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Summary
The fungal-specific heterodecameric outer kinetochore DASH complex facilitates the interaction of kinetochores with spindle
microtubules. In budding yeast, where kinetochores bind a single microtubule, the DASH complex is essential, and phosphorylation of

Dam1 by the Aurora kinase homologue, Ipl1, causes detachment of kinetochores from spindle microtubules. We demonstrate that in the
distantly related fission yeast, where the DASH complex is not essential for viability and kinetochores bind multiple microtubules,
Dam1 is instead phosphorylated on serine 143 by the Polo kinase homologue, Plo1, during prometaphase and metaphase. This

phosphorylation site is conserved in most fungal Dam1 proteins, including budding yeast Dam1. We show that Dam1 phosphorylation
by Plo1 is dispensable for DASH assembly and chromosome retrieval but instead aids tension-dependent chromosome bi-orientation.

Key words: Dam1, Kinetochore, Microtubule, Polo kinase

Introduction
Accurate segregation of chromosomes to daughter cells requires

that chromosomes are correctly bi-oriented before anaphase onset.
Bi-orientation is ensured by dynamic changes in protein
phosphorylation at the spindle–kinetochore interface, mediated

by several kinases including the Polo-like kinase Plk1,
chromosomal passenger protein Aurora B (Ark1 in fission yeast)
and Mps1. The role of Aurora B in promoting chromosome bi-

orientation has been studied most extensively. Chromosome bi-
orientation generates tension across kinetochores, separating
centromerically associated Aurora B from the outer kinetochore
where it phosphorylates components of the microtubule-binding

KMN complex, including Ndc80 and Knl1 (also known as Spc105)
(Liu et al., 2009). Phosphorylation of these proteins weakens the
affinity of KMN for microtubules, facilitating correction of

microtubule–kinetochore interactions (Welburn et al., 2010).

Substrates of Plk1 and Mps1 that are involved in promoting
chromosome bi-orientation have been more difficult to elucidate.

It is known that Plk1 promotes bi-orientation by phosphorylating
kinetochores of unaligned or unattached chromosomes to
generate a phosphoepitope recognised by the 3F3/2 antibody

(Ahonen et al., 2005). Several kinetochore Plk1 targets have been
identified, but the precise mechanism by which Plk1 promotes bi-
orientation and the identity of the 3F3/2 epitope in many systems
remains unclear (Elowe et al., 2007; Wong and Fang, 2007). Two

complications are that human Mps1 (which is also known as
TTK) and Plk1 kinases share a similar substrate consensus motif
and that loading of the 3F3/2 substrate to kinetochores requires

prior assembly and activity of Mps1 (Dou et al., 2011; Wong and
Fang, 2006).

In Saccharomyces cerevisiae the heterodecameric outer

kinetochore DASH complex facilitates microtubule binding of
Ndc80 in vitro. Purified S. cerevisiae kinetochores lacking DASH
are defective in forming stable microtubule attachments when a

force is applied comparable to that imposed by the spindle
(Akiyoshi et al., 2010; Lampert et al., 2010; Tien et al., 2010).
The DASH complex is conserved in other fungi but not in
metazoa. The requirement for DASH is related to the number of

microtubule-binding sites per kinetochore (Burrack et al., 2011;
Thakur and Sanyal, 2011). Although the DASH complex is
essential for viability in budding yeast, where kinetochores bind

to a single microtubule, it is not required for viability in fission
yeast, where kinetochores bind to between two and four
microtubules (Liu et al., 2005; Sanchez-Perez et al., 2005).

Despite this, S. pombe cells lacking DASH display defects in
chromosome segregation and are profoundly impaired in
kinetochore retrieval, possibly because this occurs on a single

microtubule (Franco et al., 2007; Gachet et al., 2008; Liu et al.,
2005; Sanchez-Perez et al., 2005).

The S. cerevisiae Aurora homologue, Ipl1, phosphorylates
Dam1 at multiple sites, which causes microtubule detachment

from the kinetochore (Cheeseman et al., 2002). However the Ipl1
phosphorylation sites are not conserved in S. pombe Dam1 or in
Dam1 proteins in most other fungi (Buttrick and Millar, 2011).

This persuaded us to investigate how the DASH complex is
regulated in fission yeast.

