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Summary
Tight junctions (TJs) regulate the paracellular movement of ions, macromolecules and immune cells across epithelia. Zonula occludens

(ZO)-1 is a multi-domain polypeptide required for the assembly of TJs. MDCK II cells lacking ZO-1, and its homolog ZO-2, have three
distinct phenotypes: reduced localization of occludin and some claudins to the TJs, increased epithelial permeability, and expansion of
the apical actomyosin contractile array found at the apical junction complex (AJC). However, it is unclear exactly which ZO-1 binding

domains are required to coordinate these activities. We addressed this question by examining the ability of ZO-1 domain-deletion
transgenes to reverse the effects of ZO depletion. We found that the SH3 domain and the U5 motif are required to recruit ZO-1 to the
AJC and that localization is a prerequisite for normal TJ and cytoskeletal organization. The PDZ2 domain is not required for localization

of ZO-1 to the AJC, but is necessary to establish the characteristic continuous circumferential band of ZO-1, occludin and claudin-2.
PDZ2 is also required to establish normal permeability, but is not required for normal cytoskeletal organization. Finally, our results
demonstrate that PDZ1 is crucial for the normal organization of both the TJ and the AJC cytoskeleton. Our results establish that ZO-1

acts as a true scaffolding protein and that the coordinated activity of multiple domains is required for normal TJ structure and function.
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Introduction
The tight junction (TJ) is a membrane-associated complex at the

apico-lateral margin of epithelial cells that regulates the paracellular

movement of ions, macromolecules and immune cells. The TJ barrier

is composed of three families of transmembrane proteins: claudins

(Furuse et al., 1998a), the junctional adhesion molecule (JAM)

proteins (Bazzoni et al., 2000), and the TJ-associated Marvel domain

proteins (TAMPs) occludin, tricellulin and Marvel D3 (Raleigh et al.,

2010). Claudins form adhesive contacts between cells that create a

charge and size-selective barrier (Colegio et al., 2002; Furuse et al.,

1998b; Morita et al., 1999; Van Itallie et al., 2008), while the TAMPs

and JAM proteins appear to play a role in stabilizing the TJ and

regulating epithelial permeability in response to pathogens and/or

physiological stimuli (Balda et al., 2000; Chen et al., 1997; Raleigh

et al., 2011; Van Itallie et al., 2010) (Ikenouchi et al., 2005) (Martı̀n-

Padura et al., 1998). These transmembrane barrier proteins are

associated with a cytosolic plaque of proteins that regulate their

assembly into a circumferential barrier and association with the

cortical cytoskeleton (reviewed by Furuse, 2010). The coordinated

interactions of these different components are critical for the assembly

and maintenance of an effective epithelial barrier.

The cytosolic proteins ZO-1 and ZO-2 are multi-domain

scaffolding proteins within the MAGUK family required for the

formation of the TJ. These two proteins are likely to play a

redundant role during TJ assembly. The depletion of either ZO-1 or

ZO-2 from epithelial cells leads to delayed formation of TJs and a

mild increase in permeability, whereas depletion of both ZO-1 and

ZO-2 disrupts the localization of the transmembrane proteins at the

tight junction and causes a dramatic alteration of TJ barrier

function (Hernandez et al., 2007; McNeil et al., 2006; Umeda et al.,

2006). The N-terminus of ZO proteins, like other MAGUKs,

contains a stereotypically conserved core of protein-binding

motifs, including three PDZ domains, an SH3 domain and a

GUK domain (reviewed by González-Mariscal et al., 2000). The

unique C-terminal domain contains an actin-binding region (ABR)

and interacts with many other cytoskeletal structural and

regulatory proteins (Fanning and Anderson, 2009; Fanning et al.,

1998; Wittchen et al., 1999). The transmembrane proteins claudin,

occludin and JAM all bind to distinct domains within the N-

terminal half of ZO-1 (Bazzoni et al., 2000; Fanning et al., 1998;

Furuse et al., 1994; Itoh et al., 1999; Riazuddin et al., 2006; Umeda

et al., 2006). ZO proteins also dimerize with each other through the

PDZ2 domain and dimerization of ZO-1 has been hypothesized to

be required for the organization of claudins into barrier-forming

strands (Fanning et al., 2007b; Utepbergenov et al., 2006; Wu et al.,

2007). Finally, ZO proteins regulate cytoskeletal organization

within the AJC (Fanning et al., 1998; Fanning et al., 2012; Van

Itallie et al., 2009). The N-terminal domains are sufficient to

recruit claudins and other TJ proteins to cell contacts at the apical/

lateral membrane, but whether this region is sufficient for

functional barrier assembly is still unknown (Ikenouchi et al.,

2007; Umeda et al., 2006).
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The complex molecular structure of ZO-1 and the great diversity
in binding partners make dissection of the functional/mechanistic

role of this critical component challenging. It is unclear which
protein–protein interactions are necessary for epithelial-specific
functions, or how the activity of so many binding partners is
coordinated by ZO-1. The goal of this study, as the first step in a

long term analysis of ZO function, was to identify the ZO-1 binding
domains within the N-terminus that are necessary for TJ barrier
assembly and cytoskeletal regulation. We hypothesize that if ZO-1

is truly a scaffolding protein, multiple domains will be necessary
for ZO-1 to properly regulate TJ assembly, contractile array
formation and the establishment of an epithelial barrier. Our

laboratory has previously demonstrated that MDCK cells depleted
of ZO-1 and ZO-2 have three major phenotypes (Fanning et al.,
2012). First, the localization of some, but not all, TJ proteins is
significantly attenuated, yet there is little alteration in the

localization of the adherens junction proteins. Second, these cells
have a significantly expanded apical contractile array, highlighted
by an increase in actin and myosin accumulation at the adherens

junction. Finally, the depletion of both ZO-1 and ZO-2 leads to an
increase in the permeability of large solutes. To better understand
how ZO proteins coordinate TJ maintenance, we created

recombinant ZO-1 proteins lacking individual binding domains
and tested their ability to rescue the three phenotypes observed in
the ZO-depleted cells. Our results establish that cytoskeletal

organization and TJ structure and function are regulated by a
distinct, but overlapping, subset of conserved domains within ZO-1,
and suggest that complex interactions between different domains
and/or their binding partners is critical for normal barrier assembly.

Results
N-terminal half of ZO-1 is sufficient to rescue TJ protein
localization and cytoskeletal organization in ZO-depleted
cells

We previously reported that in ZO-depleted MDCK II cells the

localization of some, but not all, TJ transmembrane proteins to the
AJC is reduced. For example, accumulation of occludin, claudin-1
and claudin-2 at the AJC is significantly diminished relative to
control cells, while tricellulin, JAM, claudin-3 and -4 appear

normal. In addition, assembly of actomyosin filaments is greatly
increased relative to control cells (Fanning et al., 2012) (Fig. 1).
These defects are reversed by expression of a full length ZO-1

transgene in these cells (Fanning et al., 2012). To determine to
what extent the N-terminal binding domains are sufficient to
regulate TJ and cytoskeletal assembly at the AJC, we used a

tetracycline (Tet)-inducible system to express the N-terminal
portion of ZO-1 (cZNA) extending from the N-terminus through
the U6, or acidic domain (amino acids 1–887). As seen in Fig. 1A,
cZNA effectively localizes to the tight junction, restores claudin-2,

claudin-1 and occludin at the TJ (Fig. 1A; supplementary material
Fig. S1) and restores the normal distribution of F-actin and myosin
IIB at the AJC (Fig. 1B). These, and subsequent results, are

summarized in Table 1. cZNA localization does not exactly mimic
full length ZO-1 expression, nor does it restore the phenotypic,
wavy junctions of wild type MDCK cells or dKD cells expressing

full length ZO-1 (Fig. 1C) (Fanning et al., 2012), therein
confirming that the C-terminal region (aa 888–1746) has a role
in the orchestrating the typical architecture of the AJC in these

cells (Yu et al., 2010). However, we did not investigate these
differences further because they did not correlate with changes in
the permeability of MDCK cells (Fig. 1D).

The PDZ2, SH3 domains and U5 motif are necessary for the
normal localization of ZO-1

Next, we systematically deleted individual binding domains
within cZNA in order to determine which ones were responsible
for ZO-1 localization, TJ structure and organization of the AJC

Fig. 1. cZNA is sufficient to reverse most phenotypic alterations observed

in ZO-depleted MDCK cells. (A) MDCK and ZO-depleted MDCK cells

(Z2Z1 dKD) uninduced (U) and induced (I) to express the N-terminal half of

ZO-1 (cZNA) were fixed and stained with antibodies against ZO-1 (MDCK and

Z2Z1 dKD) or mCherry tag (cZNA), claudin-2, and occludin. (B) Cells were

stained with antibodies against myosin IIB and TRITC–phalloidin (F-actin).

(C) Cells expressing a ZNA construct or a full length ZO-1 (fl ZO-1) construct

were stained with antibodies against a myc tag to indicate the location of the

expressed protein and PAR3 to outline the AJC location. (D) Analysis of the

paracellular flux of 3.0 kDa fluorescein–dextran in Z2Z1 dKD cells uninduced

or induced to express ZNA or full length ZO-1 transgenes.

