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Summary
The Rag family of GTPases has been implicated in the TORC1 activation in Drosophila and in mammalian cells in response to amino

acids. We have investigated the role of the Rag GTPases Gtr1 and Gtr2 in TORC1 regulation in Schizosaccharomyces pombe. Fission
yeast Gtr1 and Gtr2 are non-essential proteins that enhance cell growth in the presence of amino acids in the medium. The function of
Gtr1 and Gtr2 in nutrient signaling is further supported by the observation that even in rich medium the deletion of either gene results in

the promotion of mating, meiosis and sporulation, consistent with the downregulation of TORC1. We show that Gtr1 and Gtr2 colocalize
with TORC1 in vacuoles, where TORC1 is presumably activated. Epistasis analyses indicated that Gtr1 and Gtr2 function downstream
of Vam6 and upstream of TORC1 in response to amino acid signals. Our data demonstrate the existence of an evolutionarily conserved
pathway with the Vam6 and Gtr1–Gtr2 pathway activating TORC1, which in turns stimulates cell growth and inhibits sexual

differentiation.

Key words: S. pombe, Cell growth, TOR, Gtr1, Gtr2, Vam6

Introduction
Cell survival depends on continuous sensing of the nutritional

environment and adjusting cell growth, cell division and cell

differentiation accordingly. In the presence of nutrients,

Schizosaccharomyces pombe cells grow and divide, but when

nutrients (mainly nitrogen) are limited they arrest in G1 and

undergo sexual differentiation. The target of rapamycin (TOR)

pathway is an evolutionarily conserved signal transduction

pathway that couples nutrient availability with the diverse

cellular responses that ultimately drive cell growth and

proliferation, and inhibit sexual differentiation.

A broad range of signals regulates the activity of TOR to

control cell growth. TOR is a serine/threonine protein kinase that

is structurally and functionally conserved from yeasts to

mammals. TOR exists in two distinct complexes TORC1 and

TORC2 (Loewith et al., 2002; Sarbassov et al., 2004). TORC1

contains Raptor and positively regulates cell growth and size by

promoting anabolic processes, such as protein synthesis (Fingar

et al., 2002; Hay and Sonenberg, 2004), and by inhibiting

catabolic processes, such as autophagy (Blommaart et al., 1995;

Noda and Ohsumi, 1998; Shigemitsu et al., 1999). In contrast,

TORC2, which contains Rictor, regulates Akt and also affects the

actin cytoskeleton (Jacinto et al., 2004; Sarbassov et al., 2005). In

mammalian cells, mTOR (for mammalian TOR) is a crucial

player in the TSC1-TSC2–Rheb–mTOR signaling pathway,

which regulates cell growth in response to growth factors,

nutrients and energy conditions. TORC1 is activated by the

GTPase Rheb, which is negatively regulated by the TSC1-TSC2

tuberous sclerosis complex (Long et al., 2005; Smith et al., 2005).

Unlike higher eukaryotes, which contain a single TOR protein, S.

pombe and Saccharomyces cerevisiae have two: Tor1 and Tor2.

In contrast to S. cerevisiae, the TSC1-TSC2–Rheb–TOR pathway

is conserved in S. pombe, providing an excellent model to study

TOR pathway regulation. In S. pombe, Tor2 forms part of the

TORC1 complex and is essential for cell growth and the

repression of sexual differentiation, meiosis and sporulation

(Alvarez and Moreno, 2006; Matsuo et al., 2007; Uritani et al.,

2006; Weisman et al., 2007), whereas Tor1 is not essential for

growth and is included in the TORC2 complex (Alvarez and

Moreno, 2006; Hayashi et al., 2007; Matsuo et al., 2007).

Amino acids are potent activators of TORC1 (Hara et al.,

1998). The Rag proteins are GTPases with a canonical N-

terminal Ras-like GTPase domain and a unique C-terminal RagA

conserved region. Two complementary studies have reported that

the conserved Rag GTPases act as upstream regulators of TORC1

and have important roles in coupling amino-acid-derived signals

to TORC1 in both Drosophila and mammalian cells (Kim et al.,

2008; Sancak et al., 2008). In mammals, there are four Rag

proteins (RagA, RagB, RagC and RagD). RagA and RagB are

very similar to each other and are orthologues of budding yeast

Gtr1p, whereas RagC and RagD are similar to each other and are

orthologs of yeast Gtr2p (Bun-Ya et al., 1992; Hirose et al.,

1998). Rag and Gtr proteins function in heterodimeric complexes

that contain one Gtr1-like GTPase and one Gtr2-like GTPase

(Nakashima et al., 1999; Sekiguchi et al., 2001), and the two

GTPases bind different forms of guanine nucleotides; one binds

GTP and the other binds GDP. Only when RagA or RagB is

bound to GTP and RagC or RagD is bound to GDP is the

heterodimer fully active to stimulate TORC1. In addition, RagA

and RagB have a dominant role over RagC and RagD in TORC1

activation (Binda et al., 2009; Li and Guan, 2009). The active

Rag heterodimer can directly bind Raptor (Sancak et al., 2008),
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which is a key subunit in TORC1. This interaction between Rag
and Raptor depends on the GTP-binding status of RagA or RagB.
The Rag might activate TORC1 by transporting this complex to

the vicinity of Rheb in mammalian cells, although Rag proteins
do not directly stimulate the kinase activity of mammalian
TORC1 (Sancak et al., 2008). This proposed mechanism

of activation, through the amino-acid-induced subcellular
localization, is not conserved in budding yeast because the
subcellular localizations of both TORC1 components and Gtr

proteins are not affected by amino acids (Binda et al., 2009).

