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Arl13b and the non-muscle myosin heavy chain IIA are required for
circular dorsal ruffle formation and cell migration
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ABSTRACT

The Arf-like protein Arl13b has been implicated in ciliogenesis and

Sonic hedgehog signaling. Furthermore, we have previously shown

that it regulates endocytic recycling traffic and interacts with actin.

Herein, we report that the non-muscle myosin heavy chain IIA,

also known as Myh9, is an Arl13b effector. Moreover, we found

that both proteins localized to circular dorsal ruffles (CDRs) induced

by platelet-derived growth factor stimulation and are required

for their formation. CDRs are ring-shaped actin-dependent

structures formed on the dorsal cell surface and are involved in

diverse processes, such as macropinocytosis, integrin recycling,

internalization of receptor tyrosine kinases and cell migration. We

found that Arl13b or Myh9 silencing impaired cell migration,

suggesting that Arl13b is required for this function through the

interaction with Myh9. Moreover, Arl13b silencing impaired neural

crest cell migration in zebrafish embryos. Furthermore, we showed

that Arl13b is required for the formation of CDRs in migrating cells.

Thus, our results indicate a new role for Arl13b in actin cytoskeleton

remodeling through the interaction with Myh9, by driving the

formation of CDRs necessary for cell migration.

KEY WORDS: Arl13b, Myosin heavy chain IIA, Myh9, Circular

dorsal ruffle, Small G protein, Actin cytoskeleton, Platelet-derived

growth factor signaling, Wound healing

INTRODUCTION
Cell migration is essential during development and wound

healing, and has been implicated in human diseases, such as

atherosclerosis and cancer (Ridley et al., 2003, Raftopoulou

and Hall, 2004). At the intracellular level, cell migration has

been shown to be regulated by polarized vesicle trafficking

and recycling of internalized proteins to the leading edge of

migrating cells (Fletcher and Rappoport, 2010; Ulrich and

Heisenberg, 2009). During this process, extracellular growth

factors activate receptor tyrosine kinase (RTK)-dependent

signaling, leading to extensive actin cytoskeleton remodeling

and to the formation of unique specialized structures, such as

circular dorsal ruffles (CDRs), lamellipodia and filopodia. CDRs

are highly dynamic ring-shaped structures that are rich in

filamentous actin (F-actin), and form on the dorsal surface of

epithelial cells and fibroblasts in response to stimulation with

growth factors, such as platelet-derived growth factor (PDGF)

and epidermal growth factor (EGF) (Hoon et al., 2012). Moreover,

CDRs have been implicated in macropinocytosis (Dowrick

et al., 1993), recycling of integrins (Gu et al., 2011), rapid actin

cytoskeleton remodeling during cell migration (Buccione

et al., 2004), and in the internalization and sequestration of a

number of RTKs, leading to their downregulation (Orth and

McNiven, 2006).

Members of the Ras superfamily of small G proteins have been

shown to play key roles in CDR formation. For instance, Rac1

and Rab5 have been found to be necessary for CDR formation

by controlling intracellular trafficking through early endosomes

(Lanzetti et al., 2004; Palamidessi et al., 2008). Small G proteins

can cycle between inactive GDP-bound and active GTP-

bound conformations. When in their GTP-bound form, they

recruit effector proteins that mediate vesicle budding from

donor organelles, vesicle transport along microtubules or actin

filaments, and tethering and fusion of vesicles to acceptor

compartments. Therefore, they control protein secretion,

endocytosis, recycling and degradation, among other functions,

and are widely recognized as essential regulators of intracellular

trafficking.

ADP-ribosylation-factor-like (Arl) proteins belong to the

Arf family of small G proteins and are thought to regulate

vesicle tethering to acceptor membrane compartments, as well

as cytoskeleton organization (Donaldson and Jackson, 2011).

However, their functions are still largely unknown and, for

most of them, there are no known effectors. Interestingly,

several Arl proteins, namely Arl3, Arl6 and Arl13b, have

been associated with the primary cilium, a mechanosensory

organelle involved in signal transduction. Arl13b was identified

as one causal locus for the ciliopathy Joubert syndrome,

an autosomal recessive disorder characterized by congenital

cerebellar ataxia, hypotonia, oculomotor apraxia, mental

retardation, cystic kidneys and polydactyly (Cantagrel et al.,

2008). Arl13bhnn mutant mice [also known as hennin mice

(hnn)] mimic the phenotype of Joubert syndrome patients, and

show coupled defects in cilia structure and Sonic hedgehog

(Shh) signaling (Caspary et al., 2007; Larkins et al., 2011,

Horner and Caspary, 2011).

Recently, we demonstrated that Arl13b regulates endocytic

recycling traffic (Barral et al., 2012). Additionally, we have

observed that Arl13b colocalizes with the actin cytoskeleton and

that it interacts with actin. Herein, we describe a new role for

Arl13b in the formation of CDRs. Moreover, we found that

Arl13b is required for cell migration, both in vitro and in vivo

and that it is necessary for CDR formation in migrating cells.

Furthermore, we identified the motor protein non-muscle myosin

heavy chain IIA, also known as Myh9, as an Arl13b effector.

Myh9 is one of the three isoforms of the non-muscle myosin II
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heavy chain found in humans and has been implicated in
the generation of cell polarity, cell motility, directional cell

migration and cell–cell adhesion (Conti and Adelstein, 2008;
Vicente-Manzanares et al., 2009). In addition, there is evidence
that Myh9 is involved in the docking and fusion events of the
secretory pathway that take place in the apical domain, below

the plasma membrane (Bond et al., 2011). Interestingly, we
found that Myh9 is also necessary for the formation of CDRs
induced by PDGF stimulation and for the interaction between

Arl13b and actin. Thus, our findings suggest that the mechanism
by which Arl13b and Myh9 regulate actin remodeling is
by driving the formation of CDRs that are required for cell

migration.