Immunofluorescence images are 1.3 mm maximum density projections of Z-

stacks taken through the apical-most aspect of the cells. Scale bars: 10 mm.
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cytoskeleton. Fig. 2A outlines each construct and the deletion

boundaries. All constructs contained an mCherry tag at the N-

terminus to distinguish the expressed protein from residual,

endogenous ZO-1. Western blot analysis confirmed that each

deletion transgene was expressed at levels comparable to cZNA,

and about a tenfold increase over levels of endogenous ZO-1 seen

in control cells (supplementary material Fig. S2). All cell lines

had comparable levels of occludin, myosin IIB and actin when

expression was induced or uninduced. Steady state levels of ZO-

3, which are notably reduced in ZO-depleted cells (Fanning et al.,

2012), were restored by the expression of all transgenes except

cZNADP2. This observation suggests that dimerization stabilizes

steady state levels of ZO-3. Claudin-2 expression was reduced in

some transgene-expressing cells (ZNA, cZNADP3 and

cZNADP2), as was the higher molecular weight species of

occludin sometimes associated with phosphorylation (Sakakibara

et al., 1997). Neither of these changes in steady state expression

pattern had an obvious correlation with changes in TJ

permeability or cytoskeletal organization, and was not pursued

further.

The deletion of individual domains had a surprisingly varied

effect on the localization of cZNA deletion constructs (Fig. 2B).

ZNA protein lacking the U5 (cZNADU5) or the SH3

(cZNADSH3) domains showed little or no localization to cell–

cell contacts. ZNA constructs lacking the GUK (cZNADGUK)

and PDZ3 (cZNADP3) domains localized to the tight junction in

a continuous circumferential pattern similar to cZNA. The ZNA

construct lacking the U6 domain (cZNADU6) localized to the

tight junction, but was also organized ectopically along the lateral

plasma membrane (Fig. 2C; supplementary material Fig. S3).

This ectopic localization pattern has been previously documented

by our lab (Fanning et al., 2007a). Interestingly, ZNA lacking the

PDZ2 domain (cZNADP2), which is responsible for dimerization

of ZO1 proteins (Utepbergenov et al., 2006; confirmed in

Fig. 3B), localized to the junction, but was unable to form a

continuous band around the cells. Instead, it was organized in a

distinct, discontinuous pattern along cell boundaries (Fig. 2B;

supplementary material Fig. S3). In the current study, we

confirmed that the cZNADP2 was unable to co-

immunoprecipitate with cZNA in transiently transfected HEK

cells (Fig. 3B). Furthermore, we demonstrated that the PDZ1,

SH3 and GUK domains were not required for cZNA

dimerization. These observations suggest that PDZ2-mediated

dimerization is required for a continuous circumferential

distribution of ZNA at the tight junction. Finally, ZNA lacking

the PDZ1 domain (cZNADP1) localized to the bi-cellular

junctions, but was occasionally absent from the tri-cellular

junctions. The observations summarized above suggest that the

localization of ZO-1 does not result from a simple binary

interaction between the SH3/U5 domains and a single binding

partner, but is instead modulated by the coordinated action of

several conserved protein-binding domains.

PDZ1 and PDZ2 regulate claudin-2 localization and
organization at the AJC

Our previous report established that the subcellular localization

of some, but not all, TJ proteins is altered in Z2Z1 dKD MDCK

Table 1. Effect of domain deletion on ZO-1 localization and function in MDCK cells

Restoration of normal phenotype

Localized to cell–
cell contacts

Restores normal
contractile array Claudin 2 localization Occludin localization Paracellular permeability

cZNADP1 Yes* No No No No
cZNADP2 Yes{ Yes No{ No No
cZNADP3 Yes Partial Yes Yes Yes
cZNADSH3 No No No No No
cZNADU5 No No No No No
cZNADGUK Yes Yes Yes Yes Yes
cZNADU6 Yes{ Yes Yes{ Yes{ Yes
cZNA Yes Yes Yes Yes Yes

*Excluded from tricellular junctions.
{Punctate, not a continuous band.
{Localization also visible on lateral membrane.

Fig. 2. The SH3, U5 and PDZ2 domains are all necessary for the

localization of ZO-1 into a continuous band at cell–cell contacts. Stable

Z2Z1 dKD cells were transfected with Tet-inducible cZNA rescue constructs

lacking individual binding domains. (A) Schematic diagram of rescue

constructs indicating the amino acid deletion boundaries. (B) Distribution of

mCherry-tagged transgenes in induced ZO-depleted MDCK cells. Images are

1.3 mm maximum density projections of Z-stacks taken through the apical-

most aspect of the cells. Scale bar: 10 mm.

ZO-1 is a multi-domain scaffold 1567
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cells (Fanning et al., 2012). Decreased localization of occludin,

claudin-1 and claudin-2 to the AJC are particularly evident, and

correlate with changes in permeability, so we used these three

proteins as markers of TJ structural integrity. Claudins are well

characterized PDZ domain binding proteins (Itoh et al., 1999),

and using pull-down assays we confirmed previous observations

that PDZ1, but not PDZ2 or PDZ3, were required for interaction

of cZNA with a recombinant claudin-2 peptide (Fig. 3A).

Consistent with this observation, we found the ZNA construct

lacking the PDZ1 (cZNADP1) domain, which directly binds to

claudin, was unable to rescue localization of claudin-2 (Fig. 4) or

claudin-1 (supplementary material Fig. S1) to the AJC. In fact,

the small residual amount of claudin-2 normally observed in the

tight junction of Z2Z1 dKD cells was notably absent when

cZNADP1 is expressed in Z2Z1 dKD cells. These observations

indicate that direct binding of cZNA to claudin-2 is required for

localization to the AJC.

Expression of the cZNADP2 construct in ZO-depleted cells

was also able to promote the localization of claudin-2 to cell–cell

contacts (Fig. 4). However, this population of claudin-2 did not

form a smooth, continuous band around the cell boundaries;

instead it is distributed in a discontinuous pattern overlapping

with the recombinant cZNADP2 protein (supplementary material

Fig. S4). This observation suggests that PDZ-mediated

dimerization of ZO-1 is also required for a continuous

circumferential distribution of claudins at the tight junction.

Interestingly, cells expressing cZNADP3 effectively recruited

claudin-2 to the AJC, but claudin-1 localization was not rescued

by this construct. These observations reinforce that idea that

claudin localization to the AJC may not be regulated solely by

binary interactions with ZO proteins.

ZO-1 PDZ domains are required for occludin localization to

the AJC

The cytosolic tail of occludin binds to distinct structural elements

within the U5 motif and GUK domain in vitro (Fanning et al.,

1998; Furuse et al., 1994; Schmidt et al., 2004), but whether

direct interaction with either of these domains is necessary or

sufficient for incorporation of occludin into the AJC has not been

directly addressed. To address this issue, we first examined the

interaction of the cZNA transgenes with a GST occludin fusion

protein (Fig. 3C). cZNA binds robustly to a GST–occludin fusion

protein, whereas a fragment encoding the C-terminal 703 aa of

ZO-1 showed no detectable interaction. Interestingly, we found

that the presence of either the U5 motif or the GUK domain were

sufficient for occludin binding, whereas loss of both domains

(ZN 1–584) significantly reduced binding to GST–occludin. We

also detected a previously unappreciated role for PDZ domains in

the interaction of ZO-1 with occludin. Although deletion of

PDZ1 had no apparent effect on the interaction of cZNA with

GST–occludin, deletion of PDZ2 and PDZ3 both seriously

compromised this interaction.

The role of these different conserved domains in occludin

localization was similarly complex. Consistent with the binding

assays, the induction of cZNADP2 was unable to restore occludin

localization and the induction of cZNADP3, which demonstrated

attenuated binding, showed a much weaker rescue of occludin

localization than that seen with cZNA. Similarly, cZNADGUK,

which binds well to GST–occludin, was able to restore occludin

localization to the AJC (Fig. 5). However, induction of

cZNADP1, which interacts quite effectively with GST–occludin

in pull-down assays, was unable to rescue localization of

occludin. These observations, taken together, would suggest

Fig. 3. Conserved domains in ZNA make distinct, and sometimes overlapping, contributions to protein binding in vitro. (A) The PDZ2 domain is necessary

for ZO-1 dimerization. Human embryonic kidney (HEK) cells were co-transfected with YFP-tagged ZNA and the indicated myc-tagged deletion transgene.

Complexes were precipitated with an antibody against YFP, resolved by SDS-PAGE and analyzed by immunoblotting (IB) with antibodies against myc and YFP.

Note that deletion of the SH3 and GUK domains do not interfere with the co-precipitation of these transgenes with ZNA. (B) PDZ1 is required for Claudin-2

binding. HEK cells transfected with the indicated myc-tagged ZNA transgenes were lysed and mixed with MBP, MBP–claudin-2 or a claudin-2 fusion protein

lacking the last three amino acids (MBP–claudin-2D3). Bound proteins were analyzed by IB with anti-myc antisera, as above. (C) PDZ2, PDZ3 and U5/GUK are

required for interaction with occludin in vitro. ZNA deletion transgenes were incubated with GST or a GST–occludin (aa413–522) fusion protein. Bound proteins

were analyzed by IB with anti-myc antisera. Note that multiple domains are required for the interaction of ZNA with occludin. Input protein was 10% of the total.

