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Summary
Cells must overcome replication blocks that might otherwise lead to genomic instability or cell death. Classical genetic experiments
have identified a series of mechanisms that cells use to replicate damaged DNA: translesion synthesis, template switching and

homologous recombination. In translesion synthesis, DNA lesions are replicated directly by specialised DNA polymerases, a potentially
error-prone approach. Template switching and homologous recombination use an alternative undamaged template to allow the
replicative polymerases to bypass DNA lesions and, hence, are generally error free. Classically, these pathways have been viewed as

alternatives, competing to ensure replication of damaged DNA templates is completed. However, this view of a series of static pathways
has been blurred by recent work using a combination of genetic approaches and methodology for examining the physical intermediates
of bypass reactions. These studies have revealed a much more dynamic interaction between the pathways than was initially appreciated.

In this Commentary, I argue that it might be more helpful to start thinking of lesion-bypass mechanisms in terms of a series of
dynamically assembled ‘modules’, often comprising factors from different classical pathways, whose deployment is crucially dependent
on the context in which the bypass event takes place.
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Introduction
Genome duplication is carried out by a finely tuned molecular
machine that works with astonishing rapidity and accuracy.

However, the polymerases at its core are geared to operate on a
pristine DNA template, a situation that is rarely found for long in

practice. DNA is continuously damaged by insults from both
endogenous and exogenous sources, leading to base lesions that

block the replicative polymerases. Despite the existence of highly

efficient repair mechanisms, damaged bases are still inevitably
encountered during replication, which can result in replication fork

arrest (reviewed by Branzei and Foiani, 2010). Attempting
excision repair of the lesion at this point is risky because, by the

time the polymerase has stalled, the lesion is present in single-
stranded DNA, the duplex having been unwound by the replicative

helicase. Thus, an excision step would result in the formation of a
double-strand break (DSB) and collapse of the replication fork, a

potentially much more dangerous situation that creates a potent
substrate for undesirable genomic rearrangements. Although it has

been suggested that some bacteria, notably Escherichia coli, can

reverse the replication fork to bring the lesion back into double-
stranded DNA for safe excision (Courcelle et al., 2003; McGlynn

and Lloyd, 2000), there is not a great deal of evidence that this
approach is conserved in eukaryotes. Instead, an important strategy

for dealing with polymerase-stalling lesions, which is found in all
branches of life, is to use specialised mechanisms to replicate the

lesion before attempting excision repair: these are collectively
known as DNA damage tolerance mechanisms (reviewed by

Branzei and Foiani, 2010; Sale et al., 2012) and are also sometimes

referred to as post-replication repair (because the replication of
damaged DNA was originally associated with the filling of gaps

left after bulk replication had been completed, although it is

important to note that the word ‘repair’ in this context refers to the
gaps, not the lesions).

DNA damage tolerance can proceed through one of two broad
mechanisms (Fig. 1A). In the first, termed translesion synthesis

(TLS), the stalled replicative polymerases are replaced by
specialised TLS DNA polymerases (Table 1) that are able to

replicate directly across the lesion (Sale et al., 2012). They are able

to do this because their active sites have a larger volume than those
of the replicative polymerases and are therefore more able to

accommodate damaged or distorted templates (reviewed in Yang,
2003). The trade off for this facility is an increased risk of

mutagenesis. TLS is mutagenic for two reasons. First, damaged
bases are often miscoded, for example 8-oxoguanine can pair with

deoxyadenosine (dA) (Friedberg et al., 2006). Second, TLS
polymerases have an intrinsically lower fidelity owing to their

lower ability to discriminate the correct base (Beard et al., 2002)
and their lack of exonuclease proofreading activity (Sale et al.,

2012). In the second general mechanism, the stalled polymerase

makes use of an alternative, undamaged template (Branzei, 2011).
Most frequently this is the newly synthesised daughter strand

on the sister chromatid. This so-called ‘template switching’
mechanism is, therefore, in contrast to TLS, accurate. Many

aspects of its proposed molecular mechanism closely resemble
classical homologous recombination, but, as discussed below, the

two can be distinguished genetically. Failure of DNA damage
tolerance mechanisms frequently results in formation of DSBs

owing to collapse of the replication fork, and in this situation

homologous recombination is needed to reinitiate replication
(Fig. 1A).
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There are a number of excellent recent reviews on the

mechanisms of DNA damage tolerance (e.g. Branzei, 2011;

Ulrich, 2009; Sale et al., 2012) so in this Commentary, I first

begin with an overview of the classical pathways of lesion

bypass, before focusing on the interactions between these

under the three headings ‘Competition’, ‘Collaboration’ and

‘Coordination’. In Competition, I explore the classical model and

its limitations; in Collaboration, I consider recent evidence that

reveals significant fluidity between the boundaries of the

classical pathways. I suggest that this moves us towards a more

context-specific way of thinking about the mechanisms by which

simple DNA lesions are bypassed. Finally, in Coordination, I

discuss how replication of complex DNA lesions and clusters of

DNA damage require the regulated deployment of a series of

mechanisms.