RESULTS
Arl13b localizes to circular dorsal ruffles
We have previously found that Arl13b interacts with actin
and colocalizes with actin filaments and cortical actin (Barral
et al., 2012). We extended these results and found that
Arl13b localizes in actin-rich peripheral regions that are

consistent with lamellipodia and filopodia (Fig. 1A). We
also analyzed whether Arl13b was present in other actin-
dependent structures. Strikingly, when NIH-3T3 cells

expressing wild-type Arl13b tagged with EGFP (Arl13b-wt–
EGFP) were treated with the growth factor PDGF-BB (the PDGF
homodimer comprising two PDGFB chains) for 20 minutes

to induce CDR formation, we found that Arl13b localized to

Fig. 1. Colocalization of Arl13b
with actin-rich structures. (A) NIH-
3T3 cells expressing Arl13b-wt–
EGFP (Arl13b wt-EGFP) were fixed
and stained with Alexa-Fluor-568-
conjugated phalloidin. At the cell
periphery, Arl13b localizes in actin-
rich structures that are consistent with
lamellipodia (arrows) and filopodia
(arrowhead). (B) NIH-3T3 cells
expressing Arl13b-wt–EGFP were
stimulated with PDGF-BB (30 ng/ml)
for the indicated times, fixed and
stained with Alexa-Fluor-568-
conjugated phalloidin to label actin or
with mouse monoclonal anti-cortactin
antibody. Enlarged views of the
indicated sections are shown in the
insets. Scale bars: 10 mm.
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these structures, identified by the presence of both F-actin
and the specific CDR marker cortactin (Ammer and Weed,

2008) (Fig. 1B). Moreover, when human primary fibroblasts
were transduced with lentiviruses encoding Arl13b-wt–EGFP,
upon PDGF stimulation, the protein was readily identified
in CDRs labeled by phalloidin or cortactin, suggesting that

this localization is not exclusive to transformed cell lines
(supplementary material Fig. S1A). Furthermore, to study
Arl13b localization during CDR formation, F-actin and Arl13b

were monitored by time-lapse microscopy in PDGF-stimulated
NIH-3T3 cells coexpressing Arl13b-wt–EGFP and Lifeact-ruby,
which binds F-actin. We observed the formation of a circular

structure, identified as a CDR because it is enriched in F-actin,
within the first 20 minutes of PDGF stimulation (supplementary
material Fig. S1B; Movie 1). This suggests that the localization of

Arl13b in CDRs is not an artifact of fixation and occurs in live
cells. Taken together, these results show that Arl13b becomes
rapidly concentrated in CDRs in response to growth factor
stimulation.

Arl13b is required for circular dorsal ruffle formation
Given that Arl13b interacts with actin and localizes to CDRs,

we asked whether it can regulate their formation. For this, we
used two distinct short hairpin RNAs (shRNAs) targeting
Arl13b, to achieve between 50 and 88% reduction in Arl13b

protein levels, as determined by immunoblotting (supplementary
material Fig. S2A). CDRs were present in ,49% of cells
transduced with shRNA control and stimulated with PDGF-

BB for 10 minutes, and in 47% of control mock-transfected
cells, whereas only ,19.5% of the Arl13b-silenced cells formed
CDRs, which were also noticeably smaller (Fig. 2A,B).
Furthermore, we quantified CDR formation in Arl13b-deficient

mouse embryonic fibroblasts (MEFs) over a timecourse and
observed that the formation of CDRs was impaired in Arl13bhnn

MEFs throughout the 30 minutes of PDGF stimulation, as

compared to wild-type MEFs (supplementary material Fig. S2B,C).
Finally, we confirmed that in human primary fibroblasts, Arl13b
silencing also impaired CDR formation (supplementary material

Fig. S2D). Importantly, this defect in CDR formation was
rescued by exogenous expression of Arl13b-wt–EGFP (Fig. 2B),
showing that the impairment in CDR formation upon Arl13b
silencing is not an off-target effect. Arl13b differs substantially

from other Arls because it contains a long C-terminal domain
of largely unknown function. We have previously found
that Arl13b 1–193 truncation mutant, which does not contain

the C-terminal region of Arl13b, is unable to colocalize with
the actin cytoskeleton (Barral et al., 2012). As a further control
for the specificity of the impairment of CDR formation in

Arl13b-depleted cells, we expressed exogenous EGFP-tagged
Arl13b 1–193 (Arl13b-1–193–EGFP) in cells where the
expression of Arl13b was silenced. We observed that unlike

Arl13b-wt–EGFP, Arl13b-1–193–EGFP was not capable of
rescuing CDR formation after Arl13b silencing, further
confirming the specificity of the rescue (Fig. 2B). Furthermore, a
mock control of the transfection confirmed the specificity of the

rescue obtained by exogenous expression of Arl13b-wt–EGFP. By
contrast, cells overexpressing Arl13b-wt–EGFP displayed an
,2.5-fold increase in CDR formation upon PDGF stimulation for

20 minutes, when compared to cells expressing EGFP or Arl13b-
1–193–EGFP (Fig. 2C). Taken together, these results strongly
suggest that Arl13b is required for the formation of PDGF-induced

CDRs.

Arl13b associates with macropinosomes and with early and
recycling endosomes
CDRs have been implicated in macropinocytosis, a regulated
form of endocytosis that mediates the non-selective uptake of
fluid-phase cargo (Swanson, 2008; Kerr and Teasdale, 2009).
This process can be monitored by following fluid-phase markers,

such as dextran (Kerr and Teasdale, 2009). Given that Arl13b is
necessary for CDR formation, we investigated whether Arl13b-
labeled CDRs matured into macropinosomes. To this end, NIH-

3T3 cells expressing Arl13b-wt–EGFP were incubated with
dextran in the presence of PDGF, and dextran uptake was
monitored by confocal microscopy over a timecourse. After

5 minutes of PDGF stimulation, we observed Arl13b in circular
structures that were labeled by F-actin but did not contain dextran
(Fig. 3A). Therefore, they can be identified as CDRs, which

are open to the extracellular milieu and are not able to retain
fluid-phase markers. Interestingly, after 10 minutes of PDGF
stimulation, cells expressing Arl13b-wt–EGFP showed dextran
accumulation in structures that contained Arl13b but were

negative for F-actin (Fig. 3A). These can be identified as
macropinosomes, which are intracellular structures that retain
fluid-phase markers and are devoid of F-actin. Thus, these

observations suggest that after being recruited to CDRs, Arl13b is
incorporated into macropinosomes.

Next, we sought to assess the localization of Arl13b after a

longer incubation with PDGF, because after macropinosome
disassembly, cargo that has been taken up through CDRs, such as
integrins, traffics through early and recycling endosomes (Gu et al.,

2011). Interestingly, we observed that after 30 minutes of PDGF
stimulation, Arl13b partially colocalized with early endosome
markers (EEA1 and Rab5a), as well as with a recycling endosome
marker (transferrin), in small vesicles dispersed throughout the

cytoplasm (Fig. 3B–D). This supports our previous studies, where
we found a role for Arl13b in the recycling pathway (Barral et al.,
2012). Taken together, this data suggests that Arl13b is internalized

upon growth factor stimulation in CDRs and traffics through early
and recycling endosomes.