Journal of Cell Science 126 (7)1568



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

that the localization of occludin to the TJ is not a simple matter of

direct interactions with binding motifs in the U5 and GUK

domains. Instead, occludin interaction with ZNA and localization

to the TJ is dependent on the activity of other conserved domains,

such as PDZ1, PDZ2 and PDZ3.

Localization of ZO-1 to the AJC is required for TJ assembly

Induction of either the cZNADSH3 or the cZNADU5 constructs,

which are unable to localize to the membrane, was unable to

restore normal localization of claudin-2 or occludin, indicating

that ZO-1 localization to the AJC is required for normal

localization of these proteins. Expression of the cZNADU6

construct effectively promoted localization of both occludin and

claudin to cell–cell contacts. However, claudin and occludin were

not restricted to the AJC in these cells, but instead colocalized

with cZNADU6 in the lateral plasma membrane in the strand-like

arrays characteristic of this mutation (supplementary material

Fig. S2) (Fanning et al., 2007a). Taken together, our observations

suggest that the localization of TJ proteins like occludin and

claudin is regulated by a complex interaction between the

activities of multiple domains.

The PDZ1 domain is necessary for normal cytoskeletal

organization at the AJC

ZO-depleted MDCK cells have an expanded contractile array, as

demonstrated by the increased localization of both F-actin and

myosin IIB at the AJC (Fanning et al., 2012). Neither

cZNADSH3 nor cZNADU5, which do not localize to the

junctions, were able to restore a normal actin and myosin IIB

distribution, indicating that normal cytoskeletal assembly

requires localization of ZO-1 to the AJC (Fig. 6). Expression of

the cZNADP1 construct was also unable to restore a normal

contractile array within Z2Z1 dKD cells (Fig. 6). Most other

constructs tested were able to effectively restore the normal

distribution of F-actin and myosin IIB to the AJC (compare

Fig. 6 and Fig. 1B). However, cells expressing cZNADP3

displayed an intermediate phenotype in which the accumulation

of actin and myosin IIB within the AJC of these cells was

Fig. 4. The PDZ1, PDZ2 and SH3/U5 domains are

necessary for claudin-2 localization to cell–cell

contacts. Induced and uninduced Z2Z1dKD cells were

fixed and stained with antibodies against claudin-2. cZNA

images from Fig. 1 have been added for direct

comparison and line scans. Images are 1.3 mm maximum

density projections of Z-stacks taken through the apical-

most aspect of the cells. Line scans represent the intensity

of claudin staining at the cell–cell junction. Each line on

the graph represents an average of ten line scans taken

across the cell–cell junction of a different cell within the

image shown in the figure. The x-axis represents distance

along the 3 mm line scan and the y-axis represents

arbitrary intensity units (each mark520 units). Solid lines

show data from cells induced to express the transgene and

dotted lines are from uninduced cells. The axes for each

line scan graph are the same scale. Line scans of claudin-

2 in cZNADP2 cells were taken specifically at areas of the

junction where claudin was localized. Scale bar: 10 mm.

Fig. 5. The PDZ1, PDZ2 and SH3/U5 domains are

necessary for occludin localization to cell–cell

contacts. Z2Z1dKD cells with uninduced and induced

expression of rescue constructs were labeled for

occludin. cZNA images from Fig. 1 have been added

for direct comparison and line scans. Images are

1.3 mm maximum density projections of Z-stacks taken

through the apical-most portions of the cells. Line

scans represent the intensity of occludin staining at the

cell–cell junction. Each line on the graph represents an

average of five line scans, each taken across the cell–

cell junction of a different cell within the image shown

in the figure. Solid lines show data from cells induced

to express the transgene and dotted lines are from cells

not expressing the transgene. The x-axis represents

distance and the y-axis represents arbitrary intensity

units (each hash mark520 units). The axes for each

line scan graph are the same scale. Scale bar: 10 mm.

ZO-1 is a multi-domain scaffold 1569
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attenuated compared to Z2Z1 cells, but not restored to a

completely normal distribution. Thus, PDZ1, and to a lesser

extent PDZ3, are involved in the normal regulation of

cytoskeletal structure within the AJC.

Ability of rescue constructs to establish a functional barrier

ZO proteins are necessary for normal cell permeability (Fanning

et al., 2012; Umeda et al., 2006; Van Itallie et al., 2009). Our

previous results demonstrated that cells lacking both ZO-1 and

ZO-2 maintain normal (or slightly increased) transepithelial

electrical resistance (TER), but have a significantly increased

permeability for larger molecules through the ‘leak pathway’

(Fanning et al., 2012). Re-expression of either ZO-1 or ZO-2 in

ZO-depleted cells reduced permeability to normal or near normal

levels (Fig. 1). Thus, to identify domains involved in the

regulation of the leak pathway, we examined the flux of 3 kDa

fluorescent dextrans across Z2Z1 dKD cell monolayers induced

to express the transgene. The results, shown in Fig. 7, are

presented as the fold increase over wild type MDCK cells culture

at the same time as the experiment cells.

Rescue constructs had one of three effects on the increased

permeability of ZO-depleted cells: they reduced, increased or had

no effect on permeability relative to uninduced cells (Fig. 7).

Expression of cZNA, cZNADGUK, cZNADU6 and cZNADP3

constructs in Z2Z1 dKD cells all reduced permeability to levels

characteristic of control MDCK cells. Induction of the cZNADP2

construct within Z2Z1 dKD cells had no effect on permeability;

these cells continued to maintain an increased permeability to

dextrans similar to uninduced cells. Finally, we found that cells

expressing cZNADP1, cZNADSH3 or cZNADU5 constructs

further increased epithelial permeability above levels seen in

uninduced Z2Z1 dKD cells. This effect was most dramatic in

cells expressing cZNADP1, where we saw a nearly tenfold

increase in permeability to 3 kDa dextran compared to uninduced

cells. Interestingly, cells expressing cZNADP1 and cZNADU5,

also had a significant decrease in TER compared to wild type

MDCK cells (supplementary material Fig. S5). Permeability of

larger dextrans was not assessed, because we found no significant

difference in the permeability of 40 kDa dextrans in ZO-depleted

cells relative to control cells (data not shown).

The U2 and U3 domains are not required for normal

ZO-1 function

The N-terminal portion of ZO-1 contains two additional large

unique regions, the U2 and U3 domains. ZNA constructs lacking

these domains (ZNADU2 and ZNADU3) localize to the AJC and

their expression within Z2Z1 cells restores epithelial permeability

to near normal levels (supplementary material Fig. S6). ZNADU2

and ZNADU3 expression also restores normal claudin, actin and

myosin localization to the AJC (supplementary material Figs S7,

S8). Thus, the U2 and U3 domains, which have no known binding

Fig. 6. The PDZ1, and to a lesser extent PDZ3, are required for normal

contractile array assembly. Z2Z1dKD cells expressing rescue constructs

were labeled for F-actin and myosin IIB. cZNA images from Fig. 1 are

included for comparison. Images are 1.3 mm maximum density projections of

Z-stacks taken through the apical-most portions of the cells. Scale bar: 10 mm.

Fig. 7. PDZ1, PDZ2 and SH3/U5 domains contribute to epithelial barrier

formation. Analysis of the paracellular flux of 3.0 kDa fluorescein–dextran

in ZO-depleted cells induced (I) and uninduced (U) to express rescue

constructs. The y-axis is the fold increase in dextran flux relative to control

MDCK cells cultured at the same time. All values are the mean 6 standard

deviation from quadruplicate readings and are representative of at least

three experiments.

Journal of Cell Science 126 (7)1570
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partners, are not necessary for normal ZO-1 function within
MDCK cells.

Discussion
Many factors contribute to the formation of epithelial TJs and the

regulation of epithelial permeability. Our results indicate that ZO-1
behaves as a multi-domain scaffold, and that coordinated activity of
multiple conserved protein-binding motifs is required for normal

organization and function of the steady state junction (Table 1).
This includes regions like SH3 and U5, which promote ZO-1
localization, the PDZ2 domain, which mediates dimerization, and

the PDZ1 domain, which binds directly to claudins. Our results
define a core set of functional activities that are critical to TJ
structure and maintenance of epithelial permeability.

ZO-1 must localize to the junction in order to rescue
permeability, tight junction assembly and regulation of
contractile array
This report reveals that localization of ZO-1 to the apical junction

complex is necessary for proper regulation of the tight junction
structure, permeability and organization of the Zonula adherens
(ZA) cytoskeleton. The larger SH3–U5–GUK region has been

previously implicated in junction localization (Fanning et al.,
2007a; Umeda et al., 2006) of ZO-1 and other MAGUKs (reviewed
by Fanning et al., 2007a). Our results indicate that the SH3 domain
and the U5 motif are required for localization of ZO-1 to cell–cell

contacts, but that the PDZ2 domain and the U6 motif appear to
‘fine-tune’ the distribution of ZO-1 within the lateral domain
(Fig. 2) (Fanning et al., 2007a). Our recent structural analysis of

ZO-1 suggests that the U5 domain is, in fact, a flexible loop
extending from the core SH3 domain (Lye et al., 2010). This report
would thus confirm that they are acting as a single functional unit.

