after transfer to EB differentiation conditions,
showing gradually diminished Oct4–GFP expression during differentiation
(Scale bar: 250 mm). The iPSC colonies differentiated efficiently into EBs.
(G) Immunostaining for markers of ectoderm (Tuj1), mesoderm (Flk1) and
endoderm (Sox17) at day 14 of EB differentiation. Nuclei of the cells were
counterstained with DAPI (Scale bar: 120 mm). The iPSCs differentiated into
cells expressing markers of all three germ layers.

Table 1. Number (mean 6 s.d.) of total ESC-like colonies
induced by OKSM plus retroviral vector or CA-Akt1 in OG-
MEFs, 3 weeks after OKSM transduction. Starting cell number:
8750 (n52)

OKSM

Total ESC-like colonies Vector CA-Akt1

LIF– 236.3642.9 321.567.8
LIF+ 252.7661.3 378.0636.8

LIF–, cells cultured without LIF; LIF+, cells cultured with LIF.
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Fig. 2. Mechanism of Akt1 in promoting reprogramming. (A) Western blotting of total protein extracts from B6/129-MEFs transduced with either vector
control or CA-Akt1, and with (+) or without (2) a 20 minute exposure to LIF. The specific proteins probed were Akt, Stat3, Erk1/2 and their respective
phosphorylated forms. Tubulin was used as the loading control. Stimulation with LIF and CA-Akt1 co-stimulated Stat3 phosphorylation. (B) Western blotting of
total protein extracts from B6/129-MEFs transduced with either vector control or CA-Akt1 and treated with DMSO, 5 mM rapamycin (Rap) or 1 mM MK2206 (MK),
with (+) or without (2) LIF stimulation. The specific proteins probed were Akt, Stat3 and their respective phosphorylated forms. GAPDH was used as the loading
control. Both mTOR and Akt inhibitors suppressed Stat3 phosphorylation. (C) Relative signal density of pStat3 and pAkt from western blots shown in B. The
values were normalized with GAPDH and calculated relative to the levels in DMSO/Vector/LIF-treated cells. (D) Relative levels of mRNA for LIFR, Akt1, Stat3
and Socs3 in B6/129 MEFs transfected with retroviral GFP control or CA-Akt1, with (+) or without (–) 20 minutes of stimulation with LIF; c denotes combined
endogenous and retroviral Akt1 expression. Values were normalized to GAPDH and expressed relative to the GFP control without stimulation with LIF.
Compared to the GFP control without stimulation with LIF, the level of LIFR was significantly increased in CA-Akt1-transduced cells and highest in CA-Akt1 cells
treated with LIF. As an indicator of Stat3 activation, the level of Socs3 was significantly increased when cells had been treated with LIF and was highest in CA-
Akt1 cells treated with LIF, demonstrating a positive feedback effect of Akt1 on the LIF pathway. (E) Effect of Stat3 inhibition on formation of GFP-positive
colonies induced by OKSM plus vector control or CA-Akt1. Transduced OG-MEFs were cultured in LIF-containing medium with either DMSO or 1 mM Jaki and
observed 2 weeks after OKSM transduction. Inhibiting Stat3 completely blocked GFP-positive colony formation even in the presence of CA-Akt1.
(F) Representative ESC-like colonies induced in OG-MEFs and treated with either DMSO or Jaki as described in E. (Scale bar: 610 mm). Inhibiting Stat3
completely blocked GFP-positive expression but not colony formation.
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MK2206 plus CHIR99021. On day 8 of reprogramming,
treatment with MK2206 yielded a total number of cells less

than 50% of the control, and this was completely reversed with
the addition of CHIR99021 (Fig. 4D). Analysis of apoptosis
revealed that treatment with MK2206 resulted in no obvious

increase in cell death, with an early apoptotic cell population of
18.7% compared to 16.6% in the control (Fig. 4E). The addition
of CHIR99021 reduced the early apoptotic cell population

(11.1% in MK2206 plus CHIR99021 compared to 18.8% in
MK2206 or 16.6% in control), which might partially but not

fully explain the recovered total cell number on day 8 following
CHIR99021 treatment (Fig. 4D,E). This indicates that after
treatment with MK2206 (1 mM), inhibition of Akt mainly

reduces the proliferation rather than the survival of
reprogrammed cells. Blocking GSK3 activity restores the total
number of reprogrammed cells after MK2206 treatment,

Fig. 3. See next page for legend.
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probably by improving both cell survival and the cell
proliferation speed.