Arl13b is required for in vitro and in vivo cell migration
In order to investigate whether Arl13b is associated with CDR-
dependent functions, we examined whether Arl13b is required
for cell migration. For this, we monitored cell migration in two

different ways, namely by using scratch ‘wound healing’ and
transwell migration assays. In the former, a monolayer of cells
was scratched with a pipette tip. The migration of cells to close

the ‘wound’ was assessed after 16 hours by measuring the area
free of cells. Strikingly, Arl13b silencing resulted in a significant
delay (,50%) in PDGF-dependent wound closure in NIH-3T3

cells (Fig. 4A,B). Next, we confirmed that Arl13b deficiency
in Arl13bhnn MEFs also resulted in delayed wound closure
(supplementary material Fig. S3A,B). Similarly, we observed that

Arl13b silencing in HeLa cells led to impairment in wound
closure (supplementary material Fig. S3C), suggesting that
Arl13b requirement for cell migration is general and conserved.
Moreover, given that HeLa cells do not possess cilia (Alieva

et al., 1999), this function is presumably independent of the
primary cilium, where Arl13b has a known role. Conversely,
when Arl13b-wt–EGFP was overexpressed in NIH-3T3 or

HeLa cells, an increase in the percentage of wound closure
was observed when compared with cells overexpressing
Arl13b-1–193–EGFP, EGFP or non-transfected cells (Fig. 4C;

supplementary material Fig. S3D). Furthermore, cell migration
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Fig. 2. Arl13b is required for CDR formation.
NIH-3T3 cells were transduced with Arl13b
shRNAs (F2 and F3), control shRNA (Mission) or
no shRNA (Mock), followed by starvation and
treatment with PDGF-BB for 10 minutes (30 ng/
ml). (A) NIH-3T3 cells transduced with either
control or Arl13b shRNAs were stimulated with
PDGF-BB for 10 minutes and stained with Alexa-
Fluor-568-conjugated phalloidin and anti-cortactin
antibody to identify CDRs. DAPI was used to stain
nuclei. Arrows indicate CDRs. Scale bar: 10 mm.
(B) Quantification of CDRs in control and Arl13b-
silenced cells. Rescue experiments were
performed by transfection of Arl13b-wt–EGFP
(Arl13b wt-EGFP) or Arl13b-1–193–EGFP (Arl13b
1-193-EGFP) constructs. A control of the
transfection (Mock) was performed in cells
previously transduced with shRNA for Arl13b (F2
and F3). Results are mean6s.d. of three
independent experiments; 125–150 cells were
counted per experiment. (C) Quantification of
PDGF-induced CDR formation for the indicated
times in cells transiently transfected with Arl13b-
wt–EGFP, Arl13b-1–193–EGFP or EGFP, used as
a negative control. Results are mean6s.d. of four
independent experiments, .200 cells counted per
experiment. ***P,0.001, two-way ANOVA.
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was assessed using a modified Boyden chamber transwell
assay. Consistent with the scratch wound healing assays, this

approach revealed that Arl13b-silenced cells were defective in
PDGF-induced cell migration (Fig. 4D,E). Hence, these results
show that Arl13b is required for cell migration, as measured by

wound healing and transwell assays.
Interestingly, we observed that Arl13b was recruited to the

leading edge of cells at the forefront of closing wounds, where it
colocalizes with the actin cytoskeleton (supplementary material

Fig. S4A). Moreover, CDRs have been implicated in the
transition from static to motile cell states (Gu et al., 2011;
Sero et al., 2011). Therefore, in order to investigate whether

Arl13b-deficient cells cannot migrate properly owing to
deficient CDR formation, immunofluorescence analysis was
carried out on migrating cells in the wound healing model.

For this, NIH-3T3 cell monolayers were fixed 4 hours after
scratching, in the presence of PDGF. Typical CDRs, identified
by the presence of both phalloidin and cortactin, were observed

in ,50% of shRNA control cells lining the edge of the closing
wounds, showing that migrating cells possess CDRs. However,
in Arl13b-silenced cells, only ,15% of the cells lining
the wound edges formed CDRs (Fig. 4F,G). Importantly,

Arl13b silencing efficiency was confirmed by immunoblotting

(supplementary material Fig. S4B). Taken together, these results
suggest that the observed defects in cell migration in cells

depleted of Arl13b can be associated with the significant
decrease in CDR formation in cells that are migrating into
closing wounds.

Finally, we assessed the Arl13b requirement for cell migration in
a well-established in vivo model. For this, we used the sox10 gene,
which is expressed during neural crest cell migration from the
neural tube into the somite region in zebrafish embryos (Dutton

et al., 2001). At 24 hours post-fertilization (hpf), migratory neural
crest cells, labeled by sox10, gradually migrated from the neural
tube into the trunk of wild-type embryos (Fig. 4H). However, when

zebrafish embryos were treated with a morpholino antisense
oligonucleotide to temporarily silence Arl13b expression, there
was a significant delay in the onset of migration of neural crest

cells expressing sox10 when compared to stage-matched siblings
(Fig. 4H). Importantly, this defect in neural crest cell migration
could be rescued when Arl13b morpholino was injected into

Arl13b transgenic zebrafish embryos that overexpress mouse
Arl13b, which is not targeted by the morpholino (Borovina et al.,
2010) (Fig. 4H). Taken together, these results show that Arl13b is
required for cell migration both in vitro and in vivo, probably

through the formation of CDRs at sites of migration.

Fig. 3. Arl13b localizes to macropinosomes and colocalizes with early and recycling endosome markers. (A) The fluid-phase marker dextran, conjugated
to Alexa Fluor 546 (0.3 mg/ml), was added to the medium of NIH-3T3 cells expressing Arl13b-wt–EGFP (Arl13b wt-EGFP) for 10 minutes and stimulated with
PDGF-BB (30 ng/ml) for 5 or 10 minutes. Cells were fixed and stained with Alexa-Fluor-635-conjugated phalloidin for 30 minutes. Arrows point to CDRs;
the images in the lower panels are enlarged views of areas indicated by the boxes and show a macropinosome. (B,C) NIH-3T3 cells expressing Arl13b-wt–
EGFP and stained with anti-EEA1 antibody (B) or co-expressing Arl13b-wt–EGFP and Rab5a–mCherry (C) were stimulated with PDGF-BB (30 ng/ml) for 10 or
30 minutes and then fixed. (D) NIH-3T3 cells expressing Arl13b-EGFP were incubated with Alexa-Fluor-546-conjugated transferrin (10 mg/ml) for
30 minutes after 1 hour of serum-starvation, and then were stimulated with PDGF (for 10 or 30 minutes) and fixed. Arrows indicate Arl13b in early and recycling
endosomes. Scale bars: 10 mm.
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Fig. 4. See next page for legend.
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Non-muscle myosin heavy chain IIA is an Arl13b effector
To determine the molecular mechanism by which Arl13b
interacts with actin and mediates CDR formation, we attempted
to identify Arl13b-binding partners. Moreover, by co-