The simplest model is that the SH3/U5 unit regulates TJ
localization through interactions with an as yet unidentified

‘anchor protein’. The U5 motif has no known binding partners
besides occludin, and occludin and its orthologs are not necessary
for TJ assembly (Raleigh et al., 2010; Saitou et al., 2000; Yu
et al., 2005). Similarly, although the SH3 domain of ZO-1 binds

to at least five different proteins, most of these proteins do not
appear necessary for tight junction assembly (Balda and Matter,
2000; Meyer et al., 2002; Tsapara et al., 2006). The one

exception is the AJ protein AF-6/afadin. The formation of both
AJ and TJ are compromised in AF6/afadin-depleted epithelia
(Ikeda et al., 1999; Komura et al., 2008; Lorger and Moelling,

2006; Ooshio et al., 2010; Zhadanov et al., 1999). However, AF-
6/afadin does not localize to the TJ in polarized cells, and co-
immunoprecipitation studies suggest that AF-6/afadin and ZO-1

only interact prior to TJ formation (Ooshio et al., 2010). Thus, we
believe any role for AF-6/afadin in TJ assembly is likely an
indirect effect of its role in adherens junctions. The identity of the
factor(s) that recruit ZO proteins to the AJC is still a matter of

great speculation.

The PDZ1 domain is necessary for claudin-1, -2 and
occludin localization and for formation of the TJ barrier

The seminal studies by Umeda et al. (Umeda et al., 2006)
demonstrated that ZO proteins are necessary for the assembly of
claudins and occludin into barrier strands and incorporation of

these strands into the apical circumferential complex. Unlike the
cells used by Umeda et al., our Z2Z1 dKD cells still incorporate
many TJ proteins, such as claudin 3, claudin 4, JAM and

tricellulin, into the AJC (Fanning et al., 2012). However, there
are several proteins that are not effectively incorporated into the

AJC in ZO-depleted MDCK cells, including claudin-1, claudin-2,
occludin and cingulin. We did not examine the distribution of
cingulin in cZNA rescue cells, because cingulin binds to the C-

terminus of ZO-1 and does not appear to play a major role in the
regulation of TJ structure or the epithelial barrier (Guillemot
et al., 2012).

Our examination of claudin-1, claudin-2 and occludin revealed
a complex interaction between these proteins and ZO-1. As
predicted, our results confirm that PDZ1 is required for direct

binding to claudin-2 in vitro (Itoh et al., 1999), and is necessary
for claudin-2 localization to cell–cell contacts. However, we
found that claudin-1 localization depended not only on PDZ1 for
AJC localization, but also required PDZ3. The reason for this is

currently unclear. Claudin-1 binds exclusively to PDZ1 in all of
the ZO proteins (Furuse et al., 1998a), so our observations
suggest that some PDZ3 ligand might stabilize claudin-1 at the

AJC. Taken together, our studies suggest that different claudins
are recruited to or stabilized at the AJC by diverse mechanisms.

Another surprising result of these studies was that the PDZ1

domain is not just required for the localization of claudin-2, but
also for the localization of occludin to the TJ. The occludin-
binding site has been previously mapped to structural elements

within the U5 motif and the GUK domain (Fanning et al., 1998;
Schmidt et al., 2004). Our results demonstrate that either domain
is sufficient for binding to ZO-1, but the absence of both

significantly attenuates the interactions between ZO-1 and
occludin. However, we found that cZNADP1, which associates
well with occludin in our binding assays, is unable to recruit
occludin to the AJC, indicating that direct binding of ZO-1 to

occludin is not sufficient to recruit occludin to junctions. A
previous study by Furuse et al. demonstrated that claudins could
markedly potentiate the assembly of occludin into cell–cell

contacts in L-cells transfected with claudins (Furuse et al.,
1998b). These observations lead us to hypothesize that the
maintenance of occludin at tight junctions is mediated by direct

or indirect interactions with organized claudin strands.

Our studies also strongly suggest that the PDZ1 domain is
necessary for the establishment of a physiological barrier.

Expression of cZNADP1 was not only unable to restore normal
localization of claudin-1 and -2 to the AJC, but it also further
enhanced the barrier disruption seen in ZO-depleted cells. This

included a 10-fold increase in flux through the leak pathway and a 5-
fold decrease in TER relative to the parental dKD cells. We
hypothesize that cZNADP1 acts as a dominant negative, and that

cZNADP1 displaces endogenous ZO-1 from junctions and
establishes an underlying scaffold that cannot directly interact
with barrier forming claudins. We interpret our observations to
suggest that direct interaction between ZO proteins and at least some

claudin polypeptides, like claudin-1 and -2, are required for steady
state structure and/or function of the barrier. While this seems like
the most likely hypothesis, we cannot rule out that the involvement

of PDZ1 in cytoskeletal assembly at the AJC (discussed below) may
also be involved in the regulation of the barrier. Future studies will
be directed at resolving this important issue.

The PDZ2 domain, a ZO dimerization motif, is required for
normal physiological barrier formation

The PDZ2 domain of ZO-1 is necessary for the dimerization of
ZO proteins (Fig. 3) and (Fanning et al., 2007b; Utepbergenov
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et al., 2006) and binding to connexins (Giepmans, 2004). While it

is theoretically possible that interaction of ZO-1 with connexins
promotes TJ barrier assembly, we believe it to be unlikely.
MDCK cells do not appear to have gap junctions or to be dye

coupled under normal conditions (Armitage and Juss, 2003; Jin
et al., 2004). Furthermore, the loss of TJ structure is not obvious
in most mouse connexin knockout models (Dobrowolski and
Willecke, 2009; Eckert and Fleming, 2008). Instead, our

interpretation is that dimerization mediated by PDZ2 is
necessary to recruit at least some TJ proteins, like ZO-1,
claudin-1, -2 and occludin, into a fully functional barrier. This is

based on our observation that cZNADP2 does not form a
continuous band around the apical portion of the cell, but is
instead co-distributed in a punctate pattern at the tight junction. A

similar punctate pattern is observed for claudin-1 and -2. Our
interpretation of these observations is that cZNADP2 polypeptide
is still able to recruit claudins into the AJC, but is unable to

‘cross-link’ these proteins into a continuous array.

Interestingly, the cZNADP2 polypeptide is also unable to bind
to occludin or restore its normal distribution at the TJ. The
implication of these observations is that dimerization of ZO-1 is

required for biochemical interaction with occludin, and that this
is somehow linked to occludin incorporation into the AJC. Unlike
claudin, the distribution of occludin in cells expressing

cZNADP2 is indistinguishable from that observed in uninduced
or ZO-depleted cells. These observations imply that occludin and
claudin-2 are stabilized at junctions by distinct mechanisms.

Direct interactions between ZO-1 and F-actin are not
required for barrier assembly or regulation of actomyosin
contractile arrays at the AJC

Tight junction structure and function are dependent on

cytoskeletal integrity, and can be acutely regulated by changes
in cytoskeletal dynamics (Shen and Turner, 2005). ZO-1 binds
directly to F-actin through a well-defined ABR region within the

C-terminus (Fanning et al., 1998; Itoh et al., 1997; Wittchen et al.,
1999) and it has been proposed that this direct interaction
transduces cytoskeletal signals that regulate the assembly and

function of the TJ barrier (Shen et al., 2006; Van Itallie et al.,
2009; Yu et al., 2010). In one notable example, Yu et al.
demonstrated that the ABR was required for the MLCK-
dependent changes in TJ dynamics and paracellular

permeability to ions in CACO2 cells (Yu et al., 2010). Tight
junctions also show acute changes in structure and function in
response to physiological and pathological stimuli that are

dependent on the cytoskeleton (reviewed by Cunningham and
Turner, 2012). Our results suggest that the mechanistic aspects of
cytoskeletal regulation within the AJC are quite complex. We

have confirmed the previous observation (Ikenouchi et al., 2007)
that the ZO-1 ABR is not required to recruit TJ proteins to the
apical junction complex. Furthermore, we demonstrate for the

first time that the ABR, and presumably direct interaction with F-
actin, is not required for maintenance of steady state barrier to
solutes (also known as the leak pathway) in MDCK cells.
Whether the ABR or other C-terminal binding domains are

required for acute barrier response to physiological stimuli,
particularly those that activate MLCK, will be the subject of
future studies.

We found that the ABR is also not required for the normal
regulation of contractile actomyosin arrays at the AJC. These
arrays, normally associated with the adherens junction, are

required for morphogenetic changes in cell shape that drive tissue

formation. However, we note that the change in junction

topology in Z2Z1 dKD cells from a relaxed/wavy configuration

to a straight configuration is not rescued by cZNA. These

observations have two important implications. First, they confirm

that the steady state architecture of the AJC is controlled by

elements within the C-terminus of ZO-1. One prediction, given

previous results (Yu et al., 2010; Shen et al., 2006), is that

regulation of junction topology involves direct interaction of the

ABR with F-actin. However, we note that similar changes in

junction topology in ZO-1 single KD cells are at least partially

rescued by a ZO-1transgene lacking only the ABR, suggesting C-

terminal domains outside of ABR may also be involved in

regulating junction topology (Van Itallie et al., 2009). Second,

our observations imply that the assembly of large contractile

arrays in Z2Z1 dKD cells is not directly responsible for the

change in junction profiles from wavy to straight. Thus, we

propose that changes in junction topology and the formation of

contractile arrays at the AJC are regulated by distinct cytoskeletal

mechanisms.