Esrrb has been identified as the essential downstream effector
of GSK3b inhibition, and is responsible for stimulating ESC
colony formation, preventing differentiation and promoting

Nanog expression (Martello et al., 2012; van den Berg et al.,
2008). However, how the GSK3b/Esrrb axis interacts with the
Akt pathway is unclear. Interestingly, we found that, during the
late reprogramming stage of OKSM transduction, treatment with

MK2206 blocked expression of both Nanog and Esrrb, whereas
addition of CHIR99021 restored expression of both factors
(Fig. 4F). This indicates a contribution to reprogramming from

the Akt/GSK3 pathway through Esrrb protein expression.
We, therefore, asked whether expression of Esrrb protein alone

would rescue reprogramming halted by Akt inhibition. We

transduced the Doxycycline (Dox)-inducible Esrrb lentiviral
construct into OG-MEFs 2 days after OKSM transduction and,
at day 4, added Dox with either MK2206 or DMSO to the
reprogramming medium. Seven days after transduction, the

expression of Esrrb protein had begun to restore cell
proliferation suppressed by MK2206 (Fig. 4G). Most

significantly, by day 19 Esrrb had completely rescued
reprogramming impeded by treatment with MK2206, as
indicated by the full recovery of GFP-positive colony numbers
(Fig. 4H,I). Thus, signaling from the GSK3/Esrrb axis plays an

important role downstream of Akt to promote both cell
proliferation and complete reprogramming.

DISCUSSION
Stat3 activation is required for the generation of completely
reprogrammed iPSCs from somatic cells (Tang et al., 2012), and

enhanced Stat3 activity further promotes reprogramming
efficiency (Tang et al., 2012; van Oosten et al., 2012). LIF is a
key component for reprogramming of somatic cells to naı̈ve-state

pluripotency, through stimulating Stat3. LIF also activates the
PI3K/Akt pathway; but how this signaling pathway – which is
responsible for many different biological processes – contributes
to reprogramming remains unclear. During the preparation of

this manuscript, a report was published on the role of Akt1 in
mediating ES cell-expressed Ras signaling, that promoted
reprogramming through phosphorylation and inhibition of

Foxo1 (Yu et al., 2013). This revealed one layer of regulation
by Akt1 in the reprogramming process. However, it is unclear
whether inhibiting Foxo1 alone recapitulates the effect of Akt1 on

reprogramming. Here, we show that all three Akt isoforms can
promote reprogramming by maximizing Stat3 activation in
collaboration with LIF, rather than through another route which

bypasses Stat3 signaling. We discovered two pathways that are
involved to maximize Stat3 activity through Akt signalling during
reprogramming. One pathway involves activation of the mTOR
Ser/Thr kinase that stimulates Stat3 activity, as previously

described (Yokogami et al., 2000). The other pathway causes
increased LIFR expression – a new effect of Akt revealed in this
study, which establishes a positive feedback loop: LIF stimulation

R increased levels of pAkt R LIFR expression R enhanced LIF
signaling R enhanced pStat3 levels. Whether these two routes
operate in parallel or are both downstream of mTOR activation

needs further clarification. Indeed, the study mentioned earlier
also stated that enhanced ERas or Akt1 activation increased
phosphorylation of Stat3 at Ser727 (Yu et al., 2013), which is the
site phosphorylated by mTOR (Yokogami et al., 2000). Our

results, thus, demonstrate a strong functional link between the
Stat3 and Akt pathways during the process of complete
reprogramming to pluripotency (Fig. 4J). Our finding that Stat3

activity is augmented by all three Akt isoforms also has important
implications for cancer research because both Akt and Stat3 are
frequently deregulated in and responsible for the development of

various cancers (Gonzalez and McGraw, 2009; Yue and Turkson,
2009).