In S. cerevisiae Vam6 is a GTP-exchange factor (GEF)

(Wurmser et al., 2000) that forms part of the HOPS complex
(Starai et al., 2008), which is involved in vacuolar fusion (Price
et al., 2000) and required for autophagy (Kinchen et al., 2008).

Recently, Vam6 has been reported to control the activity of
TORC1 by activating Gtr1. Vam6 colocalizes with the TORC1
complex and the Rag proteins at the membrane of the vacuole

and functions as a GEF of Gtr1 (Binda et al., 2009). In S. pombe

Vam6 has been described as a protein required for entry into and
the maintenance of the G0 status (Sajiki et al., 2009). The vam6

mutant has numerous small vesicles, possibly owing to a
reduction in vacuolar fusion, but the role of this GEF remains
unclear and no relationship with TORC1 or Gtr1–Gtr2 has been
described previously.

Here, we show that Rag proteins in S. pombe induce cellular

growth and repress sexual differentiation by activating the
TORC1 complex in response to the presence of amino acids in
the medium. We also provide evidence that Vam6 activates the

Gtr1–Gtr2 complex.

Results
Rag proteins activate TORC1 in S. pombe

The multiprotein mTOR kinase complex is the central component
of a pathway that promotes growth in response to different

signals, including insulin, energy levels and amino acids. In
Drosophila and mammalian cells, Rag proteins are mediators of
the amino acid signaling to mTOR to promote cell growth (Kim
et al., 2008; Sancak et al., 2008). In S. cerevisiae, the EGO

complex, consisting of the Rag proteins (Gtr1 and Gtr2), Ego1
and Ego3, functions upstream of TORC1 to mediate amino acid
signaling (De Virgilio and Loewith, 2006a; De Virgilio and

Loewith, 2006b). In order to analyze the relationship between
Rag proteins and the TORC1 complex in S. pombe, we deleted
the gtr1 and gtr2 genes and grew these mutants in the presence or

absence of amino acids, using wild-type cells as control. Both
mutants were viable, even gtr2 (which is annotated as being
essential in PomBase; http://www.pombase.org/). Loss of Gtr1 or
Gtr2 resulted in the inability of the cells to grow properly, and

they divided with a doubling time longer than that of wild-type
cells (Fig. 1A). The gtr1D and gtr2D mutants were unable to
sense the availability of amino acids and did not increase their

rate of growth (measured as doubling time) when amino acids
were added to the medium (Fig. 1A). Therefore, fission yeast
Rag proteins are non-essential proteins, but they are important for

the enhancement of cell growth in response to amino acids.

Leucine uptake is reduced in tsc1 or tsc2 mutants in which
Tor2 is hyperactive (Weisman et al., 2005; Weisman et al.,
2007), indicating that the TORC1 complex inhibits leucine

uptake. If Gtr1 and Gtr2 are mediating the activation of Tor2 in
response to amino acids, in cells lacking Gtr1 (or Gtr2) Tor2
should be less active and leucine uptake should increase. We

deleted the gtr1 and gtr2 genes in a leu1-32 mutant and analyzed

the growth rate (measuring the doubling time) in the presence of

leucine. As shown in Fig. 1A, the growth rate of leu1-32 gtr1D
and leu1-32 gtr2D mutants improved considerably in the

presence of leucine, suggesting that Gtr1 and Gtr2 regulate

TORC1 positively.

Another important phenotype related to Tor2 activity is the

inhibition of sexual differentiation. Inactivation of Tor2 in rich

medium leads to cell cycle exit, G1 arrest, sexual differentiation,

meiosis and sporulation (Alvarez and Moreno, 2006; Hayashi

et al., 2007; Urano et al., 2007; Uritani et al., 2006). When gtr1D
and gtr2D haploid cells of opposite mating types were grown

together in rich medium, zygotes were observed and quantified

(Fig. 1B and Fig. 1C, respectively), indicating that Gtr2, and in

particular Gtr1, inhibit sexual differentiation in rich medium.

Collectively, these observations support the idea that Gtr1 and

Gtr2 activate TORC1 in S. pombe.

Gtr1 and Gtr2 form heterodimers that localize to the

vacuole membrane

Mammalian Rag proteins localize to the lysosomal surface

independently of the availability of amino acids (Sancak et al.,

Fig. 1. Role of Gtr1 and Gtr2 in cell growth and sexual differentiation.