Much to our surprise, we found that it was PDZ1, and to a

lesser extent PDZ3, that are the critical domains for regulation of

contractile array formation at the cell junctions. There is no

known F-actin-binding domain within PDZ1 or PDZ3 of ZO-1

(Fanning et al., 1998; Itoh et al., 1997), therefore regulation of

the contractile array is likely through the binding of ZO-1 to

cytoskeletal regulatory proteins and/or other cytoskeletal

components. For example, PDZ1 is known to bind to alpha-

actinin 4 and ARVCF (Chen et al., 2006; Kausalya et al., 2004).

Future studies will address the role of PDZ1 ligands in regulating

cytoskeletal structure.

Closing remarks

Our results suggest that PDZ1 interactions, ZO protein

dimerization and localization to the apical junctional complex

are critical elements of ZO-protein-mediated TJ organization.

They also point to a previously unappreciated complexity in how

different proteins are recruited and stabilized at junctions. In

three examples discussed here, ZO-1-dependent localization and

binding appears to be mediated by interactions between multiple

domains and/or their binding partners. This observation suggests

several intriguing possibilities. For example, it suggests that the

interaction between different ZO protein ligands may stabilize

their distribution at the tight junction, or that steric and allosteric

regulation plays a role in ZO protein scaffolding. This study also

highlights the importance of identifying the factor(s) that bind to

the SH3/U5 motifs and recruit ZO proteins to the AJC.

Understanding which proteins are necessary to assemble and

maintain a functioning TJ and elucidating how these proteins are

regulated is critical for the development of therapeutic

approaches for disorders associated with aberrant permeability.

Materials and Methods
Cell lines and expression vectors

MDCK Tet-Off cells (clone T23; Clontech, Mountainview, CA) were maintained

at 37 C̊ and 5% CO2 in standard growth medium: DMEM (high glucose,

Mediatech, Manassas, VA) medium supplemented with 10% tetracycline-free fetal
bovine serum (FBS) (Atlas Biologicals, Fort Collins, CO), penicillin, and

streptomycin. Cells for immunocytochemistry and permeability assays were

maintained on 12 mm diameter Transwell filter inserts with a 0.4 mm pore size

(Corning, Corning, NY). Cells were maintained for 7 days with fresh media

changes every 2–3 days.
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The Z2Z1 dKD cells were constructed as previously described by Fanning et al.
(Fanning et al., 2012). C-myc-tagged ZO-1 transgenes lacking the PDZ2, PDZ3,
SH3, GUK, and U5 regions, or encoding the ZNA and ZNADU6 transgenes, were
previously created in the pCB6 expression vector (Fanning et al., 2007a). The ZNA
and ZNADU6 constructs were transferred from pCB6 vectors to pTRE vectors. To
create the ZNADP2, ZNADP3 and ZNADSH3 constructs, EcoRI–NheI fragments
encompassing the deletion were subcloned from the pCB6 vectors and inserted
into the corresponding EcoRI–NheI site within the pTRE ZNA vector. The
ZNADU5 construct was created by transferring a StuI fragment from pCB6
ZO1DU5 into the corresponding StuI site in pTRE ZNA. To create the ZNADGUK
construct, an AccI fragment from the pCB6 ZO1DGUK was inserted into the
corresponding AccI site in the pTRE ZNA. To construct ZNADP1, PCR was used
to amplify an AgeI–NheI fragment encoding amino acids (aa) 110–582 (primer
sequences: 59-GCACCGGTAAAGTTCAAATACCAGTAAGTCG-39 and 59-
CTGCGAAGACCTCTGAATCT-39). Site-directed mutagenesis was then used to
insert an Age I site at aa16 in pTRE ZNA (primer sequence: 59-
CACAGCAATGGAGGAAACCGGTATATGGGAACAACATACA-39), and the
PCR fragment encoding aa 110–582 was subcloned into the corresponding AgeI–
NheI site of this modified pTRE ZNA. To insert an mCherry tag and EcoRI site
was inserted in the 59 untranslated region of each pTRE construct using site-
directed mutagenesis, and an EcoRI–NotI fragment encoding mCherry was
subcloned into the EcoRI–NotI sites of the appropriate pTRE vector. To create
pTRE ZNADU2, we synthesized a gene fragment (GeneArt/Life Technologies)
encompassing an 847 bp EcoRI–BspEI fragment of human ZO-1 encoding aa 1–
339, absent sequence encoding aa 123–185. This fragment was subcloned into the
EcoRI–BspEI sites of pTRE ZNA. Similarly, to create pTRE ZNADU3, we
synthesized a gene fragment encompassing a 940 bp EcoRI–XbaI fragment of ZO-
1 encoding aa 1–450, absent sequences encoding aa 277–419. This fragment was
subcloned into the EcoRI–XbaI sites of pTRE ZNA.

The resulting pTRE vectors were co-transfected with a pTK-hyg plasmid into
Z2Z1 dKD cells. Stable clones were selected in 200 mg/ml hygromycin B (Sigma-
Aldrich). To inhibit transgene expression, cell lines were maintained in the
standard growth medium supplemented with 15 ml/l doxycycline. Transgene
expression was induced by maintaining cells in the standard growth media.

Immunocytochemistry

Filter inserts were processed as previously described by Fanning et al. (Fanning
et al., 2012). All inserts were fixed for 30 minutes in ice-cold ethanol. Primary
antibodies were used as follows: claudin-2 (Invitrogen; 1:100), occludin (Hycult
Plymouth Meeting, PA; 1:100), myosin IIB (Covance, Emeryville, CA; 1:250),
ZO-1 (R40.76; (Anderson et al., 1988); 1:25) and mCherry (Clontech; 1:500). The
appropriate species-specific affinity-purified Cy2-, Cy3-, or Cy5-conjugated
secondary antibodies were purchased from Jackson Immunoresearch and used at
a dilution of 1:100. F-actin was labeled using tetramethylrhodamine isothiocyanate
(TRITC)–phalloidin (Sigma Aldrich; 1:500). Samples were imaged on a Zeiss
LSM710 confocal microscope using a 606PlanApo lens. Photomultiplier settings
in each channel were identical for control, Z2Z1 dKD, and rescue construct cells
(both induced and uninduced conditions). Image stacks were acquired through the
1.33 mm apical-most portion of the cell with a step size of 0.33 mm. All volumes
were processed in the ZEN image browser (Zeiss, Thornwood, NY) and are
presented as maximum-density projections. At least two clones for each rescue
transgene were analyzed and a representative image was provided for the figures.
To examine cZNADP2 localization, transgene expression was attenuated by
adding low levels of doxycycline to the culture media. This improved the signal to
noise ratio for the tagged transgenes, but had little effect on the overall distribution
of the transgene at cell–cell contacts.

Western blots

Western blots were performed as previously described by Fanning et al. (Fanning
et al., 2012). Lysates were collected from 7-day cell cultures grown on filter
inserts. Primary antibodies were used as follows: ZO-1 (R40.76; (Anderson et al.,
1988); 1:2000), mCherry, (Clontech; 1:1000), claudin-2 (Invitrogen; 1:100),
occludin (Hycult; 1:500), actin (Millipore; 1:1000), myosin IIB (Covance; 1:1000)
and GAPDH (Sigma-Aldrich; 1:2000). The appropriate species-specific secondary
antibodies coupled to IRDyes (Rockland, Gilbertsville, MD) were used at
1:10,000. Western blots were imaged with the Odyssey infrared imaging system
(LI-COR Biosciences, Lincoln, NE).

Epithelial permeability

For both TER and FITC–dextran flux assays cells were plated at subconfluent
density and cultured for 7 days on 6.5 mm filter inserts with a 0.4 mm pore size
(Corning, Corning, NY). All measurements were performed in quadruplicate. Each
experiment was performed a minimum of three times; one representative
experiment is shown in the provided figures. TER was measured using an
EVOM volt–ohm meter (World Precision Instruments, Sarasota, FL). FLUX
assays were performed as follows. Cells were rinsed twice with Hank’s buffered
saline solution with calcium (HBSS+) (Mediatech, Manassas, VA) and then
incubated with fresh HBSS+ (200 ml on top of insert and 800 ml below the insert)

for 30 minutes at standard culture conditions. The apical chamber was then
replaced with 75 ml of a 0.3 mg/ml solution of 3 kDa fluorescein–dextran in
HBSS+ and placed in a receiving chamber containing 600 ml of fresh HBSS+. After
an initial 2 hours incubation, which allows cells to stabilize, the inserts were
removed and transferred to a new receiving chamber containing 600 ml HBSS+ and
incubated for an additional 2 hours. Flux was assayed by measuring the
concentration of FITC–dextran present in the basal chamber after the second 2-
hour incubation period using a Synergy HT plate reader (BioTek, Winooski, VT).