Results and Discussion
Fission yeast Dam1 is phosphorylated during early mitosis

To determine whether Dam1 is phosphorylated during mitosis,
extracts were prepared from log-phase and mitotically arrested
dam1-13myc nda3-KM311 cells. In arrested cells, some Dam1

migrated with slower mobility in SDS-PAGE gels containing
50 mM Phos-Tag acrylamide (Fig. 1A). The slower band was
abolished by l phosphatase treatment and was not detected in the

absence of Phos-Tag acrylamide (Fig. 1B), indicating this band
represents phosphorylated Dam1. Dam1 phosphorylation was not
observed in mitotically arrested cells lacking the DASH
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component Duo1 (Fig. 1C), indicating that DASH complex

formation is essential for Dam1 phosphorylation.

To establish whether Dam1 is phosphorylated during an

unperturbed mitosis, arrested cdc25-22 cells were released

into mitosis. Dam1 was not phosphorylated in G2, but its

phosphorylation increased rapidly on mitotic entry. The timing of

phosphorylation was coincident with an increase in binucleate

cells and prior to an increase in septation (Fig. 1D), suggesting

that Dam1 is dephosphorylated during anaphase. To assess this

more directly we monitored Dam1 phosphorylation and Cdc13

Fig. 1. Dam1 is phosphorylated in mitosis. (A) Extracts from log-phase nda3+ dam1-13myc and nda3-KM311 dam1-13myc cells grown at 30 C̊, or from the

same cells following incubation at 18 C̊ for 6 hours, were separated by SDS-PAGE in the presence or absence of 50 mM Phos-Tag acrylamide and probed by

western blot using anti-Myc antibodies. The arrow indicates the shifted band corresponding to phosphorylated Dam1. (B) Extracts were prepared from mitotically

arrested nda3-KM311 dam1-6His13myc cells. Dam1 was enriched on Ni2+-resin and incubated in the presence or absence of l-phosphatase and phosphatase

inhibitors. Dam1 phosphorylation was monitored as above. (C) Extracts were prepared from mitotically arrested nda3-KM311 dam1-13myc Dduo1 cells.

Phosphorylation of Dam1 was monitored as in A except that blots were re-probed with anti-a-tubulin antibodies as a loading control. (D) G2-arrested cdc25-22

dam1-13myc cells were released to 25 C̊ and samples taken at intervals. The graph shows Dam1 phosphorylation as the ratio of phosphorylated:unphosphorylated

Dam1. Cells were fixed at each time point to assess mitotic progression (binucleates and septa). (E) nda3-KM311 ark1-as3 dam1-13myc cdc13-gfp cells were

synchronised by incubation at 18 C̊ and shifted to 30 C̊ in the presence of DMSO (left panels) or 5 mM 1NMPP1 (right panels). At the indicated times extracts

were prepared and Dam1 phosphorylation assessed (top panels) or cells were fixed and the percentage of cells with SPB-associated Cdc13 assessed (red squares,

bottom panels) and plotted against relative Dam1 phosphorylation (normalised to 1.0 at time 0; blue diamonds, bottom panels).
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(cyclin B) destruction in mitotically arrested nda3-KM311 ark1-

as3 dam1-13myc cdc13-GFP cells released to the permissive
temperature in the presence or absence of 1NMPP1 [a cell-
permeable ATP homologue which specifically inhibits Ark1-as3

(Hauf et al., 2007)]. In both situations dephosphorylation of
Dam1 occurred co-incidentally with Cdc13 destruction, although
more rapidly when Ark1 was inhibited (Fig. 1E), presumably
because inactivation of Ark1 ectopically silences the spindle

assembly checkpoint (SAC) (Vanoosthuyse and Hardwick,
2009).

Dephosphorylation of Dam1 could be a direct consequence of

Ark1 inactivation, de-repression of a phosphatase under the control
of Ark1, or as a consequence of anaphase-promoting complex/
cyclosome (APC/C) activation. To distinguish these possibilities
we repeated the above experiment at 18 C̊ to prevent spindle

formation. Under these conditions addition of 1NMPP1 triggered
destruction of Cdc13 after 10 minutes. However, little Dam1
dephosphorylation had occurred by 30 minutes, and even after

1 hour, a considerable portion of Dam1 remained phosphorylated
(supplementary material Fig. S1A). This suggests that
dephosphorylation of Dam1 does not occur solely as a

consequence of APC/C activation. Secondly, we overexpressed
the SAC component Mad2 in ark1-as3 dam1-13myc cdc13-gfp

cells to arrest them in mitosis with short spindles. Addition of

1NMPP1 did not cause appreciable Dam1 dephosphorylation,
suggesting that efficient Dam1 dephosphorylation requires both
spindle microtubules and passage through anaphase, but is only
indirectly under the control of Ark1 (supplementary material Fig.