(A) Wild-type (wt), gtr1D and gtr2D cells were grown in Edinburgh minimal

medium (EMM) at 30 C̊, and then transferred into fresh EMM and EMM

supplemented with amino acids. At the same time, leu1-32, gtr1D leu1-32 and

gtr2D leu1-32 cells were grown in EMM supplemented with leucine. This

experiment was performed three times and the number of cells per ml was

counted every 2 hours to calculate the doubling time. (B) gtr1D and gtr2D

cells of opposite mating types were incubated on YES plates for 2 days at

25 C̊. The gtr1D and gtr2D mutant cells were able to mate and form spores in

rich medium. Scale bar: 10 mm. (C) Mating efficiency in rich medium was

determined by counting the number of zygotes observed in YES plates.
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2008). In S. cerevisiae, Gtr1 and Gtr2 have been reported to

localize to the vacuole membrane (Dubouloz et al., 2005).

Therefore, the localization of Rag proteins to the membrane of

the vacuoles, in yeast, or to the lysosome, the corresponding

organelle in higher eukaryotes, highlights the role of the TOR

pathway in autophagy. We looked at Gtr1 and Gtr2 localization

in the absence and presence of amino acids in S. pombe. To

accomplish this, we tagged the chromosome copies of gtr1 and

gtr2 with sequences encoding GFP and RFP (designated gtr1-gfp

and gtr2-rfp), respectively. Exponentially growing wild-type

cells revealed the localization of Gtr1–GFP and Gtr2–RFP to

intracellular membrane structures that could have been vacuolar

membranes (Fig. 2A). The observed pattern was identical,

regardless of the presence or not of amino acids in the

medium. To confirm the localization to the vacuole membrane,

we stained the gtr1-gfp cells with the lipophilic vacuolar

membrane fluorescent dye FM4-64. As shown in Fig. 2B,

Gtr1–GFP colocalized with FM4-64 staining, indicating that

Gtr1–GFP is concentrated at the membranes of vacuoles in S.

pombe.

In mammalian cells, RagA and RagB can form heterodimers

with RagC and RagD (Sekiguchi et al., 2001). In budding yeast,

Gtr1 can form a homodimer as well as a heterodimer with Gtr2

(Nakashima et al., 1999). To check whether Gtr1 and Gtr2 form

heterodimers in vivo, we tagged Gtr2 with RFP in a gtr1-gfp

background. The localization Gtr1–GFP and Gtr2–RFP was

identical and independent of the availability of amino acids

(Fig. 2C), suggesting that they interact in vivo. To corroborate

this interaction biochemically, we immunoprecipitated Gtr1

tagged with the Flag epitope in cells growing in the absence of

amino acids and at 1 hour after adding amino acids. We observed

that Gtr2–RFP co-precipitated with Gtr1 (Fig. 2D) and that the

Gtr1–Gtr2 interaction was stronger in cells growing in the

presence of amino acids, indicating that the formation of

the heterodimer is stimulated by amino acids.

TORC1 also localizes to the vacuole membrane

The activation of the mTORC1 pathway by amino acids is

correlated with the movement of mTORC1 from an undefined

location in the cytoplasm to the surface of the lysosomes where

the Rag proteins reside (Sancak et al., 2008). Amino acids

promote the translocation of mTORC1 in a Rag-dependent

fashion to the surface of lysosomes, where mTORC1 can find its

well-known activator Rheb (Sancak et al., 2008; Sancak et al.,

2010). In budding yeast, Tor1 is located diffusely in the

cytoplasm and is more concentrated near the vacuolar

membrane (Sturgill et al., 2008). This localization of Tor1 is

not altered by the presence of amino acids. Thus, the proposed

Fig. 2. Subcellular localization of Gtr1 and Gtr2. (A) gtr1-gfp and gtr2-rfp cells were grown in EMM at 30 C̊ in the presence and in the absence of amino acids.

Gtr1–GFP and Gtr2–RFP localized to structures similar to the vacuolar membranes, independently of the presence of amino acids. (B) gtr1-gfp cells were grown

in EMM at 30 C̊, and FM4-64 staining was used to identify vacuoles and corroborate that Gtr1–GFP localized to the vacuole membranes. (C) Gtr1–GFP

and Gtr2–RFP colocalized to the vacuolar surface in the presence and in the absence of amino acids. (D) gtr1-flag, gtr2-rfp and gtr1-flag gtr2-rfp cells were grown

in EMM at 30 C̊ and transferred into EMM in the presence and in the absence of amino acids. Exponentially growing cells were collected after 1 hour and cell

lysates were pulled down using anti-Flag M2 beads. Gtr1–Flag physically interacted with Gtr2–RFP and this interaction increased in the presence of amino acids.