Co-immunoprecipitation assays

Human embryonic kidney (HEK) 293 Tet-Off cells were transfected with YFP-
tagged ZNA and a myc-tagged deletion transgene using Fugene HD according to
the manufacturer’s suggestions (Promega, Madison, WI). After 2 days, cells were
lysed on ice in immunoprecipitation (IP) buffer (20 mM TrisCl, 150 mM NaCl,
1% Triton X-100, 0.5% sodium deoxycholate and 0.1% SDS; pH 7.5)
supplemented with protease inhibitors (Roche Diagnostics, Mannheim,
Germany) and clarified by centrifugation at 10,000 g. The supernatant was pre-
cleared with protein-G–Sepharose (GE Biosciences) for 2 hours, incubated
overnight at 4 C̊ with 3.0 mg of mouse anti-GFP serum (Life Technologies, Grand
Island, NY) and supplemented with 20 ml Protein G Sepharose for an additional
2 hours at 4 C̊. The beads were washed three times with IP buffer, resolved by
SDS-PAGE and analyzed by western blotting with anti-myc (clone 9B11; Cell
Signaling Technology, Beverly, MA) and anti-GFP (A6455; Invitrogen) sera.
Western blots were imaged on an Odyssey Imager (LICOR, Lincoln, NE).

Claudin-2 tail binding assay

Recombinant 66HIS-tagged maltose-binding protein (MBP), MBP claudin-2 tail,
and an identical claudin-2 construct lacking the last 3 amino acids (MBP–claudin-
2D3) were expressed in E. coli and purified on Nickel-Sepharose HP (GE
Healthcare, Piscataway, NJ) as previously described (Van Itallie and Anderson,
2004). The concentration of protein bound to beads was assessed by UV
spectroscopy and confirmed by SDS-PAGE and Coomassie Brilliant Blue staining.
Protein-conjugated beads were diluted with Sepharose CL-4B (GE Healthcare) to a
final concentration of 0.2 mg/ml resin. For pull-down assays HEK 293 Tet-Off cells
were transfected with myc-tagged ZNA transgenes as described above. After 2
days, cells were lysed on ice for 10 min in 1 ml lysis buffer (20 mM Hepes,
150 mM NaCl, 1% v/v NP-40, 20 mM imidazole, protease inhibitors; pH 7.4) and
clarified by ultracentrifugation at 100,000 g. The supernatants were pre-cleared
overnight with 50 ml of Ni-MBP resin, diluted 1:1 in HEK lysis buffer and
incubated with 25 ml of MBP claudin-2 tail or MBP claudin-2D3 resin for 2 hours
at 4 C̊. Beads were washed three times with lysis buffer and eluted in 200 ml of
400 mM imidazole (pH 7.4). Protein samples were resolved by SDS-PAGE,
transferred to nitrocellulose, and probed with antisera against myc epitope.
Westerns were imaged as detailed above.

GST–occludin binding assay

GST and human GST–occludin tail (aa 413–522) were expressed in E. coli as
previously describe (Fanning et al., 2007a). Cells were harvested by centrifugation
at 10,000 g, resuspended in 10.0 ml resuspension buffer (25 mM Tris-HCl,
150 mM NaCl, 1 mM EDTA; pH 7.2) and incubated with 1.0 mg/ml chicken
lysozyme for 30 min on ice (Sigma-Aldrich, St. Louis, MO). The bacterial lysate
was adjusted to 1.0% Triton X-100 and 250.0 U/ml Benzonase (Sigma-Aldrich),
incubated on ice an additional 10 minutes and clarified by centrifugation at 20,000
g for 30 minutes. The soluble bacterial lysate was incubated with 0.25 ml of
glutathione agarose (Sigma-Aldrich) for 1 hour at 4 C̊ with gentle mixing and
washed three times in resuspension buffer. HEK cells were transfected with myc-
tagged ZNA transgenes as described above and, after 2 days, lysed on ice in 1.0 ml
of occludin lysis buffer (20 mM Tris-Cl, 150 mM NaCl, 0.05% w/v SDS, 1%
Triton X-100, 1 mM EDTA, 1 mM DTT, protease inhibitors, pH 7.5)
supplemented with phosphatase inhibitors (Roche Diagnostics) and clarified by
ultracentrifugation at 100,000 g for 30 minutes at 4 C̊. 500 ml of clarified
supernatant was diluted with equal volume lysis buffer and pre-cleared with 40 mg
of GST-agarose slurry for 2 hours at 4 C̊. The cleared lysate was incubated with
40 mg of GST–occludin resin (,1.0 mM) overnight at 4 C̊. The resin was then
washed three times in occludin lysis buffer (w/o protease/phosphatase inhibitors)
and once in TrisCl/NaCl pH 8.0. Bound protein was eluted in 50 ml of elution
buffer (25 mM TrisCl, 10 mM reduced glutathione; pH 9.0). The eluted protein
was resolved by SDS-PAGE, transferred to nitrocellulose, and probed with
antiserum against the myc epitope.
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González-Mariscal, L., Betanzos, A. and Avila-Flores, A. (2000). MAGUK proteins:

structure and role in the tight junction. Semin. Cell Dev. Biol. 11, 315-324.

Guillemot, L., Schneider, Y., Brun, P., Castagliuolo, I., Pizzuti, D., Martines, D.,

Jond, L., Bongiovanni, M. and Citi, S. (2012). Cingulin is dispensable for epithelial
barrier function and tight junction structure, and plays a role in the control of claudin-

2 expression and response to duodenal mucosa injury. J. Cell Sci. 125, 5005-5014.

Hernandez, S., Chavez Munguia, B. and Gonzalez-Mariscal, L. (2007). ZO-2
silencing in epithelial cells perturbs the gate and fence function of tight junctions and
leads to an atypical monolayer architecture. Exp. Cell Res. 313, 1533-1547.

Ikeda, W., Nakanishi, H., Miyoshi, J., Mandai, K., Ishizaki, H., Tanaka, M.,

Togawa, A., Takahashi, K., Nishioka, H., Yoshida, H. et al. (1999). Afadin: A key
molecule essential for structural organization of cell-cell junctions of polarized

epithelia during embryogenesis. J. Cell Biol. 146, 1117-1132.

Ikenouchi, J., Furuse, M., Furuse, K., Sasaki, H., Tsukita, S. and Tsukita, S. (2005).

Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J. Cell

Biol. 171, 939-945.

Ikenouchi, J., Umeda, K., Tsukita, S., Furuse, M. and Tsukita, S. (2007).
Requirement of ZO-1 for the formation of belt-like adherens junctions during

epithelial cell polarization. J. Cell Biol. 176, 779-786.

Itoh, M., Nagafuchi, A., Moroi, S. and Tsukita, S. (1997). Involvement of ZO-1 in

cadherin-based cell adhesion through its direct binding to alpha catenin and actin
filaments. J. Cell Biol. 138, 181-192.

Itoh, M., Furuse, M., Morita, K., Kubota, K., Saitou, M. and Tsukita, S. (1999).
Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3,

with the COOH termini of claudins. J. Cell Biol. 147, 1351-1363.

Jin, C., Martyn, K. D., Kurata, W. E., Warn-Cramer, B. J. and Lau, A. F. (2004).
Connexin43 PDZ2 binding domain mutants create functional gap junctions and

exhibit altered phosphorylation. Cell Commun. Adhes. 11, 67-87.

Kausalya, P. J., Phua, D. C. and Hunziker, W. (2004). Association of ARVCF with

zonula occludens (ZO)-1 and ZO-2: binding to PDZ-domain proteins and cell-cell
adhesion regulate plasma membrane and nuclear localization of ARVCF. Mol. Biol.

Cell 15, 5503-5515.

Komura, H., Ogita, H., Ikeda, W., Mizoguchi, A., Miyoshi, J. and Takai, Y. (2008).

Establishment of cell polarity by afadin during the formation of embryoid bodies.
Genes Cells 13, 79-90.

Lorger, M. and Moelling, K. (2006). Regulation of epithelial wound closure and
intercellular adhesion by interaction of AF6 with actin cytoskeleton. J. Cell Sci. 119,

3385-3398.

Lye, M. F., Fanning, A. S., Su, Y., Anderson, J. M. and Lavie, A. (2010). Insights into

regulated ligand binding sites from the structure of ZO-1 Src homology 3-guanylate
kinase module. J. Biol. Chem. 285, 13907-13917.

Martı̀n-Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M.,

Fruscella, P., Panzeri, C., Stoppacciaro, A., Ruco, L., Villa, A. et al. (1998).
Junctional adhesion molecule, a novel member of the immunoglobulin superfamily

that distributes at intercellular junctions and modulates monocyte transmigration.
J. Cell Biol. 142, 117-127.

McNeil, E., Capaldo, C. T. and Macara, I. G. (2006). Zonula occludens-1 function in
the assembly of tight junctions in Madin-Darby canine kidney epithelial cells. Mol.

Biol. Cell 17, 1922-1932.

Meyer, T. N., Schwesinger, C. and Denker, B. M. (2002). Zonula occludens-1 is a

scaffolding protein for signaling molecules. Galpha(12) directly binds to the Src
homology 3 domain and regulates paracellular permeability in epithelial cells. J. Biol.

Chem. 277, 24855-24858.

Morita, K., Furuse, M., Fujimoto, K. and Tsukita, S. (1999). Claudin multigene

family encoding four-transmembrane domain protein components of tight junction
strands. Proc. Natl. Acad. Sci. USA 96, 511-516.

Ooshio, T., Kobayashi, R., Ikeda, W., Miyata, M., Fukumoto, Y., Matsuzawa, N.,

Ogita, H. and Takai, Y. (2010). Involvement of the interaction of afadin with ZO-1

in the formation of tight junctions in Madin-Darby canine kidney cells. J. Biol. Chem.

