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Summary
In many broadcast-spawning marine organisms, oocytes release chemicals that guide conspecific spermatozoa towards them through
chemotaxis. In the sea urchin Lytechinus pictus, the chemoattractant peptide speract triggers a train of fluctuations of intracellular Ca2+

concentration in the sperm flagella. Each transient Ca2+ elevation leads to a momentary increase in flagellar bending asymmetry, known
as a chemotactic turn. Furthermore, chemotaxis requires a precise spatiotemporal coordination between the Ca2+-dependent turns and the
form of chemoattractant gradient. Spermatozoa that perform Ca2+-dependent turns while swimming down the chemoattractant gradient,

and conversely suppress turning events while swimming up the gradient, successfully approach the center of the gradient. Previous
experiments in Strongylocentrotus purpuratus sea urchin spermatozoa showed that niflumic acid (NFA), an inhibitor of several ion
channels, drastically altered the speract-induced Ca2+ fluctuations and swimming patterns. In this study, mathematical modeling of the
speract-dependent Ca2+ signaling pathway suggests that NFA, by potentially affecting hyperpolarization-activated and cyclic nucleotide-

gated channels, Ca2+-regulated Cl2 channels and/or Ca2+-regulated K+ channels, may alter the temporal organization of Ca2+

fluctuations, and therefore disrupt chemotaxis. We used a novel automated method for analyzing sperm behavior and we identified that
NFA does indeed disrupt chemotactic responses of L. pictus spermatozoa, although the temporal coordination between the Ca2+-

dependent turns and the form of chemoattractant gradient is unaltered. Instead, NFA disrupts sperm chemotaxis by altering the arc length
traveled during each chemotactic turning event. This alteration in the chemotactic turn trajectory disorientates spermatozoa at the
termination of the turning event. We conclude that NFA disrupts chemotaxis without affecting how the spermatozoa decode

environmental cues.
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Introduction
In many species, including mammals, spermatozoa are guided

towards the oocyte by gradients of chemoattractants released

from the female gamete or, more commonly, their investments

(Kaupp et al., 2008; Darszon et al., 2011). This chemotactic

behavior is widely documented in marine invertebrates that

undergo external fertilization (Miller, 1985; Ward et al., 1985).

Their spermatozoa redirect themselves by a signaling pathway

that translates local changes in the chemoattractant concentration

into a periodic modulation of the path curvature (Friedrich and

Jülicher, 2007). The redirection is driven by Ca2+-dependent

increases in flagellar bending asymmetry during the turns, and

decreases in asymmetry during the straighter swimming episodes

(Miller and Brokaw, 1970; Kaupp et al., 2003; Wood et al., 2005;

Shiba et al., 2008). Notably, the path curvature does not strictly

follow the [Ca2+]i, as spermatozoa remain swimming on

straighter paths at elevated [Ca2+]i (Wood et al., 2005; Shiba

et al., 2008; Böhmer et al., 2005; Guerrero et al., 2010a). Recent

findings indicate that the sperm swimming pathway is controlled

by the [Ca2+]i time derivative (Alvarez et al., 2012), however the

responsible molecular mechanisms involved are not fully

understood.

The decapeptide speract (GFDLNGGGVG) is one of the most

widely studied members of the sperm-activating peptide family

that modulate sea urchin sperm motility (Suzuki, 1995) (reviewed

in Darszon et al., 2008). This peptide, purified from

Strongylocentrotus purpuratus eggs, also cross-reacts with

spermatozoa from Lytechinus pictus sea urchins (Hansbrough

and Garbers, 1981; Suzuki et al., 1981; Suzuki and Garbers,

1984). Current models propose that the binding of speract to its

receptor promotes the synthesis of cGMP that activate K+

selective and cyclic nucleotide-gated channels (KCNG) leading

to membrane potential (Vm) hyperpolarization (Galindo et al.,

2005; Strünker et al., 2006; Bönigk et al., 2009). This Vm change
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first induces a pHi increase (Nishigaki et al., 2001; Nishigaki

et al., 2004), stimulates hyperpolarization-activated and cyclic
nucleotide-gated channels (HCN) (Gauss et al., 1998), removes
the inactivation of voltage-gated Ca2+ channels (CaV) (Strünker

et al., 2006; Granados-Gonzalez et al., 2005), and facilitates Ca2+

extrusion by Na+/Ca2+ exchangers (NCKX) (Jayantha Gunaratne
and Vacquier, 2007; Su and Vacquier, 2002; Nishigaki et al.,
2004). The opening of HCN and the influx of Na+ contribute to

Vm depolarization, and concomitant increases in [Ca2+]i and
[Na+]i further depolarize Vm. This fast transient increase in
flagellar [Ca2+]i has been associated with the transient increases

in flagellar bending that prompt sea urchin spermatozoa to
undergo a turning event. It has been proposed that the [Ca2+]i

increases could lead to the opening of Ca2+-regulated Cl2

channels (CaCC) and/or Ca2+-regulated K+ channels (CaKC),
which would then contribute to hyperpolarize the Vm again,
removing inactivation from CaV channels and opening HCN

channels (Wood et al., 2007; Espinal et al., 2011). It is thought
that this series of events is then cyclically repeated generating a
sequence of Vm-dependent turns.

The absence of external Ca2+ or the presence of certain Ca2+-

permeable cation channel inhibitors disrupts sperm chemotaxis
(Kaupp et al., 2003; Wood et al., 2005; Guerrero et al., 2010a;
Wood et al., 2007; Yoshida et al., 2002). Recently, we discovered that

L. pictus spermatozoa undergo chemotaxis in response to an
experimentally generated speract gradient (Guerrero et al., 2010a).
Interestingly, even though a similar speract gradient stimulates S.

purpuratus spermatozoa to redirect their swimming paths with the

stereotypical sequence of turns interspersed with periods of straighter
swimming, it does not induce chemotaxis. Thus, the Ca2+-dependent
turning episodes and the interspersed periods of straighter swimming

are necessary, but not sufficient, for chemotaxis.

Sperm chemotaxis of marine invertebrates requires the strict
coupling of the Ca2+ oscillations with the direction or polarity of
the chemoattractant gradient (Böhmer et al., 2005; Shiba et al.,

2008; Guerrero et al., 2010a; Kashikar et al., 2012). We found
that L. pictus spermatozoa are able to suppress the onset of Ca2+

fluctuations while swimming toward the center of a speract

gradient. However, after crossing the positive-to-negative speract
gradient inversion point, the Ca2+-dependent turning events
occur. Therefore, a fundamental element of sea-urchin sperm

chemotaxis lies in the ability to suppress Ca2+-mediated increases
in flagellar curvature while swimming in ascending (positive)
chemoattractant gradients.