S1B).

Plo1 phosphorylates Dam1 on S143

Because Dam1 lacks conserved phosphorylation sites for Ark1,

we examined whether other mitotically active kinases are
responsible for Dam1 phosphorylation. We found no effect on
Dam1 phosphorylation in metaphase-arrested cells lacking Mph1,

Bub1 or Fin1 (Fig. 2A). Strikingly, we were unable to observe
phosphorylation of Dam1 in metaphase-arrested plo1-ts35 cells,
even at the permissive temperature for the plo1-ts35 mutant

(Fig. 2B). This defect was rescued by expression of wild-type
plo1 but not by expression of a plo1 allele [plo1(YQL508AAA)]
that disrupts the interaction of the polo-box domain (PBD) with
phosphorylated target proteins and, hence, is unable to rescue

temperature sensitivity of the plo1-ts35 allele (Fig. 2C;
supplementary material Fig. S2). These results strongly suggest
that Plo1 is the Dam1 kinase in S. pombe.

The C-terminus of S. cerevisiae Dam1 participates in inter-
complex interactions, and is highly phosphorylated by Ipl1
(Cheeseman et al., 2002; Ramey et al., 2011). Alleles of S. pombe

dam1 where the C-terminus of the protein is truncated show a

striking resistance to the microtubule poison thiabendazole
(TBZ) suggesting this is a key regulatory domain of Dam1
(Sanchez-Perez et al., 2005). Importantly, whereas DASH

formation was unperturbed in dam1(1-127) cells, we detected
no change in the mobility of Dam1(1-127)–13myc in mitotically
arrested cells, suggesting that the Plo1 phosphorylation site

is located in the C-terminal 28 amino acids of Dam1
(supplementary material Fig. S3). This region contains three
highly conserved serine or threonine residues (Fig. 2D,E). To

determine whether any of these residues is phosphorylated in
mitosis, each was individually mutated to alanine residues, and
migration of the mutant proteins was analysed in nda3-KM311

cells. This revealed that S143 is the major Dam1 phosphorylation

site during mitosis (Fig. 2D). Importantly, the region surrounding
S143 precisely matches the consensus sequence for Polo-like
kinases (Nakajima et al., 2003), suggesting Plo1 directly

phosphorylates Dam1 (Fig. 2E). To establish whether Dam1
S143 was indeed a bona fide Plo1 target, antibodies were
generated to specifically recognise Dam1 phosphorylated on
S143 (supplementary material Fig. S4A). These antibodies

readily recognised Dam1 protein purified from E. coli and
incubated with Plo1 in vitro, indicating that Dam1 S143 is
phosphorylated by Plo1 (Fig. 2F; supplementary material Fig.

S4B). Unfortunately, these antibodies were not of sufficient titre
to recognise phosphorylated Dam1 S143 in total cell extracts
(supplementary material Fig. S4A; data not shown).

Polo-like kinases are often targeted to their substrates by

association to a neighbouring phosphoepitope through the C-
terminal PBD (Elia et al., 2003a). As the Plo1 PBD is required for
Dam1 phosphorylation (Fig. 2C), we speculated as to the identity

of the Polo-box-binding domain. Polo-box binding epitopes are
often created by Cdk1 phosphorylation (Elia et al., 2003b), and
the DASH subunit Ask1 is a Cdk1 target in S. cerevisiae (Li and

Elledge, 2003). Interestingly, S. pombe Ask1 is phosphorylated
on T136, which not only matches the Cdk1 consensus, but also
strongly corresponds to the optimum polo-box binding motif

(Elia et al., 2003b; Wilson-Grady et al., 2008) (supplementary
material Fig. S4C). We found that DASH complex formation
or localisation was unaffected in ask1-T136A mutants
(supplementary material Fig. S4D). However, Dam1 S143

phosphorylation was not observed in mitotically arrested ask1-

T136A cells, suggesting that phosphorylation of Ask1 T136
generates the polo-box-binding site required for phosphorylation

of Dam1 S143 by the kinase Plo1 (Fig. 2G).