285, 5003-5012.

Raleigh, D. R., Marchiando, A. M., Zhang, Y., Shen, L., Sasaki, H., Wang, Y., Long,

M. and Turner, J. R. (2010). Tight junction-associated MARVEL proteins

marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol.

Biol. Cell 21, 1200-1213.

Raleigh, D. R., Boe, D. M., Yu, D., Weber, C. R., Marchiando, A. M., Bradford, E.

M., Wang, Y., Wu, L., Schneeberger, E. E., Shen, L. et al. (2011). Occludin S408
phosphorylation regulates tight junction protein interactions and barrier function.

J. Cell Biol. 193, 565-582.

Riazuddin, S., Ahmed, Z. M., Fanning, A. S., Lagziel, A., Kitajiri, S., Ramzan, K.,

Khan, S. N., Chattaraj, P., Friedman, P. L., Anderson, J. M. et al. (2006).
Tricellulin is a tight-junction protein necessary for hearing. Am. J. Hum. Genet. 79,

1040-1051.

Saitou, M., Furuse, M., Sasaki, H., Schulzke, J. D., Fromm, M., Takano, H., Noda,

T. and Tsukita, S. (2000). Complex phenotype of mice lacking occludin, a
component of tight junction strands. Mol. Biol. Cell 11, 4131-4142.

Sakakibara, A., Furuse, M., Saitou, M., Ando-Akatsuka, Y. and Tsukita, S. (1997).
Possible involvement of phosphorylation of occludin in tight junction formation.

J. Cell Biol. 137, 1393-1401.

Schmidt, A., Utepbergenov, D. I., Mueller, S. L., Beyermann, M., Schneider-Mergener,

J., Krause, G. and Blasig, I. E. (2004). Occludin binds to the SH3-hinge-GuK unit of

Journal of Cell Science 126 (7)1574

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.113399/-/DC1
http://dx.doi.org/10.1083/jcb.106.4.1141
http://dx.doi.org/10.1083/jcb.106.4.1141
http://dx.doi.org/10.1083/jcb.106.4.1141
http://dx.doi.org/10.1016/S0011-2240(03)00017-8
http://dx.doi.org/10.1016/S0011-2240(03)00017-8
http://dx.doi.org/10.1093/emboj/19.9.2024
http://dx.doi.org/10.1093/emboj/19.9.2024
http://dx.doi.org/10.1002/(SICI)1097-4644(20000701)78:1<85::AID-JCB8>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-4644(20000701)78:1<85::AID-JCB8>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-4644(20000701)78:1<85::AID-JCB8>3.0.CO;2-F
http://dx.doi.org/10.1074/jbc.M905251199
http://dx.doi.org/10.1074/jbc.M905251199
http://dx.doi.org/10.1074/jbc.M905251199
http://dx.doi.org/10.1083/jcb.138.4.891
http://dx.doi.org/10.1083/jcb.138.4.891
http://dx.doi.org/10.1083/jcb.138.4.891
http://dx.doi.org/10.1021/pr060216l
http://dx.doi.org/10.1021/pr060216l
http://dx.doi.org/10.1021/pr060216l
http://dx.doi.org/10.1111/j.1749-6632.2012.06526.x
http://dx.doi.org/10.1111/j.1749-6632.2012.06526.x
http://dx.doi.org/10.1089/ars.2008.2128
http://dx.doi.org/10.1089/ars.2008.2128
http://dx.doi.org/10.1016/j.bbamem.2007.09.031
http://dx.doi.org/10.1016/j.bbamem.2007.09.031
http://dx.doi.org/10.1111/j.1749-6632.2009.04440.x
http://dx.doi.org/10.1111/j.1749-6632.2009.04440.x
http://dx.doi.org/10.1111/j.1749-6632.2009.04440.x
http://dx.doi.org/10.1074/jbc.273.45.29745
http://dx.doi.org/10.1074/jbc.273.45.29745
http://dx.doi.org/10.1074/jbc.273.45.29745
http://dx.doi.org/10.1091/mbc.E06-08-0764
http://dx.doi.org/10.1091/mbc.E06-08-0764
http://dx.doi.org/10.1091/mbc.E06-08-0764
http://dx.doi.org/10.1074/jbc.M707255200
http://dx.doi.org/10.1074/jbc.M707255200
http://dx.doi.org/10.1074/jbc.M707255200
http://dx.doi.org/10.1091/mbc.E11-09-0791
http://dx.doi.org/10.1091/mbc.E11-09-0791
http://dx.doi.org/10.1091/mbc.E11-09-0791
http://dx.doi.org/10.1101/cshperspect.a002907
http://dx.doi.org/10.1101/cshperspect.a002907
http://dx.doi.org/10.1083/jcb.127.6.1617
http://dx.doi.org/10.1083/jcb.127.6.1617
http://dx.doi.org/10.1083/jcb.127.6.1617
http://dx.doi.org/10.1083/jcb.127.6.1617
http://dx.doi.org/10.1083/jcb.141.7.1539
http://dx.doi.org/10.1083/jcb.141.7.1539
http://dx.doi.org/10.1083/jcb.141.7.1539
http://dx.doi.org/10.1083/jcb.143.2.391
http://dx.doi.org/10.1083/jcb.143.2.391
http://dx.doi.org/10.1083/jcb.143.2.391
http://dx.doi.org/10.1016/j.cardiores.2003.12.009
http://dx.doi.org/10.1016/j.cardiores.2003.12.009
http://dx.doi.org/10.1006/scdb.2000.0178
http://dx.doi.org/10.1006/scdb.2000.0178
http://dx.doi.org/10.1242/jcs.101261
http://dx.doi.org/10.1242/jcs.101261
http://dx.doi.org/10.1242/jcs.101261
http://dx.doi.org/10.1242/jcs.101261
http://dx.doi.org/10.1016/j.yexcr.2007.01.026
http://dx.doi.org/10.1016/j.yexcr.2007.01.026
http://dx.doi.org/10.1016/j.yexcr.2007.01.026
http://dx.doi.org/10.1083/jcb.146.5.1117
http://dx.doi.org/10.1083/jcb.146.5.1117
http://dx.doi.org/10.1083/jcb.146.5.1117
http://dx.doi.org/10.1083/jcb.146.5.1117
http://dx.doi.org/10.1083/jcb.200510043
http://dx.doi.org/10.1083/jcb.200510043
http://dx.doi.org/10.1083/jcb.200510043
http://dx.doi.org/10.1083/jcb.200612080
http://dx.doi.org/10.1083/jcb.200612080
http://dx.doi.org/10.1083/jcb.200612080
http://dx.doi.org/10.1083/jcb.138.1.181
http://dx.doi.org/10.1083/jcb.138.1.181
http://dx.doi.org/10.1083/jcb.138.1.181
http://dx.doi.org/10.1083/jcb.147.6.1351
http://dx.doi.org/10.1083/jcb.147.6.1351
http://dx.doi.org/10.1083/jcb.147.6.1351
http://dx.doi.org/10.1080/15419060490951781
http://dx.doi.org/10.1080/15419060490951781
http://dx.doi.org/10.1080/15419060490951781
http://dx.doi.org/10.1091/mbc.E04-04-0350
http://dx.doi.org/10.1091/mbc.E04-04-0350
http://dx.doi.org/10.1091/mbc.E04-04-0350
http://dx.doi.org/10.1091/mbc.E04-04-0350
http://dx.doi.org/10.1111/j.1365-2443.2007.01150.x
http://dx.doi.org/10.1111/j.1365-2443.2007.01150.x
http://dx.doi.org/10.1111/j.1365-2443.2007.01150.x
http://dx.doi.org/10.1242/jcs.03027
http://dx.doi.org/10.1242/jcs.03027
http://dx.doi.org/10.1242/jcs.03027
http://dx.doi.org/10.1074/jbc.M109.093674
http://dx.doi.org/10.1074/jbc.M109.093674
http://dx.doi.org/10.1074/jbc.M109.093674
http://dx.doi.org/10.1083/jcb.142.1.117
http://dx.doi.org/10.1083/jcb.142.1.117
http://dx.doi.org/10.1083/jcb.142.1.117
http://dx.doi.org/10.1083/jcb.142.1.117
http://dx.doi.org/10.1083/jcb.142.1.117
http://dx.doi.org/10.1091/mbc.E05-07-0650
http://dx.doi.org/10.1091/mbc.E05-07-0650
http://dx.doi.org/10.1091/mbc.E05-07-0650
http://dx.doi.org/10.1074/jbc.C200240200
http://dx.doi.org/10.1074/jbc.C200240200
http://dx.doi.org/10.1074/jbc.C200240200
http://dx.doi.org/10.1074/jbc.C200240200
http://dx.doi.org/10.1073/pnas.96.2.511
http://dx.doi.org/10.1073/pnas.96.2.511
http://dx.doi.org/10.1073/pnas.96.2.511
http://dx.doi.org/10.1074/jbc.M109.043760
http://dx.doi.org/10.1074/jbc.M109.043760
http://dx.doi.org/10.1074/jbc.M109.043760
http://dx.doi.org/10.1074/jbc.M109.043760
http://dx.doi.org/10.1091/mbc.E09-08-0734
http://dx.doi.org/10.1091/mbc.E09-08-0734
http://dx.doi.org/10.1091/mbc.E09-08-0734
http://dx.doi.org/10.1091/mbc.E09-08-0734
http://dx.doi.org/10.1083/jcb.201010065
http://dx.doi.org/10.1083/jcb.201010065
http://dx.doi.org/10.1083/jcb.201010065
http://dx.doi.org/10.1083/jcb.201010065
http://dx.doi.org/10.1086/510022
http://dx.doi.org/10.1086/510022
http://dx.doi.org/10.1086/510022
http://dx.doi.org/10.1086/510022
http://dx.doi.org/10.1083/jcb.137.6.1393
http://dx.doi.org/10.1083/jcb.137.6.1393
http://dx.doi.org/10.1083/jcb.137.6.1393
http://dx.doi.org/10.1007/s00018-004-4010-6
http://dx.doi.org/10.1007/s00018-004-4010-6


J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

zonula occludens protein 1: potential mechanism of tight junction regulation. Cell. Mol.