We found that the role of Akt2 in reprogramming is

dispensable, contrary to that of Akt1 or Akt3, and that Akt2 is
not essential for the proliferation of reprogrammed cells, a result
probably not attributable to the lower expression of Akt2 in
MEFs. In a previous study it was determined that, unlike Akt1

and Akt3, which target cell cytoplasm and nucleus, respectively,
Akt2 mainly colocalizes with the mitochondria, even though
comparison of Akt1 and Akt3 protein sequences did not reveal

any striking differences that might be responsible for the different
localization (Santi and Lee, 2010). Akt2 has been shown to
regulate glucose metabolism, and a targeted Akt2 deletion in

mice led to diabetic syndrome (Cho et al., 2001a; Garofalo et al.,

Fig. 3. All Akt isoforms promote efficient reprogramming and Stat3
phosphorylation, but only Akt1 and Akt3 are necessary for
reprogramming. (A) The number of GFP-positive colonies induced by
transduction of OG-MEFs with OKSM plus retroviral vector or CA-Akt1, CA-
Akt2, or CA-Akt3. The cells were cultured in reprogramming medium with LIF
and observed 17 days after OKSM transduction. Similar to Akt1, both Akt2
and Akt3 also promote reprogramming. (B) Representative images of ALP
staining of induced colonies 4 weeks after OKSM transduction as described
in A. (C) Western blotting of total protein extracts from B6/129-MEFs
transduced with either vector control, CA-Akt1, CA-Akt2 or CA-Akt3 and
treated with (+) or without (–) LIF for 20 minutes. The specific proteins
probed were pan-Akt, Stat3 and their respective phosphorylated forms.
Similarly to Akt1, Akt2 and Akt3 acted collaboratively with the stimulation with
LIF to stimulate Stat3 phosphorylation. (D) Relative expression levels of
Akt1, Akt2 and Akt3 in B6/129 MEFs transduced with lentiviral shRNA
constructs specific to each Akt isoform or control shRNA (shCtl). Gene
expression values of duplicate sample preparations were normalized to
GAPDH and expressed relative to the vector controls. (E) The number of
GFP-positive colonies induced 3 weeks after OG-MEFs were transduced
with OKSM plus lentiviral control (shCtl), shAkt1, shAkt2 or shAkt3, and
cultured in reprogramming medium with LIF. Blocking Akt1 or Akt3, but not
Akt2, suppressed the formation of GFP-positive colonies. (F) Representative
images of ALP staining of the induced colonies 4 weeks after the OKSM
transduction and RNA knockdown treatments described in E. Blocking Akt1
or Akt3, but not Akt2, suppressed the formation of colonies. (G) OG-MEFs
transduced with shCtl, shAkt1, shAkt2 or shAkt3, 2 days after OKSM
transduction and cultured in LIF-containing medium. Representative images
of MEFs at 1 and 3 weeks after the initial OKSM transduction are shown
(Scale bar: 250 mm). Blocking Akt1 or Akt3, but not Akt2, suppressed the
proliferation of reprogrammed cells. (H) Relative expression levels of Akt1,
Akt2 and Akt3 mRNA in B6/129 MEFs normalized to GAPDH, with the value
of Akt1 set as 1. (I) Western blotting of total protein extracts from B6/129
MEFs. The specific proteins probed were Akt1, Akt2 and Akt3. a-tubulin was
used as a loading control.

Table 2. Number (mean 6 s.d.) of total ESC-like colonies
induced by OKSM plus retroviral vector, CA-Akt2, or CA-Akt3 in
OG-MEFs 4 weeks after retroviral transduction. Starting cell
number: 5000 (n52)

OKSM

Total ESC-like colonies Vector CA-Akt2 CA-Akt3

LIF+ 246.7620.3 397.3666.9 432.86106.3

LIF+, cells cultured with LIF.
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Fig. 4. See next page for legend.
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2003; George et al., 2004). This role of Akt2 is, at least partially,
mediated through regulating the intracellular translocation of
glucose transporter type 4 (Glut4) – that promotes glucose influx

– to the plasma membrane (Jiang et al., 2003; Katome et al.,
2003). Enhanced activation of Akt2 might, therefore, further
promote cell proliferation and iPSC generation by stimulating
glucose metabolism in reprogrammed cells, in addition to its

function on pStat3 stimulation.
mTOR activity has been found to be necessary for both somatic

cell reprogramming (He et al., 2012) and for maintenance of

pluripotency in ESCs (Betschinger et al., 2013). There are also
multiple lines of evidence supporting crosstalk between the GSK3b
and mTOR pathways. First, GSK3b phosphorylates and activates

TSC2 to suppress mTORC1 activity (Inoki et al., 2006). Second, it
was recently found that Esrrb, the downstream effector of GSK3b
inhibition, plays a role downstream of mTOR in supporting ESC

pluripotency (Betschinger et al., 2013; Martello et al., 2012).
However, the consequence of this crosstalk for reprogramming was
not determined. We found that, during reprogramming, inhibition
of GSK3b completely rescues the cell proliferation and

reprogramming blocked by mTOR or Akt inhibitors, which
highlights the importance of inhibition of the GSK3 pathway in
the Akt/mTOR-mediated reprogramming process.