Mitotic phosphorylation is reversed during anaphase by
several phosphatases, including PP1, PP2A and Cdc14
(Wurzenberger and Gerlich, 2011). In S. cerevisiae,

phosphorylation of Dam1 by Ipl1 is reversed by Glc7 (the PP1
phosphatase) when tension is applied to kinetochores by spindle
microtubules (Keating et al., 2009; Pinsky et al., 2006). We

speculate that Dis2, one of two PP1 catalytic subunits in S.

pombe, could dephosphorylate Dam1 S143 given that Dis2
localises to the kinetochore and is required for both correct

chromosome segregation and silencing the SAC (Alvarez-
Tabares et al., 2007; Meadows et al., 2011; Ohkura et al.,
1989). However, we were unable to assess this for technical

reasons (supplementary material Table S1). Nevertheless
dephosphorylation of Dam1 occurred normally in clp1(C286S)

cells, which express a catalytically inactive allele of the Clp1
(Cdc14-like) phosphatase, and Dppa2 cells, which lack the

major PP2A catalytic subunit in S. pombe (Kinoshita et al.,
1993) (supplementary material Fig. S5). These phosphatases are,
therefore, not required for Dam1 dephosphorylation.

Dam1 S143 phosphorylation aids tension-dependent
chromosome bi-orientation

DASH function requires assembly of the complex from ten

subunits (Liu et al., 2005; Sanchez-Perez et al., 2005). To
examine whether Plo1 phosphorylation of Dam1 is required for
DASH assembly, DASH was purified using tandem affinity

purification. We found that Dam1–13myc and Dam1(S143A)–
13myc show a similar affinity to Ask1–TAP, indicating that
Dam1 phosphorylation is not required for DASH complex
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formation (supplementary material Fig. S6A). Consistent with

this, Ask1–GFP localisation was unperturbed in dam1(S143A)

cells, demonstrating that Dam1 phosphorylation is not required

for DASH localisation (supplementary material Fig. S6B).

However, dam1(S143A) cells showed similar levels of TBZ

resistance to dam1(1-127) cells, consistent with phosphorylation

Fig. 2. Plo1 phosphorylates Dam1 on S143. (A) dam1-13myc pREP3X-mad2 cells with indicated genes deleted were grown to mid-log phase either in the

presence (+ B1) or absence (– B1) of thiamine. The percentage of cells with septa was measured by fluorescence microscopy. (B) dam1-13myc pREP3X-mad2 and

plo1-ts35 dam1-13myc pREP3X-mad2 cells were grown to mid-log phase at 27 C̊, and then incubated either in the presence (+ B1) or absence of thamine (– B1) at

either the permissive (27 C̊) or restrictive (35 C̊) temperature. (C) dam1-13myc pREP3X-mad2 or plo1-ts35 dam1-13myc pREP3X-mad2 cells expressing either

nothing, plo1+ or plo1(YQL508AAA) were incubated at 27 C̊ in the presence (+ B1) or absence (– B1) of thiamine to induce Mad2 and Plo1 expression.

(D) Extracts were prepared from log-phase (30 C̊) or mitotically arrested (18 C̊) nda3-KM311 dam1-allele-13myc cells bearing alanine residue replacements

within the C-terminal tail of Dam1. In A–D, Dam1 phosphorylation was monitored as Fig. 1. (E) The phosphorylation site for Plo1 in S. pombe Dam1 is conserved

across several subphyla of Ascomycota and matches the consensus site for Plk1 (Nakajima et al., 2003). (F) Purified His6-tagged (6His) Plo1 and Dam1 were

incubated in the presence of ATP for 30 minutes at 30 C̊. Proteins were detected by western blot using anti-His6 antibodies. Dam1 S143 phosphorylation was

detected using phosphorylation-specific antibodies. (G) Extracts were prepared from log phase (30 C̊) or mitotically arrested (18 C̊) nda3-KM311 dam1-13myc

cells with the indicated ask1 allele. Dam1 phosphorylation was monitored as in Fig. 1.

Journal of Cell Science 125 (7)1648
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at S143 having a major regulatory function at the Dam1 C-

terminus (Fig. 3A).

We have previously shown that DASH is essential for retrieval

of unclustered kinetochores in fission yeast (Franco et al., 2007).

To determine whether Dam1 phosphorylation is required for this

process, we monitored the retrieval of kinetochores from

mitotically arrested nda3-KM311 cells following release to

permissive temperature. In agreement with prior studies, we

find that most unclustered kinetochores are retrieved by

30 minutes and that Dam1 is essential for this process.

However, we found that kinetochore retrieval in dam1(S143A)

cells was indistinguishable from that in wild type (Fig. 3B).