Life Sci. 61, 1354-1365.

Shen, L. and Turner, J. R. (2005). Actin depolymerization disrupts tight junctions via

caveolae-mediated endocytosis. Mol. Biol. Cell 16, 3919-3936.

Shen, L., Black, E. D., Witkowski, E. D., Lencer, W. I., Guerriero, V.,

Schneeberger, E. E. and Turner, J. R. (2006). Myosin light chain phosphorylation

regulates barrier function by remodeling tight junction structure. J. Cell Sci. 119,

2095-2106.

Tsapara, A., Matter, K. and Balda, M. S. (2006). The heat-shock protein Apg-2 binds

to the tight junction protein ZO-1 and regulates transcriptional activity of ZONAB.

Mol. Biol. Cell 17, 1322-1330.

Umeda, K., Ikenouchi, J., Katahira-Tayama, S., Furuse, K., Sasaki, H., Nakayama,

M., Matsui, T., Tsukita, S., Furuse, M. and Tsukita, S. (2006). ZO-1 and ZO-2

independently determine where claudins are polymerized in tight-junction strand

formation. Cell 126, 741-754.

Utepbergenov, D. I., Fanning, A. S. and Anderson, J. M. (2006). Dimerization of the

scaffolding protein ZO-1 through the second PDZ domain. J. Biol. Chem. 281, 24671-

24677.

Van Itallie, C. M. and Anderson, J. M. (2004). The molecular physiology of tight

junction pores. Physiology (Bethesda) 19, 331-338.

Van Itallie, C. M., Holmes, J., Bridges, A., Gookin, J. L., Coccaro, M. R., Proctor,

W., Colegio, O. R. and Anderson, J. M. (2008). The density of small tight junction

pores varies among cell types and is increased by expression of claudin-2. J. Cell Sci.

121, 298-305.

Van Itallie, C. M., Fanning, A. S., Bridges, A. and Anderson, J. M. (2009). ZO-1
stabilizes the tight junction solute barrier through coupling to the perijunctional
cytoskeleton. Mol. Biol. Cell 20, 3930-3940.

Van Itallie, C. M., Fanning, A. S., Holmes, J. and Anderson, J. M. (2010). Occludin
is required for cytokine-induced regulation of tight junction barriers. J. Cell Sci. 123,
2844-2852.

Wittchen, E. S., Haskins, J. and Stevenson, B. R. (1999). Protein interactions at the
tight junction. Actin has multiple binding partners, and ZO-1 forms independent
complexes with ZO-2 and ZO-3. J. Biol. Chem. 274, 35179-35185.

Wu, J., Yang, Y., Zhang, J., Ji, P., Du, W., Jiang, P., Xie, D., Huang, H., Wu, M.,

Zhang, G. et al. (2007). Domain-swapped dimerization of the second PDZ domain of
ZO2 may provide a structural basis for the polymerization of claudins. J. Biol. Chem.

282, 35988-35999.
Yu, A. S., McCarthy, K. M., Francis, S. A., McCormack, J. M., Lai, J., Rogers,

R. A., Lynch, R. D. and Schneeberger, E. E. (2005). Knockdown of occludin
expression leads to diverse phenotypic alterations in epithelial cells. Am. J. Physiol.

Cell Physiol. 288, C1231-C1241.
Yu, D., Marchiando, A. M., Weber, C. R., Raleigh, D. R., Wang, Y., Shen, L. and

Turner, J. R. (2010). MLCK-dependent exchange and actin binding region-
dependent anchoring of ZO-1 regulate tight junction barrier function. Proc. Natl.

Acad. Sci. USA 107, 8237-8241.
Zhadanov, A. B., Provance, D. W., Jr, Speer, C. A., Coffin, J. D., Goss, D., Blixt,

J. A., Reichert, C. M. and Mercer, J. A. (1999). Absence of the tight junctional
protein AF-6 disrupts epithelial cell-cell junctions and cell polarity during mouse
development. Curr. Biol. 9, 880-S2.

ZO-1 is a multi-domain scaffold 1575

http://dx.doi.org/10.1007/s00018-004-4010-6
http://dx.doi.org/10.1007/s00018-004-4010-6
http://dx.doi.org/10.1091/mbc.E04-12-1089
http://dx.doi.org/10.1091/mbc.E04-12-1089
http://dx.doi.org/10.1242/jcs.02915
http://dx.doi.org/10.1242/jcs.02915
http://dx.doi.org/10.1242/jcs.02915
http://dx.doi.org/10.1242/jcs.02915
http://dx.doi.org/10.1091/mbc.E05-06-0507
http://dx.doi.org/10.1091/mbc.E05-06-0507
http://dx.doi.org/10.1091/mbc.E05-06-0507
http://dx.doi.org/10.1016/j.cell.2006.06.043
http://dx.doi.org/10.1016/j.cell.2006.06.043
http://dx.doi.org/10.1016/j.cell.2006.06.043
http://dx.doi.org/10.1016/j.cell.2006.06.043
http://dx.doi.org/10.1074/jbc.M512820200
http://dx.doi.org/10.1074/jbc.M512820200
http://dx.doi.org/10.1074/jbc.M512820200
http://dx.doi.org/10.1152/physiol.00027.2004
http://dx.doi.org/10.1152/physiol.00027.2004
http://dx.doi.org/10.1242/jcs.021485
http://dx.doi.org/10.1242/jcs.021485
http://dx.doi.org/10.1242/jcs.021485
http://dx.doi.org/10.1242/jcs.021485
http://dx.doi.org/10.1091/mbc.E09-04-0320
http://dx.doi.org/10.1091/mbc.E09-04-0320
http://dx.doi.org/10.1091/mbc.E09-04-0320
http://dx.doi.org/10.1242/jcs.065581
http://dx.doi.org/10.1242/jcs.065581
http://dx.doi.org/10.1242/jcs.065581
http://dx.doi.org/10.1074/jbc.274.49.35179
http://dx.doi.org/10.1074/jbc.274.49.35179
http://dx.doi.org/10.1074/jbc.274.49.35179
http://dx.doi.org/10.1074/jbc.M703826200
http://dx.doi.org/10.1074/jbc.M703826200
http://dx.doi.org/10.1074/jbc.M703826200
http://dx.doi.org/10.1074/jbc.M703826200
http://dx.doi.org/10.1152/ajpcell.00581.2004
http://dx.doi.org/10.1152/ajpcell.00581.2004
http://dx.doi.org/10.1152/ajpcell.00581.2004
http://dx.doi.org/10.1152/ajpcell.00581.2004
http://dx.doi.org/10.1073/pnas.0908869107
http://dx.doi.org/10.1073/pnas.0908869107
http://dx.doi.org/10.1073/pnas.0908869107
http://dx.doi.org/10.1073/pnas.0908869107
http://dx.doi.org/10.1016/S0960-9822(99)80392-3
http://dx.doi.org/10.1016/S0960-9822(99)80392-3
http://dx.doi.org/10.1016/S0960-9822(99)80392-3
http://dx.doi.org/10.1016/S0960-9822(99)80392-3

	Fig 1
	Table 1
	Fig 2
	Fig 3
	Fig 4
	Fig 5
	Fig 6
	Fig 7
	Ref 1
	Ref 2
	Ref 3
	Ref 4
	Ref 5
	Ref 6
	Ref 7
	Ref 8
	Ref 9
	Ref 10
	Ref 11
	Ref 12
	Ref 13
	Ref 14
	Ref 15
	Ref 16
	Ref 17
	Ref 18
	Ref 19
	Ref 20
	Ref 21
	Ref 22
	Ref 23
	Ref 24
	Ref 25
	Ref 26
	Ref 27
	Ref 28
	Ref 29
	Ref 30
	Ref 31
	Ref 32
	Ref 33
	Ref 34
	Ref 35
	Ref 36
	Ref 37
	Ref 38
	Ref 39
	Ref 40
	Ref 41
	Ref 42
	Ref 43
	Ref 44
	Ref 45
	Ref 46
	Ref 47
	Ref 48
	Ref 49
	Ref 50
	Ref 51
	Ref 52
	Ref 53
	Ref 54
	Ref 55
	Ref 56
	Ref 57
	Ref 58
	Ref 59


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 30%)
  /CalRGBProfile (None)
  /CalCMYKProfile (U.S. Sheetfed Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed false
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly true
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /FRA <>
    /JPN <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Settings for the Rampage workflow.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