Ectopic expression of Esrrb has been shown to induce iPSCs
together with Oct4 and Sox2, through replacing Klf4 (Feng et al.,

2009). In ESCs, both Klf4 and Esrrb stimulate the expression of
Nanog, a necessary component for maintenance of pluripotency

(Niwa et al., 2009; van den Berg et al., 2008). Our results
show that inhibition of Akt activity leads to suppressed Esrrb
and Nanog expression in reprogrammed cells, and that this
suppression can be recovered by CHIR99021 treatment. We

further demonstrate that the cell proliferation and complete
reprogramming that is halted by Akt inhibition can be reversed by
expressing Esrrb protein. Our results, thus, strongly indicate that

Esrrb serves as a main downstream effector of Akt/GSK3b
signaling, and promotes somatic cell reprogramming through
enhancing cell proliferation and pluripotency establishment.

We found that both Akt1 and Akt3 are needed for successful
reprogramming. The non-overlapping functions of Akt1 and Akt3
in reprogramming may reflect the differential subcellular

localization of these two proteins (Santi and Lee, 2010). We
also discovered that the promotion of reprogramming is tightly
correlated with the role of both isoforms in the maintenance of
cell proliferation. Because our results show that knockdown of

either Akt1 or Akt3 resembles the effect on reprogramming by
using mTOCR1 inhibition through rapamycin (He et al., 2012)
or a constitutively active form of Foxo1 (Yu et al., 2013),

we suggest that Akt1 and Akt3 regulate – collaboratively or
differentially – their downstream targets, such as mTOR and
Foxo1 or the GSK3b/Esrrb axis, in supporting cell proliferation

and survival during reprogramming (Fig. 4J).
Our results described herein illustrate a key role of Akt in

coordinating somatic cell reprogramming by supporting the

proliferation of reprogrammed cells through the Akt isoforms 1
and 3, co-stimulating the phosphorylation of Stat3 with LIF to
promote pluripotency establishment, and regulating the GSK3
pathways to promote both cell proliferation and reprogramming via

Esrrb. The results obtained here, not only significantly contribute to
our understanding of the mechanism for somatic cell reprogramming
but also have important implications for cancer research.

MATERIALS AND METHODS
Chemicals and protein expression constructs
Jak inhibitor I (Jaki) and Doxycycline (Dox) were purchased from EMD

Millipore. Rapamycin, MK2206 and GSK3b inhibitor CHIR99021 were

obtained from SelleckChem. The constitutively active mouse Akt

isoforms 1, 2 and 3 (CA-Akt1, CA-Akt2 and CA-Akt3) comprising the

N-terminal myriostoylation sequence MGSSKSKPK, were amplified by

RT-PCR from mouse cDNAs by using specific primers. The PCR

products were then subcloned into pMXs- or pMCs-vectors (Cell

Biolabs). The vectors for pMXs-Oct4, Klf4, Sox2 and c-Myc

(Takahashi and Yamanaka, 2006), pLKO.1-puro, pLKO.1-scramble

shRNA control, FUW-M2rtTA and FUW-TetO-Esrrb (Buganim et al.,

2012), retroviral and lentiviral packaging constructs pUMVC, pCMV-

VSV-G and psPAX2 (Stewart et al., 2003) were all obtained from

Addgene. pLKO.1-shRNA constructs against mouse Akt1 and Akt2 were

purchased from Sigma. DNA oligonucleotides against the mouse Akt3

cDNA (shAkt3a and shAkt3b) were subcloned into pLKO.1-puro vector.