The relative interaction between Gtr1–Flag and Gtr2–RFP was estimated by densitometry using ImageJ software and normalized to the amount of Gtr2–RFP

pulled down with anti-Flag antibodies in the presence of amino acids, which was set as 1. Scale bars: 10 mm.
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mechanism of TORC1 activation by the amino acid-induced
subcellular localization of TORC1 may not be conserved in S.

cerevisiae.

In S. pombe, TORC1 contains Tor2, Mip1 (the Raptor
ortholog) and Pop3 (also known as Wat1; the Lst8 ortholog)
(Alvarez and Moreno, 2006; Matsuo et al., 2007). In order to

analyze whether these TORC1 components alter their subcellular
localization in an amino-acid-dependent manner, we tagged
Tor2, Mip1 and Pop3 with GFP. The localization of GFP–Tor2 in

cytoplasmic structures has been reported previously (Hayashi
et al., 2007) but no vacuolar membrane localization has been
described. Pop3–GFP was expressed under its own promoter,

whereas GFP–Tor2 and GFP–Mip1 were expressed under the
nmt1 promoter in the presence of thiamine. Under these
conditions, the level of overexpression was diminished; cells
grew normally and mating was not suppressed, indicating that

TORC1 was exerting physiological activity. As shown in Fig. 3,
GFP–Tor2, GFP–Mip1 and Pop3–GFP showed similar GFP
signals that colocalized with FM4-64 staining. Thus, the three

components of the TORC1 complex showed vacuolar membrane
localization, independently of the presence or not of amino acids
in the medium.

The Gtr1–Gtr2 heterodimer interacts with the TORC1
complex

Cells lacking either Gtr1 or Gtr2 undergo mating and sexual
differentiation in rich medium (Fig. 1B), as do Tor2 mutants.
Moreover, overexpression of Tor2 suppresses mating (Alvarez
and Moreno, 2006). To test whether Tor2 and Gtr1 act in the

same pathway to impair sexual differentiation, we counted the
number of zygotes in gtr1D cells (gtr1D), in cells overexpressing
Tor2 (nmt-tor2) and in gtr1D cells overexpressing Tor2 (gtr1D
nmt-tor2). In rich medium, gtr1D cells mate and nmt-tor2 cells

are sterile (Fig. 4A). The double mutant gtr1D nmt-tor2 was
unable to mate and form zygotes (Fig. 4A), indicating that the

overexpression of Tor2 suppresses the phenotype of the gtr1

deletion.

Because Gtr1, Gtr2 and TORC1 localize to the vacuolar
membrane, we analyzed whether GFP–Tor2 and Gtr1–RFP

colocalized in this organelle. As shown in Fig. 4B, most of the
GFP–Tor2 colocalized with Gtr1–RFP independently of the
presence of amino acids or nitrogen. To confirm further that

Gtr1 forms a complex with the TORC1 complex, Gtr1 was
tagged with the Flag epitope and Mip1 (Raptor) with the Myc
epitope. As shown in (Fig. 4C), Mip1–Myc was pulled down

with Gtr1–Flag only in the presence of amino acids. Together,
these findings suggest that in fission yeast cells the Gtr1–Gtr2
heterodimer and TORC1 are located in the vacuolar membrane
independently of the presence of amino acids. However, only

when amino acids are present in the medium does the Gtr1–Gtr2
heterodimer interact physically with TORC1 and activate the
TOR pathway to induce cell growth and repress sexual

differentiation.

TORC1 activity can be monitored by measuring ribosomal
protein S6 (Rps6) phosphorylation (Nakashima et al., 2010). We

analyzed Rps6 phosphorylation in wild-type cells and in gtr1D
and gtr2D mutant cells growing in the presence and in the
absence of amino acids. Wild-type cells were able to sense the

availability of amino acids in the medium by activating TORC1
and the amount of Rps6 phosphorylation observed was higher in
the presence than in the absence of amino acids (Fig. 4D). It has
been reported that expression of Myc–Rps6 does not alter the

expression level under nitrogen starvation conditions (Nakashima
et al., 2010), and hence we used the same cells to monitor the
total amount of Myc–Rps6 in cells growing in the presence and

absence of amino acids. Similar to the presence of nitrogen

Fig. 3. Subcellular localization of TORC1. gfp-

tor2, pop3-gfp and gfp-mip1 cells were grown in

EMM containing thiamine (EMMT) at 30 C̊ and

transferred into EMMT with (A) and without amino

acids (B). Cells were stained with FM4-64 to

observe the vacuolar membranes. The three subunits

of the TORC1 complex (GFP–Tor2, Pop3–GFP and

GFP–Mip1) localized to the vacuolar membranes.

Scale bars: 10 mm.
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availability, the presence of amino acids did not alter Rps6

expression levels (Fig. 4E). Cells lacking gtr1 or gtr2 were

unable to sense the presence of amino acids and no further

increases in Rps6 phosphorylation were observed after the

addition of amino acids (Fig. 4D), showing that Gtr1–Gtr2

indeed has an important role in TORC1 activation in response to

amino acids in fission yeast and supporting the notion that the

function of the Rag family GTPase is conserved in eukaryotes

(Binda et al., 2009; Kim et al., 2008; Sancak et al., 2008).