immunoprecipitation of cell extracts loaded with a non-
hydrolyzable analog of GTP, GTPcS, we specifically
attempted to identify Arl13b effectors that bind to the active
form of the protein. Interestingly, we were able to detect a band

of ,230 kDa in one-dimensional SDS-PAGE that was absent in
the control (IgG) and GDP-loaded lanes (Fig. 5A). After mass
spectrometry of tryptic peptides, this band was identified as the

non-muscle heavy chain myosin IIA, which is also known as
Myh9. This myosin is a ubiquitously expressed contractile
protein that has been implicated in the regulation of cell

spreading and directional cell migration in response to several
stimuli (Vicente-Manzanares et al., 2009; Conti and Adelstein,
2008). We confirmed the interaction between Myh9 and Arl13b

by co-immunoprecipitation using an anti-Arl13b antibody
followed by detection of Myh9 in NIH-3T3 cell extracts by
immunoblotting (Fig. 5B). In agreement with the proteomics
approach, a band with the expected size of about 230 kDa was

observed when the co-immunoprecipitation was performed in
the presence of GTPcS, but not in the presence of GDP or in
control reactions where an isotype control antibody was used

(Fig. 5B). This result shows that Myh9 interacts with Arl13b
only when Arl13b is in its active state, that is, Myh9 is a bona
fide Arl13b effector. Importantly, when a similar strategy was

employed in Arl13b-depleted cells, namely Arl13bhnn MEFs, the
interaction between Arl13b and Myh9 could not be detected

(Fig. 5C), showing the specificity of the binding.
We have previously shown that Arl13b co-immunoprecipitates

with b-actin (Barral et al., 2012). Interestingly, we now observed
that Arl13b interacts preferentially with b-actin when is in its

active or GTP-bound form, with a slight but significant increase
in binding in response to PDGF (supplementary material Fig.
S4C). Finally, to test whether Myh9 is required for the interaction

between Arl13b and actin, we studied the effect of Myh9
silencing on this interaction. Strikingly, we observed that in NIH-
3T3 cells silenced for Myh9 (Fig. 5E), the interaction of Arl13b

with b-actin was abolished (Fig. 5D). Thus, these data strongly
suggest that Myh9 binds to Arl13b in its GTP-bound form and is
necessary for the interaction between Arl13b and actin.

Myh9 is required for circular dorsal formation and
cell migration
To know if Myh9 colocalizes with Arl13b, we used a polyclonal

anti-Myh9 antibody to detect the protein in NIH-3T3 cells. In
non-stimulated cells, Myh9 colocalized with actin stress fibers in
the cytosol and in lamellipodia at the cell periphery (Fig. 6A).

After treatment with PDGF, we observed that Myh9 localized
to CDRs, which were decorated by phalloidin and cortactin.
Moreover, when NIH-3T3 cells transiently expressing Arl13b-

wt–EGFP were stimulated with PDGF and immunostained
with anti-Myh9 antibody, we observed a striking colocalization
between Arl13b and Myh9 in CDRs (Fig. 6A). Furthermore, in

Myh9-silenced cells, CDR formation was impaired upon PDGF
stimulation for 20 minutes, suggesting that, similar to Arl13b,
Myh9 is required for the formation of CDRs (Fig. 6B and
supplementary material Fig. S4D). The specificity of this effect

was shown by efficient rescue of the CDR formation impairment
through the exogenous expression of Myh9–EGFP, using EGFP as
a negative control (Fig. 6B). To determine whether Arl13b-

mediated CDR formation requires Myh9, Arl13b-wt–EGFP was
transiently expressed in control or Myh9-silenced cells. We found
that the striking localization of Arl13b in CDRs observed in control

cells was reduced when Myh9 was silenced (Fig. 7A,B), suggesting
that the recruitment of Arl13b to CDRs is dependent on Myh9.
Moreover, expression of Arl13b-wt–EGFP significantly enhanced
PDGF-induced CDR formation in control cells but not in Myh9-

silenced cells (Fig. 7C). Taken together, these results suggest that
Myh9 is necessary for Arl13b-mediated CDR formation and
support our previous observations that Arl13b is specifically

localized in CDRs upon PDGF-stimulation. Interestingly, Myh9
has previously been shown to be required for cell migration
(Betapudi et al., 2006; Even-Ram et al., 2007). Given that we found

that Myh9 is an Arl13b effector, and that Arl13b is required for cell
migration, we examined the role of Myh9 in cell migration in
response to PDGF stimulation. Transfection of NIH-3T3 cells with

small interfering RNA (siRNA) targeting Myh9 reduced the
percentage of wound closure by half, when compared with
siRNA control, confirming previous studies (Fig. 7D,E). Thus,
our data strongly suggests that Arl13b regulates CDR formation

through the interaction with Myh9.

DISCUSSION
Arl13b has been described to be involved in ciliogenesis and Shh
signaling (Caspary et al., 2007; Larkins et al., 2011). Recently,
we also found that Arl13b regulates endocytic recycling traffic