The human embryonic kidney cell line 293T (HEK 293T) for viral

packaging was purchased from Invitrogen. The primer sequences for CA-

Akt1, CA-Akt2 and CA-Akt3 and Akt3 shRNA cloning are listed in

supplementary material Table S1. All DNA subcloning was performed

using standard restriction-enzyme digestion or the Infusion PCR Cloning

Kit (Clontech) and expression constructs were verified by DNA

sequencing.

Cell culture, viral preparation and reprogramming assay
OG-MEFs, as well as MEFs from strain B6/129 and CD1 MEF feeder

cells were generated from E13.5 embryos as described previously (Tang

Fig. 4. Inhibiting GSK3b rescues cell proliferation and reprogramming
halted by Akt or mTOR inhibition. (A) OG-MEFs were transduced with
OKSM and treated with either DMSO, 1 mM MK2206MK (MK) or 5 mM
rapamycin (Rap), with or without 3 mM CHIR99021 (CH), and cultured in LIF-
containing medium. Representative images of MEFs 17 days after the initial
OKSM transduction are shown (Scale bar: 250 mm). Inhibiting mTOR or Akt
suppressed the proliferation of reprogrammed cells; this can be reversed by
CHIR. (B) GFP-positive colony formation by OG-MEFs transduced with
OKSM and treated as in A. Representative colonies 17 days after the initial
OKSM transduction are shown (Scale bar: 250 mm). (C) The number of GFP-
positive colonies assayed 3 weeks after OG-MEF transduction with OKSM
and treatment as described in A. Inhibiting mTOR or Akt suppressed the
formation of GFP-positive colonies; this can be reversed by CHIR. (D) OG-
MEFs were transduced with OKSM on day 0, replated on day 1 at 0.956105

cells/well, and treated with either DMSO, MK or MK plus 3 mM CHIR (CH),
and cultured in LIF-containing medium. Total cell numbers were determined 8
days after initial OKSM transduction. (E) Analysis of apoptosis in cells treated
as described in D. Cells were incubated with Annexin V-FITC (AnnexV) and
propidium iodide (PI) for 30 minutes and analyzed by flow cytometry.
Percentage of late apoptotic/necrotic (AnnexV+/PI+), early apoptotic
(AnnexV+), and live cells (unstained) were shown. Addition of CHIR mildly
suppresses apoptosis. (F) Relative levels of expression of Nanog and Esrrb
mRNA in OKSM-transduced MEFs treated as described in A, 17 days after
reprogramming. Values were normalized to GAPDH and calculated relative
to levels found in R1 cells. Inhibiting Akt suppressed the activation of Esrrb
and Nanog during reprogramming. (G) OG-MEFs transduced with OKSM
plus M2rtTA, or OKSM plus M2rtTA and Dox-inducible Esrrb, treated with
either DMSO or MK and cultured in LIF-containing medium with 1 mg/ml Dox.
Representative images of reprogrammed cells 7 days after the initial OKSM
transduction are shown (Scale bar: 250 mm). Expression of Esrrb reversed
the suppression of cell proliferation caused by Akt inhibition. (H) The number
of GFP-positive colonies induced 19 days after OKSM induction as
described in G. Expression of Esrrb restored the complete reprogramming
that had been halted by Akt inhibition. (I) Representative GFP-positive
colonies seen 22 days after OKSM induction as described in G. (J) Proposed
model of Akt isoform-specific roles for successful reprogramming. Akt1, Akt2
and Akt3 enhance LIF-triggered Stat3 activation through stimulation of
mTOR activation and LIFR expression; Akt1 and Akt 3 also collaboratively or
differentially regulate their downstream targets to promote the proliferation
and survival of reprogrammed cells. Both pathways contribute significantly to
the successful generation of pluripotent cells.
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et al., 2011). MEFs passaged up to four times were used for

reprogramming. pMXs, pMCs or pLKO.1 constructs, together with

packaging vectors pUMVC (for retrovirus), psPAX2 (for lentivirus) and

pCMV-VSV-G plasmids, were co-transfected into 293T cells according

to protocols provided by Addgene. The assay for iPSC induction from

OG-MEFs by using viral OKSM and reprogramming medium was

conducted as described previously (Tang et al., 2011). Retroviral CA-

Akt1, CA-Akt2 and CA-Akt3, Dox-inducible M2rtTA that expresses

reverse tetracycline transactivator, and TetO-Esrrb constructs were

transduced to reprogrammed cells 2 days after OKSM transduction

(day 0). All chemicals including DMSO, rapamycin, MK2206 and Dox

were added on day 3, and GFP-positive colonies were scored 2–3 weeks

after OKSM transduction by using a Nikon fluorescence microscope.