Niflumic acid (NFA) is a nonsteroidal anti-inflammatory drug

that blocks or modifies the gating of many ion channels including
HCN, CaCC and CaKC (Pacaud et al., 1989; White and Aylwin,
1990; Janssen and Sims, 1992; Akbarali and Giles, 1993;

Espinosa et al., 1998; Greenwood and Large, 1995; Hogg et al.,
1994; Satoh and Yamada, 2001; Li et al., 2008; Cheng and
Sanguinetti, 2009). Treatment of S. purpuratus spermatozoa with

NFA increases the duration, amplitude and interval between
successive speract-triggered [Ca2+]i fluctuations (Wood et al.,
2007; Wood et al., 2003). These alterations in [Ca2+]i dynamics
have strong repercussions on S. purpuratus sperm motility; in the

presence of NFA, the speract-induced turns are more pronounced
and of greater duration (Wood et al., 2007).

In a companion article (J.E., A.D., A.G. and G.M.-M.,

unpublished) we investigated how NFA could modify the Ca2+

fluctuation dynamics using a logical network model for the
speract-activated Ca2+ signaling pathway developed by Espinal

et al. (Espinal et al., 2011). Here, based on the results of this
model under conditions in which it can reproduce the
experimental findings of Wood et al. (Wood et al., 2003; Wood

et al., 2007), we anticipate that in the presence of speract
gradients, [Ca2+]i fluctuations would no longer be biased towards
the descending gradients in the presence of NFA. To investigate

this hypothesis, we exposed L. pictus spermatozoa to NFA to
modify the speract-induced ion permeability changes and study
their impact on chemotaxis.

Results
Blockage of NFA-sensitive channels in a model of the
speract signaling pathway alters the temporal organization
of [Ca2+]i fluctuations

Inhibition of HCN, CaKC and CaCC in the model leads to changes
in [Ca2+]i oscillations, which are characterized by larger

amplitudes, a temporal shift of the peaks and troughs and higher
average concentration levels, when compared to the speract-
stimulated oscillations in untreated conditions (Fig. 1A) (J.E.,

A.D., A.G. and G.M.-M., unpublished). To try to understand how
the predicted alteration in Ca2+ oscillations induced by NFA would
impinge on swimming behavior and chemotaxis, we mapped the

time series simulations of Ca2+ (Fig. 1A), produced by the model
under the experimental conditions of Wood et al. onto a circle
representing the trajectory of a spermatozoon swimming in the
plane (see Fig. 1B for details) (Wood et al., 2007). Taking into

account a dominant four period component in the oscillations in
Fig. 1A (J.E., A.D., A.G. and G.M.-M., unpublished), we mapped
time into a circular path ensuring that the spatial period

corresponds to a temporal period of 4 time units. Furthermore, in
order to envisage speract gradient effects, we shifted time so that a
resemblance is attained between the time course of mean Ca2+

values for the untreated speract-stimulated sperm (Fig. 1C) and the
spatiotemporal positioning of chemotactic turns along the circular
path observed in L. pictus spermatozoa (Guerrero et al., 2010a).
We set the appearance of Ca2+ peaks in the untreated speract-

stimulated sperm in the Fig. 1C, left panel, so that they were biased
towards descending phases of the speract gradient (Q: 02p).
Notice the similarity of this figure with the experimental [Ca2+]i

fluctuations in Fig. 4C, which shows chemotactic turns
experienced by the spermatozoa of L. pictus after exposure to a
speract gradient (supplementary material Fig. S4C).

When the time series representing the Ca2+ dynamics of NFA-

treated speract-stimulated sperm were mapped in the same way,
the bias in the timing of the peaks in Ca2+ oscillations towards the
descending gradients was lost (Fig. 1C, right panel). Thus,

according to our findings (Guerrero et al., 2010a) the logical
model predicts that NFA treatment would disrupt chemotaxis in
L. pictus spermatozoa by relocating the Ca2+ peaks that control
chemotactic turns further around the circular path relative to the

chemoattractant gradient.

NFA disrupts sperm chemotaxis

To investigate the hypothesis that NFA affects chemotactic
responses by altering the temporal organization of [Ca2+]i

oscillations, and thus relocating chemotactic turns, we analyzed
the swimming paths of NFA-treated L. pictus spermatozoa in a
speract gradient. Fig. 2 illustrates sperm motility and sperm

responses to a speract gradient in the absence (Speract) and
presence of 30 mM of NFA (Speract+NFA). A speract gradient
with a Gaussian concentration distribution was generated via the
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photolysis of 10 nM caged speract with a 200 ms UV flash

through an optical fiber (Guerrero et al., 2010a), during which

only 5–10% is photo-released after UV irradiation (Tatsu et al.,

2002). Before UV irradiation, spermatozoa swam in circles with

near-constant radii (Speract: 23.860.9 mm; Speract+NFA:

26.761.5 mm; P50.27, n.45, Wilcoxon test; Fig. 2A,C).

Immediately after UV irradiation they generated a stereotypical

motility response of turns interspersed with the straighter

swimming episodes in both experimental conditions: Speract

and Speract+NFA (Fig. 2B,C; supplementary material Fig. S2

left panels). Previous studies showed that, under identical

experimental conditions, the chemotactic response of L. pictus

spermatozoa is restricted to the first 3 s following speract

uncaging, which is spatially delimited to the region 40–170 mm

from the center of the speract gradient (Guerrero et al., 2010a).

Within these spatial and temporal limits the speract gradient

remains essentially unchanged after the UV pulse. A Gaussian

distribution was fitted to the radial profile of the UV light

scattered at the water–glass interface and used to estimate the

shape of the speract gradient created by uncaging. The temporal

evolution of the speract gradient was then computed based on the

diffusion coefficient of the peptide (supplementary material Fig.

S3; note that at 100 mm from the center of the chemoattractant

gradient the speract concentration was constant during the initial

3 s period post-UV stimulation).