and that it associates with the actin cytoskeleton and interacts

Fig. 4. Arl13b is required for cell migration. Endogenous Arl13b was
silenced by specific shRNAs (F2 and F3) in NIH-3T3 cells. (A) Control or
Arl13b-silenced cells grown to confluence were scratched with a pipette tip
and stimulated with PDGF to induce cell migration. Representative images
taken at 0 and 16 hours post-wounding of control and Arl13b-silenced cells
are shown. (B) Quantitative analysis of wound closure (%) after 16 hours
was performed as described in Materials and Methods. Results are
mean6s.d. of three independent experiments. (C) NIH-3T3 cells expressing
Arl13b-wt–EGFP (Arl13b wt-EGFP), Arl13b-1–193–EGFP (Arl13b 1-193-
EGFP) or EGFP for 24 hours were allowed to form a monolayer and then
scratched. Quantitative analysis of wound closure (%) was performed
16 hours after scratching. Results are mean6s.d. of three independent
experiments. (D) Arl13b-silenced or control NIH-3T3 cells were added to the
upper chamber of 8-mm-pore membranes and allowed to migrate for 6 hours.
Representative fields of Crystal-Violet-stained cells that migrated to the
lower surface of the membranes are shown for control shRNA (Mission) and
Arl13b shRNAs (F2 and F3). Scale bars: 100 mm. (E) Quantification of the
transwell migration was performed as described in Materials and Methods.
Results are mean6s.d. of three independent experiments.
(F) Immunofluorescence analysis of CDR formation at the leading edge of
migrating control and Arl13b-silenced cells. After 4 hours of incubation in the
presence or absence of PDGF-BB (20 ng/ml), cells were fixed and stained
with Alexa-Fluor-568-conjugated phalloidin and anti-cortactin antibody to
identify CDRs. DAPI was used to stain nuclei. Arrows indicate wound
direction, and insets show CDRs at higher magnification. Scale bar: 10 mm.
(G) Quantification of CDRs in control (Mock and shRNA Mission) and Arl13b-
silenced cells (shRNAs F2 and F5) at the edge of closing wounds. Results
are mean6s.d. of three independent experiments. (H) Neural crest cell
migration in Arl13b morpholino (MO)-injected zebrafish embryos. At 24 hours
post fertilization, zebrafish embryos injected with Arl13b-MO and hybridized
with sox10 probe, revealed that trunk neural crest cells failed to migrate
(n517), when compared with uninjected wild-type siblings (WT, n518).
Arrows indicate the region where neural crest cell migration occurred from
anterior to posterior somites. Rescue was performed by injection of Arl13b-
MO in a zebrafish transgenic line [Tg (Arl13b)], which expresses mouse
Arl13b–GFP (which is not targeted by the morpholino) in addition to the
endogenous zebrafish Arl13b (n516). Arrowheads indicate neural crest cells
at the posterior somites. *P,0.05; **P,0.005 (B,E, Student’s t-test);
***P,0.001 (C,G, two-way ANOVA).
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with actin (Barral et al., 2012). Here, we identify a new role

for Arl13b in the formation of CDRs and in cell migration. In
particular, we found that Arl13b becomes associated with the
actin cytoskeleton that encircles CDRs in response to growth

factor stimulation, and with the macropinosomes that form
after CDR closure. CDRs constitute important platforms for
sequestration and internalization of membrane-bound proteins,

such as growth factor receptors, and also exert an important role

in the fast remodeling of the actin cytoskeleton during cell
migration. In recent years, several reports have identified new
regulators of CDRs (Hoon et al., 2012). Previous studies have

shown that the Rac, Ras and Rab5 small GTPases play a role in
the regulation of CDR formation (Palamidessi et al., 2008). In
addition, overexpression of Arf GTPase-activating proteins

Fig. 5. Myh9 is an Arl13b effector. (A) Lysates from NIH-3T3
cells were immunoprecipitated (IP) with anti-Arl13b antibody in
the presence of non-hydrolyzable GTP (GTPcS) or GDP.
Rabbit-IgG was used as a negative control. Immunoprecipitated
products were analyzed by SDS-PAGE and visualized by
Coomassie Brilliant Blue staining. Protein bands were excised
and identified by mass spectrometry. (B) Validation of the
Myh9–Arl13b interaction by immunoprecipitation of NIH-3T3
lysates with anti-Arl13b antibody or rabbit IgG in the presence of
GTPcS or GDP. Immunoprecipitation products were analyzed
by immunoblotting (IB) using the indicated antibodies. (C) Total
cell lysates obtained from Arl13bhnn (hnn) and wild-type (wt)
MEFs were immunoprecipitated with anti-Arl13b antibody or
rabbit IgG in the presence of GTPcS or GDP. The
immunoprecipitated products were analyzed by immunoblot
with the indicated antibodies. (D,E) NIH-3T3 cell lysates from
cells transfected with siRNA control or siRNA targeting Myh9, or
that had been mock-transfected, were subjected to
immunoprecipitation with anti-b-actin antibody in the presence
of GTPcS or with mouse IgG1 isotype, as a negative control.
Immunoprecipitation products were analyzed by
immunoblotting using anti-Arl13b antibody. (E) Myh9 silencing
was confirmed in the input with anti-Myh9 antibody. Anti-
GAPDH antibody was used as a loading control. The
percentage of Myh9 expression relative to Mock, determined
using ImageJ software, is indicated.
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Fig. 6. Myh9 colocalizes with Arl13b in
CDRs and is required for CDR
formation. (A) NIH-3T3 cells transfected
with Arl13b-wt–EGFP (Arl13b wt-EGFP)
or not were serum-starved, stimulated
with PDGF-BB (30 ng/ml) for 10 minutes,
fixed and stained with anti-Myh9 and anti-
cortactin antibodies or Alexa-Fluor-568-
conjugated phalloidin. Scale bars: 10 mm.
(B) Myh9-silenced and control cells were
serum-starved and stimulated with PDGF-
BB (30 ng/ml) for 10 or 20 minutes, fixed
and stained with anti-cortactin antibody
and Alexa-Fluor-568-conjugated
phalloidin to identify CDRs. Rescue
experiments were performed on control
cells and cells silenced for Myh9, by
transiently expressing Myh9–EGFP or
EGFP. Results are mean6s.d. of three
independent experiments; .150 cells
counted per experiment in each condition.
***P,0.001, two-way ANOVA.
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(GAPs), such as ASAP1 and ASAP3, has been shown to strongly

inhibit CDR formation (Randazzo et al., 2000). In another study,
the Arf GAP ARAP1 has been shown to regulate CDR size
through Arf1 and Arf5 (Hasegawa et al., 2012). However, to our
knowledge, Arl13b is the first Arl reported to date to localize to

CDRs and to regulate their formation. Furthermore, CDRs have

been associated with cell migration (Hoon et al., 2012).

Supporting an important function for Arl13b in the formation
and function of these structures, we have shown that cells
silenced for Arl13b are defective in CDR formation and cell
migration. Conversely, overexpression of Arl13b promotes CDR

formation and cell motility. Importantly, we have also shown that

Fig. 7. See next page for legend.
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PDGF-stimulated cell migration is accompanied by an increase in

the formation of Arl13b-positive CDRs in migrating cells. These
findings suggest that Arl13b is involved in growth-factor-induced
actin remodeling and provide insights into the molecular mechanism

by which Arl13b is necessary for cell migration. Interestingly, it has
recently been shown that Arl13b in primary cilia is required for
efficient interneuronal migration into the dorsal cerebral cortex

(Higginbotham et al., 2012). In particular, those authors observed
that Arl13b is required for ciliary localization of receptors for
interneuronal migration guidance cues, such as 5-hydroxytryptamine
(serotonin) receptor subtype 6 (5-HTR6). In this study, we have

shown that HeLa cells, which lack primary cilia, display impaired
cell migration when Arl13b is silenced. This suggests that the role of
Arl13b in cell migration is more general and independent of cilia.