Embryoid body (EB) formation
Established iPSC cell lines that had been passaged six times were plated

on CD1 MEF feeder cells. Two days later, the cells were trypsinized and

re-plated on the original plate for 2 hours to allow MEFs to attach. The

iPSCs remaining in the medium were transferred to plastic Petri dishes

containing DMEM plus 10% FBS (Invitrogen) without LIF. After 1 week

of differentiation, EBs formed and were transferred to 0.1% gelatin-

coated cell culture dishes (Invitrogen). The cells were allowed to re-

attach and continue to differentiate for 7 days before proceeding with

RNA extraction and real-time qRT-PCR or immunostaining, as described

below.

Immunostaining and alkaline phosphatase staining
Alkaline phosphatase (ALP) staining was performed using a Vector Red

Alkaline Phosphate Substrate Kit I (Vector Laboratories, Burlingame,

CA) according to the manufacturer’s instruction. For immunostaining,

cells were grown on 12 mm glass coverslips (Fisher Scientific) in 6-well

plates seeded with CD1 MEFs as feeders. Cells were fixed in 4%

paraformaldehyde with 1% sucrose in PBS for 15 min at room

temperature. The cell membranes were permeabilized with 0.5% Triton

X-100 in PBS plus TWEEN 20 (PBS-T), then incubated for 2 hrs at 37 C̊

in 5% donkey or goat serum with mouse anti-SSEA-1 IgM (1:100), rabbit

anti-Sox2 IgG (1:100) or rabbit anti-Nanog IgG (1:100) (all from

Millipore), or rabbit anti-Oct4 antibody (1:100, Santa Cruz), washed in

PBS-T and then incubated with Alexa-Fluor-594-conjugated donkey anti-

rabbit or goat anti-mouse secondary antibodies (1:500, Invitrogen). After

the washes, cells were counterstained with DAPI and mounted under

coverslips. Fluorescence images were taken using a Nikon fluorescence

microscope.

Western blotting
MEFs were transduced with retroviral-vector CA-Akt1, CA-Akt2 or CA-

Akt3 and cultured in medium containing 10% FBS for 4 days. The cells

were then stimulated with either 1000 U/ml LIF or PBS for 20 mins.

Total cellular proteins were extracted using RIPA buffer (Thermo

Scientific, Pittsburg, PA) supplemented with 16 proteinase and

phosphatase inhibitors (Thermo Scientific). Proteins were quantified by

using a BCA-Quantification kit (Thermo Scientific) and subjected to 10%

SDS-PAGE gel electrophoresis using a BioRad mini-gel system before

being transferred to PVDF membranes.

The blotted membranes were blocked with 5% non-fat dry milk in TBS

plus TWEEN 20 (TBS-T) and incubated with primary antibodies at 4 C̊

overnight. The antibodies used were as follows: anti-Akt1 (1:5,000,

Millipore), anti-pAkt (1:5000, Cell Signaling, Danvers, MA), anti-Stat3

(1:2500, BD, Franklin Lakes, NJ), anti-pStat3 (1:5000, Cell Signaling),

anti-Erk2 (1:1000, BD), anti-pErk1/2 (1:2000, Millipore), and anti-a-

Tubulin (1:2000, Sigma). Other Akt isoforms and pan-Akt were blotted by

using Akt isoform antibody sampler kit from Cell Signaling. Membranes

were then washed and blotted with horseradish peroxidase (HRP)-

conjugated goat anti-mouse or goat anti-rabbit secondary antibodies

(1:5000, Santa Cruz, Santa Crutz, CA). Chemiluminescence was detected

by using the Pierce ECL Western-Blot Substrate (Thermo Scientific) and

X-ray film exposure. Developed films were scanned and quantified for

signal density by using ImageJ software (Schneider et al., 2012).