We assayed chemotaxis in the L. pictus spermatozoa that were

swimming at 40–150 mm from the center of the speract gradient

from three seconds before (as control) and throughout three

seconds after UV irradiation (Fig. 3). In both experimental

conditions, Speract and Speract+NFA, unstimulated spermatozoa

showed a distribution of linear equation chemotaxis index (LECI)

values centered around zero (LECImean51.160.2 mm/s and

0.760.6 mm/s, respectively) (Yoshida et al., 2002; Guerrero

et al., 2010a). When exposed to the speract gradient alone the

cell distribution shifted towards the positive range indicating a

biased sperm re-localization towards the gradient center:

LECImean513.562.5 mm/s (Fig. 3; supplementary material

Movie 1). In contrast, NFA-treated spermatozoa respond to the

speract gradient with half of the cells experiencing negative

chemotaxis: (Fig. 3; supplementary material Movie 2). A shift of

the left tail of the distribution of LECI values towards the negative

range was observed: bimodal distribution (P50.03, Hartigans’ Dip

test for unimodality). The overall mean was found close to zero:

23.062.9 mm/s; Fig. 3. Statistically insignificant differences

were found when comparing the overall distribution of NFA-

treated speract-stimulated spermatozoa against unstimulated

spermatozoa (P50.35, Wilcoxon test). We conclude that NFA

disrupts the capability of L. pictus spermatozoa to bias their

motility behavior towards the center of the speract gradient.

Fig. 1. Simultaneous inhibition of HCN, CaKC and CaCC by NFA in a

logical model of speract signaling pathway alters the temporal

organization of [Ca2+]i oscillations and potentially disrupts the

chemotactic bias of Ca2+-dependent turns. (A) Time dependence of the

average value, taken over 1000 independent random initial conditions, of

[Ca2+]i determined from our network dynamics as a response to speract.

Black: untreated (wild-type) spermatozoa; grey: NFA-treated spermatozoa.

The dark-grey horizontal line indicates the time average of the above over 100

wild-type generated points; the light-grey horizontal line is the equivalent

time average of the NFA case. The effect of NFA was modeled by setting the

logical variables representing HCN, CaKC and CaCC to zero.

(B) Intersections of the straight lines with the red curve segments (some of

which are shown as black dots) are the polar coordinate plots of the [Ca2+]i

data shown in A from time step 14 to 26; wild type on the left and NFA-

treated on the right. The radius, measured from the straight line intersections,

encodes the values of [Ca2+]i as in A, with a scale set by the grey circle fixed

to the corresponding gray horizontal values in A. The time-related angular

coordinate QF has units such that a time step in A corresponds to p/2, hence

the spatial period of the circumference is spanned in four time-steps. Red

circular segments give an indication of the point succession ordered in the

direction determined by the arrows; numbers indicate the time step value of

the labeled point according to A. (C) Points are time-averaged values of the

wild-type (left panel) and NFA-treated (right panel), [Ca2+]i series shown in

A, taken at four time-step intervals. As an example, in B, 4 of the 25 points

that intervene in the time-average are labeled explicitly. Shaded regions are

representative of the distribution of points for short time scales. The initial

time in the polar coordinate representation is chosen in the left panel so that

the likelihood of having an averaged [Ca2+]i wild-type peak is higher for

values of QF between 0 and p, i.e. in the descending phase of the

chemoattractant gradient. In the presence of NFA (right panel) under the same

setup, the peak bias of the [Ca2+]i fluctuations determined by the model

appears shifted to the interval in between p and 2p (right panel), i.e. to an

ascending speract gradient.

Niflumic acid disrupts sperm chemotaxis 1479
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NFA does not affect how sperm detect the speract gradient

We previously reported that L. pictus spermatozoa experience

chemotactic responses to the speract concentration gradient due

the selective triggering of Ca2+ dependent turns while swimming

down the speract gradient (Guerrero et al., 2010a). Contrastingly,

when spermatozoa from the sea urchin S. purpuratus were

exposed to the same experimental conditions they failed to

undergo chemotaxis due the spatially unbiased triggering of Ca2+

dependent turning events relative to the speract gradient

(Guerrero et al., 2010a). Hence, the ability to couple the

[Ca2+]i oscillations with the direction of the chemoattractant

concentration gradient is fundamental for sperm chemotaxis. We

therefore investigated whether NFA disrupts chemotaxis in L.

pictus sperm through disruption of their mechanism for

selectively suppressing chemotactic turns in ascending

chemoattractant gradients.

We analyzed the behavior of sperm during the period between

the UV-stimulated uncaging event and the first [Ca2+]i

fluctuation. In these conditions, the duration of exposure to an

ascending speract gradient in each spermatozoon will depend on

its position at the end of the period of UV irradiation. Initially,

increases in speract concentration created during the 200 ms of

UV exposure will be sensed by all spermatozoa in the field as an

ascending gradient of speract. At the end of the 200 ms of UV

irradiation spermatozoa will find themselves in either a newly-

formed positive or negative gradient. The spermatozoa that

immediately experience a descending speract gradient after the

uncaging event will sense lower rates of speract binding than

those that encounter an ascending speract gradient. If the

mechanism to suppress the [Ca2+]i increase in ascending

chemoattractant gradients is robust, then the two sperm states

(ascending gradient after UV, or ASC, and descending gradient

after UV, or DESC) will differ in the delay they experience

before undergoing the first [Ca2+]i fluctuation.

Our working hypothesis is that DESC spermatozoa will

experience at the end of the uncaging event a fall in the rate of

speract binding, cGMP synthesis and K+-dependent Vm

hyperpolarization; consequently initiating the signaling cascade

that leads to the [Ca2+]i increase and the flagellar motility

changes. However, ASC spermatozoa will initially swim within a

continuing ascending speract gradient, experiencing a relative

delay before reaching the gradient inversion point at which the

chemotactic turn-promoting signaling mechanism is activated.

Thus ASC sperm will show significantly increased intervals

between the end of the UV exposure and the initiation of the first

[Ca2+]i fluctuation than DESC sperm (Guerrero et al., 2010a).

We determined the direction of individual spermatozoa at the

end of the UV irradiation period (QUVend), and correlated this

value with the time required for the onset of the first [Ca2+]i

fluctuation (tF0; Fig. 4A,B,D,E). Values of QUVend between 0 and

p identify DESC spermatozoa, and QUVend values between p and

2p identify ASC spermatozoa. Untreated speract-stimulated ASC

spermatozoa significantly increased the average tF0 compared to

untreated DESC spermatozoa (410643 versus 162610 ms;

Fig. 4A,B). This relatively extended delay to the first [Ca2+]i

fluctuation in ASC spermatozoa compared to DESC spermatozoa

Fig. 2. Typical speract-induced motility changes.