Recaptured chromosomes are initially attached to one SPB

and must be re-oriented on the spindle following retrieval to the

SPB. To determine whether kinetochore bi-orientation requires

Plo1-mediated phosphorylation of Dam1, the centromere of

chromosome 2 was marked with GFP (cen2–GFP) to monitor re-

orientation. Following release of mitotically arrested nda3-

KM311 cells to the permissive temperature, 8% of wild-type

cells segregated both cen2–GFP markers to the same SPB,

Fig. 3. Dam1 phosphorylation promotes chromosome bi-orientation. (A) Serial dilutions of log-phase cells (,104, 103, 102, 101 cells from right to left) were

spotted onto YES medium plates containing the indicated concentrations of TBZ and grown for 2 days at 30 C̊. (B) Kinetochore retrieval was assessed in nda3-

KM311 dad1-gfp sid4-tdtomato as described previously (Grishchuk and McIntosh, 2006). Results are means 6 s.e.m. (n54). (C) Mitotically arrested nda3-

KM311 Ddam1 cen2-gfp sid4-tdtomato cells containing no addition (Ddam1), or dam1+ or dam1(S143A) alleles were released to permissive temperature. Cells

were fixed and scored for either chromosome non-disjunction (2:0 segregation) or lagging sister chromatids. Results are means 6 s.d. (n54). (D) Cells with the

genotypes detailed were synchronised in G2 and released into anaphase. Chromosome segregation was monitored by GFP bound to the lys1 locus and Cdc11–CFP

and scored as in C. Results are means 6 s.d. (n54).
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presumably because microtubule function is somewhat perturbed

(Fig. 3C). Importantly, under the same conditions, 13% of

dam1(S143A) cells segregated both cen2–GFP markers to the

same SPB (Fig. 3C). This is comparable to the defect observed in

Dsgo2 cells following nda3-KM311 block and release

(Vanoosthuyse et al., 2007).

We next examined the effect of the dam1(S143A) allele in

other genetic backgrounds in which spindle formation or

chromosome bi-orientation is impaired. Dam1 is essential for

viability in the absence of Klp5 and Klp6, components of the S.

pombe kinesin-8 heterodimer (Sanchez-Perez et al., 2005). Dklp5

cells exhibit hyper-stable microtubules and SAC-mediated delay

in mitosis with abnormally long metaphase spindles (Garcia et al.,

2002; West et al., 2001). Notably, alleles disrupting the C-

terminus of Dam1 cause slow growth in the absence of Klp5/6

(Griffiths et al., 2008). This phenotype was also observed in

dam1(S143A) Dklp5 double mutants (Table 1). To characterise

this further we assayed segregation of a GFP-tagged chromosome

1 in these cells. Whereas dam1(S143A) cells show no

chromosome segregation defects in the presence of Klp5,

dam1(S143A) Dklp5 cells showed appreciable defects, with

both chromosome 1 markers segregating to the same pole in

3.6% of cells (Fig. 3D). More dramatically, we found that both

Dam1 phosphorylation and Plo1 activity were essential for

viability in the absence of Dis2 (Table 1). The lethality of Ddam1

Ddis2 and dam1(S143A) Ddis2 double mutants was not rescued

by deleting the SAC component mad3. Lethality of these strains

is therefore not due to persistent SAC arrest. Instead we conclude

that Dam1 phosphorylation on S143 by Plo1 aids chromosome

bi-orientation in situations where establishment of amphitelic

microtubule–kinetochore connections is compromised.

In an attempt to mimic constitutive phosphorylation of Dam1,

we also made S143 to aspartic acid replacements. Dam1(S143D)

did not adversely effect kinetochore retrieval and did not

cause lethality in Ddis2 cells (Fig. 3B; Table 1). However, we

also note that dam1(S143D) cells displayed TBZ resistance,

albeit to a lesser extent than dam1(S143A) or dam1(1-127) cells,

and impaired growth in a Dklp5 background (Fig. 3A;

Table 1). We therefore propose that Dam1(S143D) is not a true

phosphorylation mimic, and dam1(S143D) presents an

intermediate phenotype between dam1(S143A) and wild type.

Similar results were seen in dam1(S143E) cells (data not shown).

The equivalent residue in S. cerevisiae Dam1 (S221) is

phosphorylated by Mps1 in vitro (Buttrick and Millar, 2011;

Shimogawa et al., 2006), although this has yet to be confirmed in

vivo. Because Plk1 and Mps1 share a similar consensus motif in

vitro (Dou et al., 2011), and Mph1 does not apparently

phosphorylate Dam1 in S. pombe (Fig. 2A), it is conceivable

that Dam1(S221) is phosphorylated by Cdc5 (Polo) in budding

yeast. Dam1(S221) phosphorylation in S. cerevisiae is proposed

to promote kinetochore association with the microtubule plus end

(Shimogawa et al., 2006); however, we found no evidence of

Dam1(S143) phosphorylation being required for kinetochore

positioning in S. pombe (supplementary material Fig. S6).