Vam6, Gtr1–Gtr2 and Tor2 act in the same pathway

Recently Vam6 has been described to control the activity of

TORC1 by activating Gtr1 in S. cerevisiae (Binda et al., 2009).

Vam6 colocalizes with the TORC1 complex and the Rag proteins

in the membrane of the vacuole and functions as a GEF of Gtr1

(Binda et al., 2009). We analyzed the vam6 ortholog in S. pombe

to see whether it was able to act as the GEF that regulates Gtr

activity. First, we deleted vam6 and observed a clear defect in cell

growth, with a longer doubling time than that of wild-type cells

for cells growing in the absence of amino acids. The doubling

time of vam6D was shorter in the presence of amino acids,

indicating that these cells were still able to respond, at least

partially, to the presence of amino acids (Fig. 5A) and that Vam6

has an important role in regulating cell growth in S. pombe but is

not essential for responding to the availability of amino acids.

As an indirect assay for Tor2 activity, we compared the growth

rate in medium with and without leucine. To determine whether

Vam6 was able to activate Gtr1 or Gtr2, we measured the cell

growth of the leu1-32 strain. Interestingly, in the presence of

leucine the deletion of vam6 improved growth (shorter doubling

time) (Fig. 5A); this shortening in doubling time was similar to

that observed in gtr1D and gtr2D cells (Fig. 1A), indicating that

these mutants were able to increase their rate of cell growth in the

presence of leucine, probably because TORC1 activity is lower

and induces leucine uptake. These data suggest that Vam6

activates TORC1 through Gtr1–Gtr2.

Fig. 4. TORC1 and Gtr1 interact in vivo. (A) Wild-type (wt), gtr1D, nmt-tor2 and nmt-tor2 gtr1D cells of opposite mating types were grown on YES plates at

25 C̊ for 2 days. Overexpression of Tor2 rescued the mating derepression observed in gtr1D cells. (B) Double-mutant gfp-tor2 gtr1-rfp cells were grown EMM

containing thiamine (EMMT) at 30 C̊ and transferred into fresh EMMT, EMMT supplemented with amino acids and EMMT without nitrogen for 1 hour. GFP–

Tor2 and Gtr1–RFP colocalized on the vacuolar membrane, regardless of the presence of amino acids or nitrogen in the medium. Scale bar: 10 mm. (C) mip1-myc,

gtr1-flag and mip1-myc gtr1-flag cells were grown in EMM and transferred into EMM in the presence or absence of amino acids for 1 hour. Cell lysates (Input)

and Flag pull-down fractions were subjected to SDS-PAGE and immunoblots were incubated with anti-Myc and anti-Flag antibodies, as indicated. Gtr1–Flag

interacted physically with Mip1–Myc (the Raptor ortholog) in an amino-acid-dependent manner. The relative interaction between Gtr1–Flag and Mip1–Myc was

estimated by densitometry using ImageJ software and normalized to the Mip1–Myc pulled down in the presence of amino acids, which was set as 1. (D) Wild-

type, gtr1D and gtr2D cells were grown in EMM and transferred into EMM with and without amino acids for 90 minutes. Cell extracts were subjected to SDS-

PAGE and immunoblotted to detect phosphorylated Rps6 (P-Rps6) as a measurement of TORC1 activity. The relative amount of phosphorylated Rps6 was

estimated by densitometry and normalized to tubulin expression. The amount of phosphorylated Rps6 in wild-type cells growing in the presence of amino acids

was set as 1. (E) rps601D myc-rps602 cells were grown in the presence and in the absence of amino acids. The amount of Myc–Rps6 was examined with the anti-

Myc antibody. Rps6 phosphorylation (Rps602-P) was used as a measurement of TORC1 activity. Tubulin was used as a loading control.
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Vam6 acts upstream of Gtr1 in S. pombe

Vam6 is required for entry into and the maintenance of quiescence

after nitrogen starvation (Sajiki et al., 2009). Our findings show

that Vam6 is also important for cell growth (Fig. 5A). To

investigate whether Vam6 acts as a GEF of Gtr1, we mutated

the conserved Q61 residue in Gtr1 to a leucine residue, which is

expected to result in a constitutively active GTP-bound form of

Gtr1 (Nakashima et al., 1999). We introduced Gtr1Q61L in a

vam6D background and found that the double mutant was able to

grow normally (Fig. 5B), indicating that constitutively active Gtr1

rescues the cell growth defect of the vam6D mutant. Viability was

also assayed by growing the cells on plates containing Phloxine B,

a vital dye that accumulates in dead cells and turns the colonies

dark pink. The colonies of the vam6D mutant were dark pink,

indicating that some of the cells were dying. However, the colonies

of vam6D cells expressing Gtr1Q61L had a lighter pink color,

similar to that of wild-type cells (Fig. 5C), corroborating the

notion that the active form of Gtr1 rescues the lethality of vam6D
cells. These results suggest that Vam6 functions upstream of Gtr1,

possibly by acting as a GEF.