Quantitative real-time reverse transcription (RT)-PCR analysis
Total RNA was extracted using the RNeasy Extraction kit (Qiagen),

reverse transcribed using a SuperScript III Reverse Transcription Kit

(Invitrogen) and amplified with specific primers (supplementary material

Table S2). Real-time qRT-PCR was performed by using the SYBR Green

PCR Master Mix (ABI) and the ABI 7500 Fast instrument. Data were by

analyzed using the 7500 software version 2.0.2 provided with the

instrument. All values were normalized by using GAPDH as the internal

control and relative mRNA expressions were quantified by using the R1-

ESC cell line (R1) as the reference.

Apoptosis assay
Cells on day 8 of reprogramming were trypsinized and labeled by using

an Annexin V-FITC apoptosis detection kit (Sigma). Briefly, after

trypsinization, cells from each condition were resuspended in 0.5 ml

16binding buffer and incubated with 0.125 ug/ml Annexin V-FITC

(Annex) and 2 ug/ml propidium iodide (PI) for 30 minutes. Cells were

then analyzed with a BD FACSCalibur flow cytometer with fluorescence

excitation at 488 nm. Annexin V single-positive and Annexin/PI double-

positive cell gates were established based on populations seen in singly

labeled samples. The cell populations were analyzed using FlowJo

software.

Statistical analysis
Data were analyzed using One-Way ANOVA with Tukey’s multiple

comparisons or the Student’s t-test. All experiments were performed at

least twice (n§2). Figures were presented as mean 6 standard deviation

(s.d.). *P,0.05 or **P,0.01 were considered statistically significant.
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Abbondanzo, S. J. (1992). Blastocyst implantation depends on maternal
expression of leukaemia inhibitory factor. Nature 359, 76-79.

Stewart, S. A., Dykxhoorn, D. M., Palliser, D., Mizuno, H., Yu, E. Y., An, D. S.,
Sabatini, D. M., Chen, I. S., Hahn, W. C., Sharp, P. A. et al. (2003). Lentivirus-
delivered stable gene silencing by RNAi in primary cells. RNA 9, 493-501.

Takahashi, K. and Yamanaka, S. (2006). Induction of pluripotent stem cells from
mouse embryonic and adult fibroblast cultures by defined factors.Cell 126, 663-676.

Tang, Y., Lin, C. J. and Tian, X. C. (2011). Functionality and transduction
condition evaluation of recombinant Klf4 for improved reprogramming of iPS
cells. Cell Reprogram 13, 99-112.

Tang, Y., Luo, Y., Jiang, Z., Ma, Y., Lin, C. J., Kim, C., Carter, M. G., Amano, T.,
Park, J., Kish, S. et al. (2012). Jak/Stat3 signaling promotes somatic cell
reprogramming by epigenetic regulation. Stem Cells 30, 2645-2656.

Tschopp, O., Yang, Z. Z., Brodbeck, D., Dummler, B. A., Hemmings-
Mieszczak, M., Watanabe, T., Michaelis, T., Frahm, J. and Hemmings,
B. A. (2005). Essential role of protein kinase B gamma (PKB gamma/Akt3) in
postnatal brain development but not in glucose homeostasis. Development 132,
2943-2954.

van den Berg, D. L., Zhang, W., Yates, A., Engelen, E., Takacs, K., Bezstarosti,
K., Demmers, J., Chambers, I. and Poot, R. A. (2008). Estrogen-related
receptor beta interacts with Oct4 to positively regulate Nanog gene expression.
Mol. Cell. Biol. 28, 5986-5995.

van Oosten, A. L., Costa, Y., Smith, A. and Silva, J. C. (2012). JAK/STAT3
signalling is sufficient and dominant over antagonistic cues for the establishment
of naive pluripotency. Nat. Commun. 3, 817.

Vanhaesebroeck, B. and Alessi, D. R. (2000). The PI3K-PDK1 connection: more
than just a road to PKB. Biochem. J. 346, 561-576.

Watanabe, S., Umehara, H., Murayama, K., Okabe, M., Kimura, T. and Nakano,
T. (2006). Activation of Akt signaling is sufficient to maintain pluripotency in
mouse and primate embryonic stem cells. Oncogene 25, 2697-2707.

Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., Gearing,
D. P., Wagner, E. F., Metcalf, D., Nicola, N. A. and Gough, N. M. (1988).
Myeloid leukaemia inhibitory factor maintains the developmental potential of
embryonic stem cells. Nature 336, 684-687.

Yang, Z. Z., Tschopp, O., Baudry, A., Dümmler, B., Hynx, D. and Hemmings,
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