Time projections showing sperm trajectories and

fluo-4 fluorescence 3 s before (A,C) and 3 s after

(B,D) the 200 ms UV irradiation of 10 nM caged

speract (CS) in ASW (A,B) or in ASW containing,

30 mM NFA (C,D). The white dots show the UV-

irradiated area that corresponds to the center of the

speract gradient. A pseudo-color scale represents

maximum (red) and minimum (blue) relative fluo-4

fluorescence. Scale bar: 25 mm. Examples of single-

cell trajectories are shown in supplementary material

Fig. S2.
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was also seen in NFA-treated spermatozoa (410650 versus
200650 ms, respectively; Fig. 4D,E).

The increased delay seen in the ASC sperm population is
sufficient to retard the onset of the [Ca2+]i elevation until the
sperm enters into the descending phase of the speract gradient. To

determine if NFA modifies the relative sperm positioning on the
speract gradient we measured the position of individual
spermatozoa relative to the direction of the speract gradient at

the beginning of the first [Ca2+]i fluctuation (QF1). In both
experimental conditions, Speract and Speract+NFA, spermatozoa
undergo the first [Ca2+]i fluctuation near to the minimum of the
speract gradient (the farthest point from the center; Fig. 4C,F;

Table 1).

The distribution of the positions of individual spermatozoa at
the beginning of subsequent [Ca2+]i fluctuations (QF) was skewed

towards the minimum of the speract gradient in both
experimental conditions, Speract and Speract+NFA (Fig. 4C,F;
Table 1). These data show that NFA neither alters the signaling

mechanism that suppress the increase in [Ca2+]i as spermatozoa
are swimming in a positive chemoattractant gradient, nor alters
the position at which the [Ca2+]i fluctuations occur relative to the
center of the chemoattractant gradient.

The relationship between the timing of the [Ca2+]i fluctuations
and the shape of the chemical gradient determines the positioning
of the turn-and-run motility response (Böhmer et al., 2005; Shiba

et al., 2008; Guerrero et al., 2010a; Guerrero et al., 2010b;
Kashikar et al., 2012). Supplementary material Fig. S4 shows the
correlation of the direction of individual spermatozoa at the end

of the UV irradiation period with the time required for the onset
of the first turning event (tT0). As expected, ASC spermatozoa
showed significantly increased intervals between the end of the

UV exposure and the initiation of the first turning event than
DESC spermatozoa (310643 versus 60643 ms, supplementary
material Fig. S4A,B). Similar behavior was shown for those

spermatozoa treated with NFA (410643 versus 160643 ms,
supplementary material Fig. S4D,E). Curiously, without NFA the
average tT0 was significantly lower than the average tF0

(compare Fig. 4B; supplementary material Fig. S4B). This

discrepancy may be due to our algorithm detecting the onset of
turns prior to the point at which flagellar [Ca2+]i levels rise above
the threshold of detection, given that basal levels of flagellar

[Ca2+]i are undetectable in swimming L. pictus sea urchin
spermatozoa (Guerrero et al., 2010a).

We next examined if the distribution of the positions of
spermatozoa at the onset of the first turning event had a biased

preference, and found that it was skewed towards the minimum
of the speract gradient in both experimental conditions, Speract
and Speract+NFA (supplementary material Fig. S4C; Table 2).

In summary, we find no evidence that NFA interferes with
signaling mechanisms that suppress the triggering of an increase
in the [Ca2+]i while spermatozoa are swimming up a speract

gradient, nor that it alters the position of the Ca2+-dependent
turning events relative to center of the chemoattractant gradient.

Niflumic acid treatment increases the arc length traveled
during each turning event but not its duration

The effect of the chemotactic turn is to reorient the spermatozoon
along a new trajectory that directs it towards the source of a
chemoattractant via a transient episode of relatively straightened

swimming trajectory. We next investigated whether the
disruption of chemotaxis by NFA is due to a defect in
the alignment of this straighter swimming path relative to the

gradient center after a chemotactic turn. Path misalignment can,
in principle, follow a turn performed with an abnormal angular
velocity, an abnormal time period and/or along an abnormal path

curvature. In the presence of NFA the turns were more
pronounced (Fig. 2D; supplementary material Fig. S2B;
Fig. 5A) due to an increased arc length traveled during each

Fig. 3. NFA disrupts sperm chemotaxis. Distributions of LECI

values calculated from 3 s before to 3 s after exposure to a speract

gradient alone (Speract), or in speract and NFA (Speract+NFA),

n.20. Red solid lines indicate the mean values and the dashed blue

line shows the zero-crossing values.

Niflumic acid disrupts sperm chemotaxis 1481
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turning event (U) from 0.660.05 to 0.8560.11% of revolution

per turn (Fig. 5B), although in both conditions the turns were of

the same duration (tT<0.5 s; Fig. 5C). The increase in U due to

NFA treatment was correlated with a significant increase in the

angular velocity during each turning event (from wT512.760.4

to 14.060.5 rad/s; Fig. 5D). Interestingly NFA does not alter the

average interval between [Ca2+]i fluctuations (Speract:

0.7560.05 s, Speract+NFA: 0.7860.04 s), nor the average

interval between turns (Speract: 0.8960.05 s, Speract+NFA:

0.9060.07 s; supplementary material Fig. S5). In addition, the

distribution of the straighter swimming episodes of the NFA-

treated spermatozoa was shifted towards negative values and

centered close zero (Fig. 5D). Furthermore, the duration of the

straighter swimming episodes was the same in both experimental

conditions (tS<0.5 s; Fig. 5F).

NFA-treated spermatozoa are disoriented at the beginning

of the straight-swimming episodes

The increased arc length traveled during each turning event

displayed by the NFA-treated spermatozoa (Fig. 5) suggests that

they are disoriented at the onset of the period of straighter

swimming. We determined the relative positioning of individual

spermatozoa with respect to the speract gradient at the onset of the

first straight swimming episode (QS1), or at the onset of the

subsequent straight swimming episodes (QS). Chemotactic

spermatozoa experience the onset of the straighter swimming

episodes in the ascending phase of the speract gradient (Fig. 6, left;

Table 3). On the contrary, NFA-treated spermatozoa displayed a

phase shift of p/2 at the onset of the straighter swimming episodes

(close to the nearest point to the center of the speract gradient;

Fig. 5, right; Table 3). This incorrect positioning drives NFA-

treated spermatozoa away from the center of the chemoattractant

gradient, disrupting the chemotactic response in these cells.