Moreover, we monitored the migration of neural crest cells in vivo in
a vertebrate model organism, the zebrafish. Whether cilia are present
in trunk neural crest is not yet fully clear. Nevertheless, this

experiment confirmed that Arl13b deficiency reduces the migration
of neural crest cells, a defect that could be rescued by the exogenous
expression of the protein in Arl13b transgenic zebrafish.

Small G proteins can bind various effectors, such as motors,
kinases and phosphatases, in their GTP-bound active conformation.
Herein, we have identified a new Arl13b effector, the non-muscle
myosin heavy chain IIA, also known as Myh9, which interacts with

Arl13b only in its GTP-bound form. To our knowledge, Myh9 is the
first bona fide Arl13b effector found to date. Myh9 is one of three
distinct isoforms of the non-muscle myosin II heavy chain, an actin-

dependent motor protein involved in the regulation of cell adhesion,
cell migration and tissue architecture (Vicente-Manzanares et al.,
2009). Previous studies have shown that Myh9 depletion by siRNA

results in defects in cell migration and lamellar spreading (Betapudi
et al., 2006). Moreover, Myh9 has been shown to be required for
internalization of EGF (Kim et al., 2012). We found that Myh9 and

Arl13b colocalize in PDGF-induced CDRs and that silencing of
Myh9 expression by siRNA impairs CDR formation. Similar to what
has been described by others, we confirmed that Myh9 silencing
impairs cell migration. We have also found that the interaction

between Arl13b and actin requires Myh9. However, it remains to be
established whether the Myh9 interaction with Arl13b is direct and,
if so, what is (are) the domain(s) involved in the interaction.

Cell migration hinges on trafficking of signaling and adhesion
molecules towards the leading edge, a process that requires the

regulation of cytoskeletal and vesicle trafficking machineries.
Impairment of the endocytic and/or exocytic trafficking of

integrins dramatically affects the polarity and directionality of
cell migration (Caswell and Norman, 2008). In addition, it has been
shown that CDRs recruit cell surface integrins and internalize them
through macropinocytosis for recycling towards the leading edge

of migrating cells (Gu et al., 2011). Given that we have shown that
Arl13b regulates endocytic recycling traffic (Barral et al., 2012)
and found that, upon PDGF stimulation, Arl13b associates with

macropinosomes and with early and recycling endosomes, it is
plausible that Arl13b is involved in integrin recycling towards the
leading edge in growth-factor-stimulated cell migration. However,

this remains to be established.
Thus, our results uncover an important function for Arl13b in

processes that are dependent on actin cytoskeleton remodeling

and culminate with cell migration, and suggest that the interaction
between Arl13b and Myh9 is necessary for the generation of
contractile forces that are required for this process.

MATERIALS AND METHODS
Cell culture
Cell culture reagents were obtained from Invitrogen. HeLa cells were

maintained at 37 C̊ and 5% CO2, in Dulbecco’s modified Eagle’s medium

(DMEM, Invitrogen) supplemented with 10% fetal bovine serum (FBS,

Invitrogen), 100 U/ml penicillin G, 100 mg/ml streptomycin, 2 mM L-

glutamine and 20 mM HEPES (Invitrogen). NIH-3T3 cells were

maintained in the same medium with 10% bovine calf serum (Sigma),

instead of FBS. Wild-type and Arl13bhnn immortalized mouse embryonic

fibroblasts (MEFs, a kind gift of Tamara Caspary, Department of Human

Genetics, Emory University, Atlanta, GA) were maintained in dishes

coated with 0.2% gelatin (Sigma) in the same medium as HeLa cells,

further supplemented with 1 g/l sodium bicarbonate. Primary human

fibroblasts were established from skin biopsies and grown in the same

medium as HeLa cells with 5% FBS (Invitrogen). To stimulate CDR

formation and cell migration, cells were serum-starved for the indicated

periods, followed by PDGF-BB (Sigma) addition at a final concentration of

20–30 ng/ml for the indicated periods, before being analyzed.

Transfection and constructs
Transfections were performed using Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions and experiments performed

24 hours after transfection. Arl13b-wt–EGFP construct was a kind gift from

Kenji Kontani (University of Tokyo, Japan). Arl13b-1–193–EGFP mutant

was as described previously (Barral et al., 2012). Lifeact-ruby plasmid was

obtained from Abp140-17aaRuby-nos1-39UTR (B007) (modified by R.

Mateus, CEDOC, Riedl et al., 2008). Rab5a was amplified by PCR using

primers 59-CAGCGAATTCATGGCTAATCGAGGAGCAACAAGAC-

CCAAC-39 (forward) and 59-ACACGTCGACGGAATAGCCAACA-

TGA-39, and then cloned into pcDNA ENTRBPV5 mcherry-C2 using

EcoRI/SalI. pcDNA ENTR BP V5 mcherry-C2 was constructed on a

backbone of pcDNA6.2/GW/EmGFP (Invitrogen), an expression

mammalian vector with Gateway technology (Invitrogen), by swapping

EmGFP by V5 and polylinker, using DraI. mCherry was amplified from

pCMV myc-mCherry, using 59-GATCAGATCTATGGTGAGCAAG-

GGCGAGGAGGATAAC-39 (forward) and 59-TCGAGTCCTTGTACA-

GCTCGTCCATGCGCCG-39 (reverse) as primers, and then cloned using

BglII/XhoI. siRNA smart pool against Myh9 and siRNA genome non-

targeting sequence no. 3, used as control, were transfected with Dharmafect

1 reagent (Dharmacon), according to the manufacturer’s instructions.

Experiments were performed after 72–96 hours of transfection with siRNAs.

Cell transduction
NIH-3T3, HeLa or primary human fibroblasts were plated at 26105 cells

per well on six-well plates and infected with shRNA-encoding

lentiviruses the next day. For this, 6 mg/ml polybrene (hexadimethrine

bromide, Sigma) was added to the cells before the virus. After 24 hours,

2 mg/ml puromycin (Sigma) was added and cells selected for at least a

Fig. 7. Myh9 is necessary for Arl13b-mediated CDR formation and cell
migration. NIH-3T3 cells silenced for Myh9 and control cells (mock and
siRNA Control) were transfected with Arl13b–wt-EGFP (Arl13b wt-EGFP) or
EGFP, serum-starved and stimulated with PDGF-BB (30 ng/ml) for
10 minutes. Cells were fixed and stained with anti-cortactin antibody to
identify CDRs. (A) Immunofluorescence analysis of CDRs after transfection
of Myh9-silenced or control cells with Arl13b-wt–EGFP. Enlarged views of the
indicated sections are shown in the insets. Scale bars: 10 mm.
(B) Quantification of cortactin-positive CDRs containing Arl13b-wt–EGFP.
Results are mean6s.d. of three independent experiments; .150 cells
counted per experiment in each condition. (C) After transfection of EGFP or
Arl13b-wt–EGFP in Myh9-silenced or control cells, the number of EGFP-
positive cells containing at least one CDR after PDGF stimulation was
counted. Results are mean6s.d. of three independent experiments; .100
cells counted per condition). (D) Myh9-silenced and control cells grown to
confluence were serum-starved and the monolayer was scratched using a
pipette tip. Wound closure was monitored for 6 hours. Representative
images for both control siRNA and siRNA for Myh9 are shown. (E) The
wound area was measured at 0 and 6 hours. Wound closure (%), quantified
as described in Materials and Methods was determined in three independent
experiments. *P,0.05 (B, Student’s t-test); ***P,0.001 (C,E; two-way
ANOVA).
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week before being assayed. The shRNA sequences for human cells and