Vam6 is part of the HOPS complex (Starai et al., 2008), which

is required for vacuolar fusion (Price et al., 2000). To check

Fig. 5. vam6D cells show a defect in cell growth. (A) Wild-type (wt) and vam6D mutant cells were grown exponentially in EMM, in EMM plus amino acids and

in EMM plus leucine. Cell numbers were counted every 2 hours to establish the doubling time in each medium. Wild-type, vam6D, gtr1Q61L and vam6D

gtr1Q61L cells were grown on EMMT (EMM supplemented with thiamine) plates (B) and on plates supplemented with Phloxine B (C) in the presence of thiamine

to induce expression of low levels of gtr1Q61L. vam6D cells formed small colonies (B) containing a high number of dead cells, generating dark red colonies

(Phloxine B positive) (C). The viability of vam6D cells expressing the active form of Gtr1 (gtr1Q61L) increased; these cells formed larger colonies

(B and C) and the number of dead cells decreased (C). (D) Wild-type, gtr1D, gtr2D, vam6D, gtr1Q61L and vam6D gtr1Q61L cells were grown in EMMT (i.e. in

the presence of thiamine) at 30 C̊ and membrane vacuoles were stained with FM6-64. vam6D cells showed a defect in membrane fusion; FM4-64 was unable to

stain membrane vacuoles in vam6D cells, and the fluorescence appeared as small dots corresponding to endosomal vesicles. gtr1D, gtr2D or gtr1Q61L cells did not

show this phenotype and FM4-64 was able to stain the vacuolar membrane correctly. The same defect of vam6D cells in membrane fusion was observed in vam6D

gtr1Q61L, indicating that the active form of Gtr1 is unable to restore the vacuolar structure of vam6D. (E) Wild-type, vam6D, gtr1Q61L and vam6D gtr1Q61L

cells were grown at 30 C̊ in EMMT and transferred to EMMT in the presence and in the absence of amino acids (supplemented with thiamine in both cases). Cells

were collected after 90 minutes and the extracts were subjected to SDS-PAGE and immunoblotting to detect Rps6 phosphorylation (P-Rps6) as a measurement

of TORC1 activity. The relative amount of phosphorylated Rps6 was estimated by densitometry and normalized to tubulin expression. The amount of

phosphorylated Rps6 in vam6D gtr1Q61L cells growing in the presence of amino acids was normalized to 1. In the presence of amino acids the amount of

phosphorylated Rps6 increased in wild-type cells. The vam6 mutant was unable to respond to amino acids and the activity of TORC1 was low. By contrast, in cells

expressing gtr1Q61L (the active form of Gtr1) Rps6 phosphorylation increased. The mutant vam6 showed high Rps6 phosphorylation when Gtr1Q61L was

expressed, indicating that the constitutively active form of Gtr1 is able to restore TORC1 activity in vam6D cells. Scale bars: 1 cm (B); 1 mm (C); 10 mm (D).
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whether this was also the case in S. pombe, we used FM4-64 to

stain vacuolar membranes (Fig. 5D). If the vacuolar fusion

process diminishes, staining with FM4-64 remains visible only as

small dots in the cytoplasm because the endosomes are unable to

fuse; however, if normal vacuolar fusion occurs, the vacuolar

membranes are stained with the FM4-64 dye. FM4-64 stained

only small vesicles in the cytoplasm of vam6D cells, confirming a

defect in vacuolar fusion in these cells. However, gtr1D, gtr2D
and gtr1Q61L cells did not show any defects and vacuolar

membranes were stained completely, whereas the gtr1Q61L

vam6D double mutant showed small vesicles after FM4-64

staining, the same phenotype observed in vam6D cells, indicating

that gtr1Q61L is unable to restore the vacuolar fusion defect of

the vam6 deletion (Fig. 5D).

We measured TORC1 activity (as Rps6 phosphorylation) in

wild-type and in vam6D mutant cells growing in the presence and

in the absence of amino acids (Fig. 5E). vam6D mutant cells

showed similar Rps6 phosphorylation levels to that of wild-type

cells in the absence of amino acids. However, in contrast to wild-

type cells, vam6D cells did not show an increase in Rps6

phosphorylation in the presence of amino acids. In the gtr1Q61L

cells (i.e. with the active form of Gtr1), high levels of Rps6

phosphorylation were observed independently of the availability

of amino acids, indicating a constitutively high activity of the

TORC1 complex. When the active form of Gtr1 was expressed in

a vam6D background, Rps6 phosphorylation was higher than in

vam6D cells. These results suggest that TORC1 is not properly

activated in vam6D cells and that these cells are unable to

respond to the presence of amino acids; however, a constitutively

active form of Gtr1 is able to restore TORC1 activity (Fig. 5E).