Discussion
The binding of speract to its receptor initially triggers Vm

hyperpolarization by opening cGMP-gated K+ channels (KCNGs)

which leads to a pHi alkalinization and then to [Ca2+]i increases

(Darszon et al., 2011). It has been proposed that spermatozoa

swimming up a positive chemoattractant gradient will experience

increasing rates of chemoattractant binding and receptor activation,

leading to sustained membrane hyperpolarization due to the opening

of KCNG channels. This hyperpolarized state is sustained until

spermatozoa enter negative chemoattractant gradients, at which

point the membrane depolarizes leading to the opening of CaV

channels (Guerrero et al., 2010a; Darszon et al., 2008; Bönigk et al.,

2009; Strünker et al., 2006; Guerrero et al., 2010b; Galindo et al.,

2007; Cook et al., 1994). We found that NFA does not apparently

perturb this putative chemoattractant gradient decoding mechanism,

indicating that the molecular targets of NFA are downstream of the

components regulating the initial Ca2+ burst.

Our current model for speract-induced signaling events proposes

that the initial KCNG channel-mediated hyperpolarization of the

Fig. 4. NFA does not affect the mechanism that delays the onset of the

[Ca2+]i fluctuations until reaching a descending phase of the speract

gradient. Spermatozoa exposed to the speract gradient alone (Speract; A–C)

or in speract and NFA (Speract+NFA; D–F). (A,D) Relative sperm position

on the speract gradient at the end of the UV irradiation period (QUVend) versus

the delay to the onset of the first [Ca2+]i fluctuation (tF0). (B,E) Average

delay of the onset of the first [Ca2+]i fluctuation (tF0) of ASC (gray) or DESC

(black) spermatozoa (*P,0.001, Wilcoxon-test, n$9). (C,F) Circular

distribution of the relative sperm positioning on the speract gradient at the

onset of the first [Ca2+]i fluctuation (QF1) or at the onset of the subsequent

fluctuations (QF); n$36.

Table 1. Rayleigh test of circular distribution (P-values) – the

[Ca2+]i fluctuations are biased towards the range [p/2, p]

Specific mean direction

2 0 p/2 p 3p/2

Speract, wF1 0 0 0.93 1 0.07
Speract, wF 0 0 0.98 1 0.02
Speract+NFA, wF1 0 0.0005 1 1 0.047
Speract+NFA, wF 0 0 1 1 0.0005

The alternative hypothesis H0 is a unimodal distribution with unknown w
mean (second column: ‘–’), otherwise H0 is a unimodal distribution with a
specified w mean direction (columns 3 to 6: ‘0’, ‘p/2’, ‘p’, ‘3p/2’).

Table 2. Rayleigh test of circular distribution (P-values) – the

Ca2+-dependent turning events are biased towards the range

[p/2, p]

Specific mean direction

2 0 p/2 p 3p/2

Speract, wT1 0.02 0.3 1 0.7 0.04
Speract, wT 0 0.0004 1 1 0.001
Speract+NFA, wT1 0 0.002 1 1 0.0001
Speract+NFA, wT 0 0 1 1 0.0001

The alternative hypothesis H0 is a unimodal distribution with unknown w
mean (second column: ‘–’), otherwise H0 is a unimodal distribution with a
specified w mean direction (columns 3 to 6: ‘0’, ‘p/2’, ‘p’, ‘3p/2’).
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sperm membrane potential releases CaV channels from inactivation,

and stimulates the activity of HCN channels (Darszon et al., 2008).

The opening of HCN channels repolarizes Vm, leading to opening of

CaV channels. The KCNG channel-mediated hyperpolarization

could theoretically reach the K+ equilibrium potential

(EK+<295 mV), depending on the degree of stimulation. In

Arbacia puctulata spermatozoa the hyperpolarization following

exposure to chemoattractant gradually increased over five orders of

magnitude of chemoattractant concentration, showing a maximal

response at 25 nM (Strünker et al., 2006). Since in our experimental

assay we employed 10 nM of caged speract, and the photo-uncaging

efficiency is in the range of 5–10% (Tatsu et al., 2002), the higher

speract concentration used to stimulate the spermatozoa of L. pictus

should be in the picomolar range (Guerrero et al., 2010a). This

means that the initial KCNG-mediated hyperpolarization will be

within the resting Vm5240 mV and 295 mV, and needs to be

enough to remove CaV channel inactivation. In this physiological

Vm range only a fraction of the HCN will open (Gauss et al., 1998) to

promote Na+ influx (the Ih current) and generate the initial

repolarization required to open CaV channels (however, once

opened, Ca2+ influx will further contribute to the depolarization). In

rod photoreceptor cells NFA promotes a shift of the Vm dependence

of HCN towards more negative values (Satoh and Yamada, 2001). It

is possible that in NFA-treated spermatozoa the Ih current will

contribute less to the Vm re-depolarization phase of the speract

signaling pathway (Fig. 7A,i). If this is true, other depolarizing

elements will be required to compensate the diminished re-

depolarizing role of Ih in NFA-treated spermatozoa (otherwise the

initial [Ca2+]i transient should never occur after NFA treatment).

Since ZD7288, an HCN blocker, only delays the [Ca2+]i transient

triggered by speract (Nishigaki et al., 2004), it seems feasible that

other currently uncharacterized depolarizing elements, such as

CatSper, participate in this phase of re-depolarization.

As the resting potential of sea urchin sperm is <240 mV

(Strünker et al., 2006; González-Martı́nez and Darszon, 1987;

Schackmann et al., 1981), and the Cl2 equilibrium potential ECl{

is 269.567.5 mV (Wood et al., 2007), the opening of Cl2

channels would result in an influx of Cl2 and a hyperpolarization

Fig. 5. NFA increases the arc length

traveled during each turning event but not

its duration. (A,B) Distribution of the

maximum curvature values (A, n$107), arc

length traveled (B; as a percentage of

revolutions per turn: U/2 p, n$41) during the

speract-induced turning event. (C) Duration of

the turning events (n$75). (D) Distribution of

the mean angular velocity of the turning

events (n$75). (E) Distribution of the

minimum curvature values: ‘the most

straighter swimming episodes’ (n$110).

(F) Duration of the straighter swimming

episodes (n$47). *P,0.01, Wilcoxon test.

Speract: 10 nM CS; Speract+NFA: 10 nM

CS+30 mM NFA. Red solid lines indicate the

mean. Note the log scale of A–C,E.

Fig. 6. NFA-treated spermatozoa display a phase shift of p/2 to the onset

of straighter swimming episodes. Circular distribution of the relative

positioning of spermatozoa with respect to the speract gradient at the onset of

the first turning episodes (QS1) or at the onset of the subsequent episodes (QS).