the negative control sequence (Mission) are described elsewhere (Barral

et al., 2012). For mouse cells, the shRNA sequences are: F2, 59-

CGGCCTTGATAATGCTGGTAA-39; F3, 59-GCAAAGGACTTTG-

ATGCCTTA-39; and F5, 59-CCTGTCAGAAAGGTGACACTT-39.

Primary human fibroblasts grown on coverglasses placed inside 24-

well plates (16104 cells per well) were infected with L13 Arl13b-EGFP

lentivirus (a kind gift from Tamara Caspary) in the presence of 6 mg/ml

polybrene for 5 days. Cells were then serum-starved for 5 hours in

DMEM supplemented with 0.5% BSA, and CDR formation was

stimulated by the addition of PDGF-BB (20 ng/ml, Sigma).

Immunoblotting and immunoprecipitation
Cells were lysed in cold lysis buffer (50 mM Tris-HCl pH 7.4, 0.1% Triton

X-100, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 2 mM MgCl2 and

1 mM DTT), in the presence of protease and phosphatase inhibitors, for

30 minutes on ice, followed by centrifugation at 12,000 g for 15 minutes at

4 C̊. Protein concentration was determined using the DC protein assay kit

(Bio-Rad) and equal amounts (50 mg) of each sample were loaded on 8–10%

SDS-polyacrilamide gels, transferred onto nitrocellulose membranes in

transfer buffer (25 mM Tris, 192 mM glycine, 0.025% SDS and 20%

methanol) for 90 minutes at 500 mA and processed for immunoblotting.

Membranes were blocked with blocking buffer (5% skimmed milk and 0.1%

Tween-20 in PBS) and the antibodies incubated in the same buffer. Affinity-

purified rabbit polyclonal anti-Arl13b antibody (Barral et al., 2012) was

used at 3 mg/ml, anti-GAPDH antibody (SicGen) at 0.2 mg/ml, anti-Myh9

antibody (Sigma) at 1 mg/ml. Horseradish peroxidase (HRP)-conjugated

secondary antibodies (GE Healthcare) were used at 0.4 mg/ml. Blots were

developed with the Immun-StarTM WesternCTM chemiluminescent kit (Bio-

Rad) according to the manufacturer’s instructions and a Molecular Imager

Chemidoc XRS (Bio-Rad) was used to detect the chemiluminescence. Band

intensities were quantified using ImageJ software and normalized using

GAPDH as a loading control. For immunoprecipitation, cell lysates (1.5 mg

total protein) were pre-cleared for 1 hour with Protein-G–Sepharose beads

(Sigma). GTPcS (0.5 mM, Sigma) or GDP (5 mM, Sigma) were added to

the pre-cleared lysates for 15 minutesat room temperature. Immunoprecipitation

was performed using anti-b-actin (Sigma, clone AC-15, 1 mg/ml) or

affinity purified rabbit polyclonal anti-Arl13b antibody (3 mg/ml; Barral

et al., 2012) for 16 hours at 4 C̊ with rotation. Protein-G–Sepharose beads

were then added and mixed for 4 hours at 4 C̊. Beads were recovered by

centrifugation, washed once with lysis buffer with a high salt concentration

(500 mM NaCl), three times with lysis buffer, and finally were

resuspended in Laemmli sample buffer. After boiling at 95 C̊ for

5 minutes, the immunoprecipitates were resolved by 8–10% SDS-PAGE

followed by immunoblotting with anti-Myh9 or anti-Arl13b antibodies or

visualization with Colloidal Coomassie BB (Neuhoff et al., 1988).

Dextran and transferrin internalization assay
To analyze macropinocytosis, NIH-3T3 cells were transfected with Arl13b-

wt–EGFP for 24 hours, serum-starved for 5 hours and further stimulated

with PDGF-BB (25 ng/ml) together with 0.3 mg/ml tetramethylrhodamine-

labeled lysine-fixable 10 kDa dextran (Invitrogen) in serum-free DMEM

for 5, 10 or 20 minutes at 37 C̊. The cells were washed three times with pre-

chilled PBS, fixed with 4% paraformaldeyde overnight and then stained

with Alexa-Fluor-568-conjugated phalloidin (Invitrogen). The analysis was

performed using a Zeiss 710 LSM confocal microscope equipped with a

Plan-Apochromat 6361.40 NA oil Ph3 lens and Zeiss Zen 2010 software.

For transferrin recycling, NIH-3T3 cells were transfected with Arl13b-wt–

EGFP for 24 hours and serum-starved for at least 1 hour and then incubated

with PDGF-BB (25 ng/ml) and Alexa-Fluor-546-conjugated transferrin

(10 mg/ml, Invitrogen) for 30 minutes at 37 C̊. The cells were then rinsed in

PBS and fixed immediately.