Vam6 was tagged with the GFP epitope in order to study its

subcellular localization under different nutritional conditions. As

shown in Fig. 6A, Vam6–GFP colocalized with the FM4-64

staining of vacuolar membranes. As reported above, Gtr1 could

be acting downstream of Vam6, because a constitutively active

form of Gtr1 (Gtr1Q61L) is able to rescue the growth defect of

cells lacking Vam6. Accordingly, we examined the possible

colocalization of Gtr1 and Vam6 under different nutritional

conditions. Vam6–GFP colocalized with Gtr1–RFP to vacuolar

membranes, regardless of the presence of amino acids or nitrogen

starvation (Fig. 6B). To confirm that Vam6 did interact

physically with Gtr1 we tagged Gtr1 with the Flag epitope and

Vam6 with the TAP epitope. After pulling down Vam6–TAP

with IgG–Sepharose, we were only able to detect Gtr1–Flag in

cells grown in the presence of amino acids (Fig. 6C). This

finding indicates that the Vam6–Gtr1 interaction is dependent

upon the presence of amino acids in the medium.

Discussion
The TOR pathway couples the nutritional environment with cell

growth and proliferation. In fission yeast, TORC1 senses the

presence of nitrogen in order to promote cell growth and inhibit

sexual differentiation. In this paper, we describe the pathway of

Vam6, Gtr1 and Gtr2 and TORC1 that responds to amino acid

signaling in S. pombe.

In fission yeast there are two Gtr proteins: Gtr1 and Gtr2. Here,

we show that they are non-essential proteins important for

sensing the presence of amino acids in the medium by activating

TORC1. In the absence of amino acids, cell growth is

compromised in gtr1D and gtr2D mutants, probably because

the TORC1 pathway is not properly regulated and sexual

differentiation is induced. In Drosophila and mammalian cells,

Rag proteins are activators of TOR. Here, we show that the

fission yeast orthologs Gtr1 and Gtr2 also activate TORC1. Like

tor2 mutants, cells lacking Gtr1 or Gtr2 show an increase in

cellular growth in the presence of leucine and derepression of

Fig. 6. Vam6 and Gtr1 interact in vivo. (A) gfp-

vam6 cells were grown in EMM with thiamine at

30 C̊ and vacuolar membranes were stained with

FM4-64. GFP–Vam6 localized to the vacuolar

membranes in growing cells. (B) gfp-vam6 gtr1-rfp

cells were grown at 30 C̊ in EMM and transferred to

EMM, EMM supplemented with amino acids and

EMM without nitrogen (always in the presence of

thiamine). GFP–Vam6 and Gtr1–RPF colocalized to

the vacuolar membranes in all conditions. (C) gtr1-

flag, vam6-tap and gtr1-flag vam6-tap cells were

grown in EMM and transferred into EMM

supplemented with amino acids. Cells were

collected after 20 and 40 minutes. Cell lysates

(Input) and TAP pulldown fractions were subjected

to SDS-PAGE and immunoblots were incubated

with anti-TAP and anti-Flag antibodies, as indicated.

The interaction between Gtr1–Flag and Vam6–TAP

was estimated by densitometry using ImageJ

software and the Gtr1–Flag pulled down in the

presence of amino acids was normalized to 1. Gtr1–

Flag physically interacted with Vam6–TAP in an

amino-acid-dependent manner. Scale bars: 10 mm.
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sexual differentiation. This phenotype is suppressed by Tor2

overexpression, suggesting that Tor2 is acting downstream from

Gtr1 and Gtr2.

Mammalian Rag proteins localize to the lysosomal surface

(Sancak et al., 2008). As in S. cerevisiae, S. pombe Gtr1, Gtr2 and

TORC1 are localized to the vacuolar membrane, independently

of the presence or the absence of amino acids (Binda et al., 2009;

Dubouloz et al., 2005). Moreover, we describe that the formation

of the Gtr1–Gtr2 heterodimer in fission yeast is stimulated by the

presence of amino acids in the medium. Amino acids also

stimulate the interaction between Gtr1 and Mip1 (Raptor), a

component of the TORC1 complex. Thus, the Gtr1–Gtr2

heterodimer and the TORC1 complex are located to the

vacuolar membrane and only when amino acids are present

does the Gtr1–Gtr2 heterodimer form and associate with the

TORC1 complex to activate Tor2 and promote cell growth.

Previous studies have shown that Vam6 controls TORC1

activity by activating Gtr1 in S. cerevisiae (Binda et al., 2009).

Here, we studied the role of Vam6 in S. pombe. Although Vam6

is not an essential protein the vam6 mutant grows very slowly.