Interestingly, bacterially expressed S. cerevisiae DASH

preferentially associates with GTP-tubulin in the absence of

regulation by phosphorylation (Westermann et al., 2005).

The mode of Dam1 regulation could reflect the number of

microtubule–kinetochore binding sites in each organism. S.

cerevisiae only has a single microtubule-binding site per

kinetochore. Incorrect microtubule attachments are corrected by

releasing microubules from the kinetochore through Ipl1

phosphorylation of kinetochore components, including Dam1

(Cheeseman et al., 2002). S. pombe kinetochores, like those of

higher eukaryotes, attach multiple (between two and four)

microtubules (Ding et al., 1993). Individual kinetochores might

therefore simultaneously make correct and incorrect microtubule

attachments. We propose that Dam1 phosphorylation by

Plo1 during prometaphase and metaphase creates a permissive

state that allows the correction of individual microtubule

mal-attachments without creating monotelically attached

kinetochores. We suggest that dephosphorylation of Dam1

during anaphase enhances co-operative binding of the DASH

and Ndc80 complexes to microtubules to disfavour turnover of

microtubule–kinetochore attachments.

Materials and Methods
Cell culture

Media, growth and maintenance of strains were as described previously (Moreno
et al., 1991). Strains used are listed in supplementary material Table S2.

Experiments were performed at 30 C̊ unless otherwise stated. G2-synchronised

his7:gfp-lacI lys1:lacO cells were isolated from a 10–40% lactose gradient and
anaphase cells wes enriched by incubating in YES medium for 90 minutes.

Strain construction

dam1 and ask1 alleles were generated by overlap extension PCR (Ho et al., 1989)
as described previously (supplementary material Fig. S7). C-terminal tagging of

dam1 was performed by PCR-based gene targeting (Bahler et al., 1998).

Oligonucleotides used are given in supplementary material Table S3.

Western blotting

Proteins from cell lysates were precipitated in 20% trichloroacetic acid and
solubilised in SDS sample buffer. For phosphatase experiments, cells were lysed in

6 M guanidine hydrochloride, pH 8. His6-tagged proteins were isolated on Probond

resin (Invitrogen) and washed with l phosphatase buffer before incubation with
l phosphatase (NEB) in the presence or absence of 50 mM sodium fluoride and

10 mM sodium orthovanadate. His6–Dam1 was purified from E. coli BL21-

CodonPlus(DE3)-RIL cells transformed with pTRCHisA-dam1 under hybrid
conditions using Probond resin according to the manufacturer’s instructions.

His6–Plo1 was purified as previously described (Papadopoulou et al., 2008).

Concentration of purified proteins was estimated by using the Bradford assay.
Proteins were detected on western blots using anti-Myc (9E10-Cambridge

Biosciences), anti-His6 (4D11-Abcam), anti-TAP (Thermo Scientific) and anti-

Tat1 (a gift from Keith Gull) antibodies. Antibodies against Dam1 phosphorylated
at S143 were raised and purified by Eurogentec (see supplementary material Fig.

S4). Purification of DASH using Ask1–TAP was performed essentially as
described by (Gould et al., 2004). DASH was freed from washed calmodulin beads

by boiling in SDS sample buffer.

Table 1. Genetic interactions with dam1 mutants

Strain Wild type Ddis2 Dklp5

Wild type ++++ +++ ++++
Ddam1 +++ 2 2
dam1(1-127) ++++ 2 ++
dam1(T136A) ++++ +++ ND
dam1(T139A) ++++ +++ ND
dam1(S143A) ++++ 2 ++
dam1(S143D) ++++ +++ ++
Dmad3 Ddam1 +++ 2 ND
Dmad3 dam1(1-127) ++++ 2 ND
Dmad3 dam1(S143A) ++++ 2 ND
plo1-ts35 (23 C̊) +++ 2 ND

Viability of double mutants assessed as: ++++, wild type growth; +++, mild
growth defect; ++, severe growth defect; +, forms inviable micro-colonies; 2
cells die in first cell cycle; ND, not determined.
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Fluorescence microscopy
Cells were analysed by fluorescence microscopy as described previously (Buttrick
et al., 2011).
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