Transwell migration and scratch wound healing assays
Transwell migration assays were performed using modified Boyden

chambers. The underside of the polycarbonate membrane (8-mm pore

size; Corning) was coated for 16 hours at 4 C̊ with 10 mg/ml fibronectin

(Sigma), washed once with PBS and the chamber filled with DMEM

containing 0.5% BSA (starvation medium), with the coated surface

facing downward. Cells silenced for Arl13b with shRNAs (F2, F3 and

F5) were serum-starved for 5 hours, counted and 16105 cells (in 100 ml)

added to the upper chamber compartment for each condition. After

2 hours of incubation at 37 C̊ and 5% CO2, 30 ng/ml of PDGF-BB were

added into the lower well to induce cell migration. After 6 hours of

migration, the upper filter membrane surface was wiped to remove cells

that had not migrated through the filter, and the filter was fixed and

stained with 0.1% (w/v) Crystal Violet in 20% methanol for 15 minutes

to identify cells on the lower filter membrane surface. The number of

cells that migrated through the 0.8-mm2 transwell membrane was

counted in at least ten randomly-selected areas in triplicate for each

condition and represented as the percentage of migration relative to

control cells. For scratch wound healing assays, NIH-3T3, HeLa,

Arl13bhnn or wild-type MEFs were grown to confluence and the

monolayer scratched using 200 ml pipette plastic tips. After washing

once with PBS, DMEM supplemented with 0.5% BSA was added

together with PDGF-BB (30 ng/ml). Images were taken from each well

immediately [time (t) 0] and after 8–16 hours. The area of cell migration

from the initial wound edge was measured in ten random areas

using Zeiss Axiovision software. Wound closure (%) was determined

as follows: [12(wound area at t58–16 hours/wound area at t5

0 hours)6100]. For immunofluorescence analyses, slides were fixed in

4% paraformaldeyde for 15 minutes at room temperature and further

processed for immunofluorescence, using Alexa-Fluor-568-conjugated

phalloidin (0.2 units/ml, Invitrogen), anti-cortactin antibody (0.6 mg/ml,

Millipore) and DAPI (1 mg/ml, Sigma), to stain nuclei.

Mass spectrometry
For mass spectrometry (MS), immunoprecipitated bands of interest were

excised and digested with 6.7 ng/ml trypsin (Promega) in 50 mM

NH4HCO3 and incubated overnight at 37 C̊. Digested peptides were

desalted and concentrated with microcolumns produced in-house using

GELoader tips packed with POROS R2 (Applied Biosystems, 20-mm

bead size) and eluted directly onto the matrix-assisted laser desorption/

ionization (MALDI) plate using 0.6 ml of 5 mg/ml a-CHCA (a-cyano-4-

hydroxy-trans-cinnamic acid, Sigma) in 50% (v/v) acetonitrile (ACN)

with 5% (v/v) formic acid and allowed to air dry. MS and tandem MS

(MS/MS) spectra were acquired using 4800 plus MALDI-time-of-flight

(TOF)/TOF and using 4000 Series Explorer Software v.3.5.3 (Applied

Biosystems). The mass spectrometer was externally calibrated using

a standard peptide mixture containing angiotensin II (1046.2 Da),

angiotensin I (1296.5 Da), neurotensin (1672.9 Da), ACTH (1–17;

2093.5 Da) and ACTH (18–39; 2465.7 Da) (LaserBio Labs). Each MS

spectrum was acquired in a result-independent acquisition mode and the

10–15 strongest precursors were selected for MS/MS analyses. These

were performed using collision-induced dissociation (CID) assisted with

atmospheric air with acollision energy of 1 kV and a gas pressure of

16106 Torr. The MS and MS/MS data was analyzed in combined

search mode (MS+MS/MS) using GPS Explorer Software v. 3.6 (Applied

Biosystems) and the MASCOT search engine. The search parameters

were as follows: monoisotopic peptide mass values were considered,

maximum precursor mass tolerance (MS) of 50 ppm and a maximum

fragment mass tolerance (MS/MS) of 0.3 Da. A maximum of two missed

cleavages were allowed and no taxonomy restrictions were included.

Carboxyamidomethylation of cysteines and oxidation of methionines

were set as variable modifications. Protein identification was considered

by use of significant homology scores if P,0.05 and if at least one

peptide was fragmented.

Immunofluorescence
Cells grown on glass coverslips were serum-starved for 5 to 16 hours,

stimulated or not with PDGF (30 ng/ml) for different times, washed with

PBS and fixed in 4% paraformaldehyde in PBS for 15–20 minutes at

room temperature. After quenching with 50 mM NH4Cl in PBS and

blocking and permeabilizing with PBS, 0.5% BSA and 0.1% saponin for

10 minutes at room temperature, anti-Myh9, anti-cortactin, anti-EEA1

antibodies or Alexa-Fluor-568-conjugated phalloidin (0.2 to 0.8 U/ml)
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were added in the same buffer for 1 hour at room temperature and the

cells were washed five times after each incubation. Secondary Alexa-

Fluor-488- or -568-conjugated anti-rabbit or anti-mouse antibodies

(Invitrogen) were used at 2–4 mg/ml. Coverslips were mounted in

mounting medium [15% (w/v) vinol 205, 33% (v/v) glycerol, 0.1% azide

in PBS] and analyzed in a Zeiss LSM 710 confocal microscope equipped

with a Plan-Apochromat 636 1.40 NA oil Ph3 lens and Zeiss Zen 2010

software or a Leica TCS SP5 confocal microscope equipped with a HCX

PL-APO 636 (NA 1.25–0.75) lens and Leica Application Suite software.

Images were processed with ImageJ software, adjusting the levels or

brightness of each channel up to a maximum threshold defined by the

absence of signal in the negative controls.

Time-lapse fluorescence microscopy
NIH-3T3 cells were grown in the eight-well Lab-Tek chambered #1.0

borosilicate coverglass system (Thermo Fisher) and transfected with

Lifeact-ruby and Arl13b-wt–EGFP constructs using Lipofectamine

2000 (Invitrogen) according to the manufacturer’s instructions. After

24 hours, cells were serum-starved in DMEM without Phenol Red and

supplemented with 0.5% BSA for 2 hours, and then imaged in the same

medium before and after the addition of PDGF-BB (20 ng/ml). The

images were acquired for 30 minutes at 60-second intervals by using an

Andor Revolution XD system in a Nikon eclipse TiE spinning disk laser

confocal microscope, equipped with a sensitive EMCCD camera and

Plan Apo VC 606 1.4 NA objective at 37 C̊ and under 5% CO2.

Zebrafish in situ hybridization
Zebrafish embryos were obtained through natural crosses and staged

according to Kimmel et al. (Kimmel et al., 1995). The Arl13b

morpholino was as described previously (Duldulao et al., 2009).

Embryos were injected at the one-cell stage, fixed at 24 hours post-

fertilization and hybridized with a sox10 probe. Whole-mount in situ

hybridization was performed as described previously (Thisse and Thisse,

2008). Dioxigenin RNA probe was synthesized from a sox10 DNA

template kindly provided by Robert N. Kelsh (University of Bath, UK;

Dutton et al., 2001). All animal experiments were performed according to

approved guidelines.

Statistical analysis
Numerical data are presented as mean6s.d. Statistical analysis was

performed using GraphPad Prism (version 5.00, GraphPad Software).

Two-way ANOVA or Student’s t-tests were used for comparison between

different data sets by using GraphPad Prism software.
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reagents. We thank Lúcia Lacerda (Instituto Nacional de Saúde Dr. Ricardo
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