Spermatozoa were exposed to the speract gradient alone (left) or in the

presence of speract and NFA (right).

Table 3. Rayleigh test of circular distribution (P-values) –

NFA-treated spermatozoa display a phase shift of p/2 to the

onset of the straighter swimming episodes

Specific mean direction

2 0 p/2 p 3p/2

Speract, wS1 0 0.02 0 0.98 1
Speract, wS 0.007 0.03 0.006 0.97 0.99
Speract+NFA, wS1 0.01 0.93 0.005 0.07 0.99
Speract+NFA, wS 0.08 0.97 0.12 0.03 0.88

The alternative hypothesis H0 is a unimodal distribution with unknown w
mean (second column: ‘–’), otherwise H0 is a unimodal distribution with a
specified w mean direction (columns 3 to 6: ‘0’, ‘p/2’, ‘p’, ‘3p/2’).
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of Vm (Wood et al., 2007). Furthermore, we recently found that

the highly specific blocker of CaKC Iberiotoxin at 100 nM

increases the period between the [Ca2+]i fluctuations triggered by

speract in S. purpuratus spermatozoa (Espinal et al., 2011). If

CaCC and/or CaKC channels participate in the speract signaling

pathway, they would open in response to Ca2+ entry, leading to

influx of Cl2 and/or efflux of K+, and therefore Vm

hyperpolarization (Fig. 7A,ii,iii). This hyperpolarization could

activate the NCKX that extrudes Ca2+ from the cell, thus shaping

the [Ca2+]i increase into a transient fluctuation (Jayantha Gunaratne

and Vacquier, 2007; Su and Vacquier, 2002; Nishigaki et al., 2004;

Kashikar et al., 2012). This hyperpolarization could also open HCN

channels, depolarizing the Vm again, and leading to the opening of

CaV channels and setting up a cycle of Ca2+ influx and efflux

through the concerted action of HCN, CaV, CaCC and/or CaKC.

The partial block of these channels by NFA may delay the

repolarizationRhyperpolarization phase when the [Ca2+]i peaks,

and as a consequence delaying the extrusion activity of the NCKX

and shaping a [Ca2+]i fluctuation of increased duration and

amplitude. Wood et. al, showed that in S. purpuratus spermatozoa

NFA increases and extends the Vm depolarization following speract

addition (Wood et al., 2007). This compound increases the duration,

amplitude and interval between successive speract triggered [Ca2+]i

fluctuations in S. purpuratus spermatozoa (Wood et al., 2007; Wood

et al., 2003) (Fig. 7,iv). As a result, the speract-induced increases in

flagellar asymmetry, and the resultant turns of S. purpuratus

spermatozoa, are more pronounced and prolonged (Wood et al.,

2007).

We found that the turning events experienced by NFA-treated

L. pictus spermatozoa in a speract gradient are more pronounced

due to an increased arc length traveled per turn (Fig. 7B,v). We

speculate that the currents flowing through the CaCC and CaKC

channels are diminished/inhibited due to NFA treatment

(Fig. 7,ii, iii); consequently Ca2+ entry through CaV channels is

increased and prolonged (Alvarez et al., 2012), and thus the

degree of flagellar bending should be simultaneously increased

and prolonged. This latter conjecture is compatible with the

extended depolarization following speract addition in the

presence of NFA observed in S. purpuratus spermatozoa

(Wood et al., 2007). We show that the extended arc length

traveled per turn due NFA treatment promotes a phase shift of p/

2 for the onset of the straighter swimming episodes, as

consequence the spermatozoon swims to a less favorable

position with respect to the origin of the speract gradient

during each straighter swimming episode.

It has been shown that NFA increases the interval between

speract-induced [Ca2+]i fluctuations on S. purpuratus

spermatozoa (Wood et al., 2007; Wood et al., 2003). Even if

the [Ca2+]i oscillations remain coupled with the polarity of the

chemoattractant gradient, a simple phase shift of the [Ca2+]i

oscillator could impair sperm chemotaxis (Fig. 1B). Contrary to

our prediction, NFA neither modifies the interval between [Ca2+]i

fluctuations induced by the speract gradient in L. pictus

spermatozoa, nor alters the interval between turning events

(supplementary material Fig. S5). Furthermore in the presence of

NFA, the [Ca2+]i oscillations (Fig. 4) and the associated turning

events (supplementary material Fig. S4) were still coupled with

the polarity of the chemoattractant concentration gradient

suggesting that spermatozoa were unimpaired in their ability to

sense and decode this gradient. Such contradictory findings can

Fig. 7. Schematic representation of how perturbations to speract signaling disrupt chemotaxis. (A) Possible NFA targets and their putative role in the speract

signaling pathway. In the range 1–100 mM: NFA reduces the Ih current of HCN channels (i) (Satoh and Yamada, 2001; Cheng and Sanguinetti, 2009).

Interestingly neither NFA, nor the HCN blocker ZD7288 prevents the increase in the [Ca2+]i triggered by speract (Nishigaki et al., 2004), suggesting that other

molecular elements could contribute to the Vm re-polarization required for CaV channel opening. NFA blocks CaCC (ii) (Pacaud et al., 1989; White and Aylwin,

1990; Janssen and Sims, 1992; Akbarali and Giles, 1993; Espinosa et al., 1998; Hogg et al., 1994; Kleene and Gesteland, 1991; Madrid et al., 2005; Morales et al.,

1993) and CaCK (iii) (Greenwood and Large, 1995) in several cell types. Our mathematical model suggests that these channels could participate in the

orchestration of the speract-induced [Ca2+]i fluctuations and both are affected by NFA. For the sake of clarity and simplicity, other important changes triggered by

speract, such as the pHi and cAMP increases are omitted. (B) Alterations of the speract-induced [Ca2+]i fluctuations by NFA (iv) disrupt sperm chemotaxis by

exacerbating the Ca2+-dependent turning events that promote the disorientation of the spermatozoa during the straighter swimming episodes (v).
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be explained by considering a feedback loop that continuously

adjusts the phase of the [Ca2+]i oscillator to maintain its coupling

with the polarity of the chemoattractant concentration gradient.
The increased speract receptor recruitment as sperm swim in the

ascending phase of the chemoattractant gradient may feedback to

regulate the pacemaker that controls the timing of the [Ca2+]i

oscillations (Kashikar et al., 2012). The oscillatory sampling of

the chemoattractant concentration gradient, due to their intrinsic
periodic swimming behavior, may be enough to correct the

expected phase shift of the [Ca2+]i oscillations seen in cells

stimulated in the absence of a chemoattractant gradient reported

by Wood et al. (Wood et al., 2007; Wood et al., 2003). It follows

that the impairment of sperm chemotaxis by NFA can be
attributed to its modulatory effect on the molecular entities that

drive the turning events, and not through alteration of the

chemodetection system of concentration gradients. As the

speract-induced hyperpolarization first increases pHi (Nishigaki

et al., 2004) and CatSper, a sperm-specific, pH-dependent Ca2+

channel is found in the S. purpuratus genome (Ren and Xia,

2010), future work must evaluate the role of this channel and its

pHi regulation in the generation of the Ca2+ bursts, and their

sensitivity to NFA.