The growth of cells lacking Gtr1, Gtr2 or Vam6 improved in the

presence of leucine, suggesting that, as in S. cerevisiae, Vam6

acts in the same pathway. Vam6 is essential for proper TORC1

activation; however, cells lacking Vam6 were able to shorten

their doubling time in the presence of amino acids, suggesting

that another pathway can stimulate cell growth in the presence of

amino acids. Interestingly, a constitutively active version of Gtr1,

where the conserved Q61 is mutated into a leucine residue, was

able to rescue the growth defect phenotype of the vam6D mutant

(Fig. 5B,C) and restore TORC1 activity (Fig. 5E). This result

suggests that fission yeast Vam6 acts upstream of the Gtr1–Gtr2

heterodimer, as in the case of S. cerevisiae where Vam6 has been

described as a GEF of Gtr1. Additionally, we show that Vam6 is

localized to the vacuole membrane, where it interacts physically

with Gtr1 in an amino-acid-dependent manner. In conclusion, we

propose a model in which all the components of the Vam6, Gtr1

and Gtr2 and TORC1 pathway reside on the vacuolar surface,

although only under conditions of stimulation by amino acids do

these proteins interact physically (Fig. 7). This physical

interaction activates Tor2, promoting cell growth and

repressing sexual differentiation.

Materials and Methods
Fission yeast strains and media

All S. pombe strains used in this study are listed in supplementary material Table
S1. Standard methods were used for growth, transformation and genetic
manipulations (Sazer and Sherwood, 1990). Gene-tagged versions (gtr1-gfp,
gtr1-rfp, gtr2-gfp, gfp-tor2, pop3-gfp, gfp-mip1, mip1-myc, gtr1-flag, gfp-vam6

and vam6-TAP) were generated by a PCR-based method (Bahler et al., 1998).
Except where specifically indicated, all experiments in liquid culture were
performed in Edinburgh minimal medium (EMM) containing the required
supplements (except when mentioned), starting with a cell density of 2–4(6106)
cells per ml, corresponding to the mid-exponential phase of growth. When cells
were grown at 30 C̊ in the presence of amino acids, EMM was supplemented with
225 mg/l of histidine and lysine hydrochloride. In the presence of leucine, we used
leu1-32 auxotrophic strains, which were grown in EMM supplemented with
225 mg/l of leucine.

Protein extraction, immunopurification and western blotting

Protein extracts were obtained using trichloroacetic acid (TCA) extraction, as
described previously (Foiani et al., 1994). For immunoprecipitation, exponentially
growing cells (approximately 56108 cells) were lysed in 250 ml of HB buffer
[25 mM MOPS pH 7.2, 60 mM b-glycerophosphate, 15 mM MgCl2, 1mM
DTT, 1% Triton X-100, 5 mM EGTA and 15 mM p-nitrophenylphosphate,
supplemented with complete protease inhibitor cocktail tablets (Roche)]. Extracts
were incubated with 20 ml of anti-Flag M2 affinity gel (Sigma-Aldrich) for 2 hours
with shaking. For western blotting, 75–100 mg of total protein extract was run on
SDS-PAGE (7.5% gels), transferred onto a nitrocellulose filter (Amersham), and
probed with anti-TAP-peroxidase antiperoxidase soluble complex PAP (Sigma),
anti-Flag-M2–peroxidase (Sigma-Aldrich), mouse anti-Myc 9E10 (a gift from
Karim Labib, The Paterson Institute for Cancer Research, Manchester, UK), rabbit
anti-RFP (MBL), and mouse anti-tubulin (a gift of Keith Gull, Sir William Dunn
School of Pathology, University of Oxford, UK) primary antibodies, and
horseradish-peroxidase-conjugated anti-mouse-IgG (NA 931, Amersham) and
anti-rabbit-IgG (NA 943, Amersham) secondary antibodies. Immunoblots were
developed using the enhanced chemiluminescence procedure (ECL kit,
Amersham). TORC1 activity was monitored by measuring ribosomal protein S6
(Rps6) phosphorylation. Protein extracts were obtained using TCA extraction and
the phosphorylation of Rps6 was detected by western blotting using the anti-
phosphorylated Akt substrate (PAS) antibody (Cell Signaling Technology).

Epifluorescence microscopy

Epifluorescence microscopy was carried out using an Olympus IX71 fluorescence
microscope improved with Delta Vision equipment from Applied Precision. To
visualize vacuoles, FM4-64 (Biotium) was used to stain the vacuole membrane (Vida
and Emr, 1995). Deconvolution option from Delta Vision and ImageJ software were
used to process the images. Yeast colony pictures were taken using a Leica MZ75
binocular microscope equipped with an Olympus Camedia digital camera.

Fig. 7. Hypothetical model showing how

Vam6, Gtr1–Gtr2 and TORC1 respond to

amino acids. Amino acids activate Tor2 by

means of Vam6 and the Rag proteins to induce

translation and promote cell growth. In the

presence of amino acids, Gtr1 interacts strongly

with Gtr2 and this heterodimer binds Vam6.

Vam6 would activate Gtr1 and this, in turn,

would bind to the TORC1 complex by means of

Mip1. The active TORC1 complex induces Rps6

phosphorylation and, hence, induces cell growth

and inhibit sexual differentiation. This activation

would occur in the vacuolar membrane, where all

the components would interact strongly in an

amino-acid-dependent manner.
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