We conclude that induced alterations to their ionic

permeability may disorientate spermatozoa during chemotaxis.

It remains to be demonstrated whether this mechanism is relevant

during natural chemotactic processes operating during a
spermatozoon’s journey towards the egg. Combined

pharmacology coupled to quantitative and automated methods

of analysis of sperm chemotaxis and modeling as the presented

here will give more insights regarding the spatiotemporal role of

the molecular elements that orchestrate the signal flow that
controls sperm swimming behavior.

Materials and Methods
Materials

Undiluted L. pictus spermatozoa (Marinus Inc., Long Beach, CA, USA) were
obtained by intracoelomic injection of 0.5 M KCl and stored on ice until used
within a day. Artificial seawater (ASW) was 950 to 1000 mOsm and contained (in
mM): 486 NaCl, 10 KCl, 10 CaCl2, 26 MgCl2, 30 MgSO4, 2.5 NaHCO3, 10
HEPES and 1 EDTA (pH 7.35). Low Ca2+ ASW was as ASW but pH 7.0 and with
1 mM CaCl2. [Ser5; nitrobenzyl–Gly6]speract, referred to throughout the text as
caged speract (CS), was prepared as previously described (Tatsu et al., 2002).
Fluo-4-AM and pluronic F-127 were from Molecular Probes, Inc. (Eugene, OR,
USA). PolyHEME [poly(2–hydroxyethylmethacrylate)] and NFA {2-[3-
(trifluoromethyl)phenyl]aminopyridine-3-carboxylic acid} were from Sigma-
Aldrich (Toluca, Edo de Mexico, Mexico).

Loading of Ca2+-fluorescent indicator into spermatozoa

Undiluted spermatozoa were suspended in 10 volumes of low Ca2+ ASW
containing 0.2% pluronic F-127 and 20 mM of Fluo-4 AM and incubated for 2.5 h
at 14 C̊. Spermatozoa were stored in the dark and on ice until use.

Fluorescence imaging of swimming spermatozoa

The coverslips were briefly immersed into a 0.1% wt/vol solution of polyHEME in
ethanol, hot-air blow-dried to rapidly evaporate the solvent, and mounted on
reusable chambers fitting a TC-202 Bipolar temperature controller (Medical
Systems Corp.). The temperature plate was mounted on a microscope stage
(Eclipse TE-300; Nikon) and maintained at a constant 15 C̊. Aliquots of labeled
sperm were diluted in ASW and transferred to an imaging chamber (final
concentration ,26105 cells/ml). Epifluorescence images were collected with a
Nikon Plan Fluor 406 1.3 NA objective using the Chroma filter set (ex, HQ470/
406; DC, 505DCXRU; em, HQ510LP) and recorded on a DV887 iXon EMCCD
Andor camera (Andor Bioimaging, NC). Stroboscopic fluorescence illumination
was supplied by a Cyan LED no. LXHL-LE5C (Lumileds Lighting LLC, San Jose,
USA) synchronized to the exposure output signal of the iXon camera (2 ms
illumination per individual exposure). Images were collected with Andor iQ 1.8
software (Andor Bioimaging, NC) at 120 fps in full-chip mode, binning5464
(observation field of 2006200 mm). The speract gradient was generated via the

photolysis of 10 nM caged speract (CS) with a 200 ms UV pulse delivered through
an optical fiber (4 mm internal diameter) coupled to a Xenon UV lamp (UVICO,
Rapp Opto Electronic).

Image processing

The background fluorescence (F0) was removed by generating an average pixel
intensity time-projection image from the first 360 frames before uncaging which
was then subtracted from each frame of the image stack by using the Image
calculator tool of ImageJ v1.4 (National Institutes of Health, USA). For Fig. 2, the
maximum pixel intensity time projections were created every 3 s from
background-subtracted images before and after the UV flash.

Spermatozoa tracking and detection of [Ca2+]i fluctuations

Spermatozoa were tracked by following the head centroid with the MtrackJ plugin
(Meijering, 2006) of ImageJ v 1.4. We scored a [Ca2+]i fluctuation event as the
first frame in which the flagellum became visible.

Quantitative and automated analysis of sperm chemotaxis

We developed a C/C2+ software called ChemotaxisV1(beta) to quantitatively analyze
the chemotactic responses of marine spermatozoa by calculating the following
parameters (supplementary material Fig. S1).

The ‘chemotaxis index’ (LECI), defined as the negative value of the slope
(LECI52M) of a least square linear regression rt~Mtzr0 (Yoshida et al., 2002)
where rt is the distance to the center of the speract gradient, t is the time after UV
pulse measured in seconds, with t [ [0 s, 3 s] [the reported range where L. pictus

spermatozoa experience chemotaxis (Guerrero et al., 2010a)]. Positive LECIs
indicate movement towards the chemoattractant source. The center of the speract
gradient was estimated by identifying the centroid of the UV flash intensity xy

distribution.

The relative positioning of the spermatozoa on the chemoattractant gradient at
the initiation of each [Ca2+]i fluctuation. For each sperm motility response to
speract both the position P(t)

��!
and direction D(t)

��!
with respect to the chemoattractant

gradient center were measured at the beginning of each Ca2+ fluctuation and used
to compute Q (supplementary material Fig. S6):
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where a(t)~ arccos
P
!

D
!

Pj j Dj j. Values of Q between 0 and p identify spermatozoa that

are swimming away from the center of the chemoattractant gradient, and Q values
between p and 2p identify spermatozoa that are swimming toward center of the
chemoattractant gradient (supplementary material Fig. S6). High frequency ‘noise’
due to head wiggling was subtracted from the sperm tracks with a first-order low-
pass recursive filter (f54 Hz, sampling interval: s50.01 s).

The Q values were measured at the end of the 200 ms UV flash (QUV end), at the
beginning of the first [Ca2+]i fluctuation (QF1), and at the beginning of each [Ca2+]i

fluctuation (QF).

The relative positioning of the spermatozoon on the speract gradient at the
initiation of each turning event or at the onset of each straighter swimming
episode. Sperm motility behavior can be represented as changes in the local path
curvature of the swimming trajectory k. During the turning events (Turns) the
curvature first steeply increases and then decreases below baseline values during
the less curved episodes (Runs). Signed path curvatures were computed along time
from the xy sperm head coordinates as:

k~
_xx€yy{ _yy€xx

_xx2z _yy2
� �3=2

, ð2Þ

where _xx, _yy and €xx,€yy indicate the first and second order time derivatives. Higher
frequency (.40 Hz) components of k were eliminated.

Given a trajectory H and k its signed curvature, let �kk be the mean path curvature
and c57 times the mean SE of k during the motility response to the
chemoattractant gradient. We say that H has a turning event in the interval
Turn5[a,b], around t[Turn, if k(t)§�kkzcVt[Turn. In the same way, we say that H
has a straighter swimming episode in the interval Run5[a9,b9], around
t[Turn, if k(t)ƒ�kk{cVt[Run.

The relative positioning of each sperm in the chemoattractant gradient was
measured at the onset of the first turning event QT15Q(a1), and at the onset of the
subsequent turning events QT5(QT2, QT3,..., QTn). In the same way the relative
sperm position in the chemoattractant gradient was measured at the onset of the
first straighter swimming episode QS15Q(a91), and at the onset of the subsequent
straighter swimming episodes QS5(QS2, QS3,..., QSn).
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The mean duration of each turning event tT5b2a, and each straighter
swimming episode tS5b92a9, where a,a9 and b,b9 indicate the onset and end times
of each turning event or straighter swimming episode, respectively.

The arc length traveled during each turning event. U5 Q(b)2Q(a)+2pN*, where
N* is the number of crosses through the nearest point to the center of the
cheomattractant gradient during the Turn interval, and a,b indicate the onset and
end time of each turning event.

The delay between the end of the 200 ms UV irradiation period and the onset of
the first [Ca2+]i fluctuation (tF05a12i) or to the first turning event (tT05a192i),
where i indicates the end time of the UV irradiation period and a1, a19 correspond
to the onset time of the first [Ca2+]i fluctuation or to the first turning event.

The angular velocity during each turning event w5nk, where n is the swimming
speed and k is the path curvature.

The source code is available on request from A.G.

Statistical analyses

Data are presented for a number of individual spermatozoa (n) that were collected
from three or more sea urchins. The error bars indicate the standard error of the
mean unless specified otherwise. Differences in scalar measurements such as time
and distance were assessed using Wilcoxon’s non-parametric test. Angles were
compared using Rayleigh’s test. All statistical tests were performed using R
software (R Development Core Team, 2010). The significance level was set at
95%.

Mathematical model

In a previous work (Espinal et al., 2011), we developed a discrete logical model to
describe the temporal dynamics of the speract-activated signaling network in the S.

purpuratus sea urchin sperm flagellum. Encouraged by the experimental validation
of the model predictions (Espinal et al., 2011), here we used this model to
investigate in silico the effect on the [Ca2+]i oscillations of altering the NFA-
sensitive channels present in the sea urchin sperm flagellum.

The model consists of 22 nodes representing the principal components involved,
or likely participating, in the signaling cascade: ion channel activities, intracellular
ion and molecular concentrations and the membrane potential, amongst others. To
analyze the dynamics of the network, we implemented a discrete formulation that
is a generalization of the Boolean approach and that has proven to be revealing for
the gene regulation dynamics of many systems (Kauffman, 1969; Espinosa-Soto
et al., 2004; Albert and Othmer, 2003; Huang and Ingber, 2000; Li et al., 2004), as
well as other cell signaling networks (Morris et al., 2010). In this approach, the
dynamic state of the network consists of a set of N discrete variables {s1, s2,...
sn}, each representing the state of a node. For this particular network, most of the
variables take on two values, 0 and 1, depending on whether the corresponding
element is absent or present, closed or open, inactive or active, etc. However, an
accurate description of the dynamic processes in the network required four nodes
to be represented by three-state variables: the membrane potential (hyperpolarized
0, resting 1, and depolarized 2); the low and high threshold voltage-gated Ca2+

channels (inactive 0, closed 1, and open 2); and the intracellular calcium
concentration [Ca2+]i (basal 0, tonic 1 and supratonic 2). The state of each node sn

is determined by its set of regulators (which are some other nodes that also belong
to the network). Let us denote as sn1, sn2,... snk the k regulators of sn. Then, at
each time step the value of sn is given by:

sn(tz1)~Fn sn1(t),sn2(t),:::snk (t)ð Þ, ð3Þ

where Fn is a regulatory function constructed by taking into account the activating/
inhibiting nature of the regulators. Each node has its own regulatory function. For
the construction of these regulatory functions, (which can be found at http://www.
fis.unam.mx/research/seaurchin/discrete/), we have made use of all the biological
knowledge, mainly of an electrophysiological nature, available to us in the
literature and in our own laboratory.

With this model we can observe in silico the effect of blocking certain elements
relevant to the pathway. In this paper we consider the case of NFA-sensitive
channels: HCN, CaKC or CaCC. In order to test the effect of NFA in the network
evolution, we deleted all three channels simultaneously. Further studies
considering single and/or paired combinations of channel blockade can be found
in a companion publication (J.E., A.D., A.G. and G.M.-M., unpublished). Within
our model the elimination of node takes place by assigning a zero value to all the
regulatory entries in which it participates during the whole network evolution.
Hence, each channel will be closed, even if its regulators are activated, thus
simulating the inhibitory effect of NFA. We calculated the speract-triggered
[Ca2+]i fluctuations averaging them over 105 different initial conditions for the
whole network (with all nodes present) and compared the result with equivalent
calculations performed on the treated networks.

For this type of network all initial conditions lead to a periodic behavior where
the network configuration is replicated after a certain number of times. The time
required to reach this condition is known as the transient time and the number of
iterations between the repeated configurations is the period. These periodic
solutions are the attractors of the network dynamics. For the wild-type network

88.9% of all speract activated initial conditions lead to a [Ca2+]i period 4 attractor,
while the remaining 11.1% converge to a period 8 attractor. When the three NFA
sensitive channels considered in this paper are blocked 92% of all speract activated
initial conditions lead to a [Ca2+]i period 8 attractor different from the previous
one, and 8% go to a new period 9 attractor, thus modifying the temporal
characteristics of the [Ca2+]i fluctuations.
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