The core pathways of lesion bypass in
eukaryotes
Much of our understanding of the molecular mechanisms of

damage tolerance comes from genetic studies in the budding
yeast Saccharomyces cerevisiae. Here, the majority of DNA
damage tolerance is accounted for by genes of the RAD6 epistasis

group (Table 1). In essence, the RAD6 group genes act in two
subpathways (Fig. 1B), both of which require the action of Rad6
and of a second protein Rad18 (Bailly et al., 1994; Prakash,

1981). The first pathway contains the translesion DNA
polymerases, Rev1, Polf (comprising the Rev3 catalytic subunit
and the smaller, possibly regulatory, subunit Rev7) and Polg
(Rad30). The second pathway accounts for the error-free
‘template switch’ mode of bypass and comprises Rad5, Ubc13
and Mms2 (reviewed by Broomfield et al., 2001; Lehmann,
2000). Early studies also obtained evidence for the involvement

of the core replication machinery in the form of proliferating cell
nuclear antigen (PCNA; the sliding clamp that tethers replication
and repair proteins to the DNA) (Torres-Ramos et al., 1996) and

the replicative DNA polymerase, pold (Torres-Ramos et al.,
1997). In addition, Rad52, the eponymous founder of the
homologous recombination epistasis group, can also mediate

some post-replication repair (Prakash, 1981). However, for many
years the molecular mechanism underlying the Rad6 group
remained a significant puzzle because, with the exception of the

TLS polymerases, the core factors are involved in protein
ubiquitylation (Box 1) (Bailly et al., 1997; Hofmann and Pickart,
1999; Jentsch et al., 1987; Ulrich and Jentsch, 2000).

In 2002, a groundbreaking study brought together these

apparently diverse functions of the Rad6 group by showing that
the key target of the ubiquitylation activity of the pathway is
PCNA (Pol30 in yeast) (Hoege et al., 2002). That work, together

with many subsequent studies, led to a working model for the
Rad6 group. The formation of single-stranded DNA, which at
sites of stalled replication is coated with the single-strand-binding

protein replication protein A (RPA), leads to the recruitment of
the E3 ubiquitin ligase Rad18, which, acting in concert with Rad6
(an E2 ubiquitin conjugating enzyme), monoubiquitylates lysine
(K) 164 of PCNA (Fig. 2) (Davies et al., 2008; Haracska et al.,

2004; Hoege et al., 2002; Stelter and Ulrich, 2003). The
monoubiquitin installed by Rad6 and Rad18 then stimulates
TLS by promoting the association of the specialised TLS DNA

polymerases with PCNA through the interaction between
ubiquitin and the ubiquitin-binding domains, which are located
within their C-terminal regions (Bienko et al., 2005). Thus, the

ubiquitylation of PCNA couples the persistent exposure of single-
stranded DNA that follows replication fork arrest to lesion
bypass, thereby ensuring that the potentially damaging activities

of the TLS polymerases are only deployed at distressed forks.

The ubiquitin moiety at K164 of PCNA can be extended with a
K63-linked ubiquitin chain by the E3 ligase Rad5, which acts
together with the E2 enzyme Ubc13 and E2-like protein Mms2

(Hoege et al., 2002; Hofmann and Pickart, 1999; Ulrich and
Jentsch, 2000). Although such polyubiquitylation of PCNA has
been genetically linked to ‘template switching’ (Hoege et al.,

2002), the exact function of these chains in promoting strand
exchange remains a key unanswered question. Rad5 also
possesses an ATPase activity that is necessary for its role in

damage tolerance (Gangavarapu et al., 2006) and which is linked
to its helicase activity, which in vitro can promote reversal of
fork-like structures (Blastyak et al., 2007).

Rad6
Rad18

Rev1
Rev3
Rev7

Mms2
Ubc13
Rad5

Rad30
(Polη)

Error proneError free*Error free

Translesion synthesisTemplate switch

Replication arrest

Replication arrest

A

B

Fork collapse

Recombination-mediated
fork restart

(Polζ)]

(i) (iv)

(ii) (iii)

Fig. 1. Competition between pathways in the Rad6 DNA damage

tolerance epistasis group. (A) A simplified representation of the mechanisms

of TLS and template switching. Following replication fork arrest at a DNA

lesion (green star) (i) the lesion can be replicated using an alternative DNA

template, most commonly the newly synthesised daughter strand on the sister

chromatid (ii), or specialised DNA polymerases can directly replicate the

lesion by TLS (iii). If the template strand is incised the fork will collapse and

this will require recombination to re-establish the fork (iv). Note (ii) illustrates

just one of the possible models of template switching (also see the main text

and Fig. 3). (B) The classical view of the core of the Rad6 pathway of DNA

damage tolerance in S. cerevisiae. The pathways depends on the actions of

Rad6 and Rad18, which are epistatic to components of the ‘error prone’ and

‘error free’ modes of bypass. For simplicity, the scheme does not include the

alleles of pold (Torres-Ramos et al., 1997) and PCNA [pol30-46, (Torres-

Ramos et al., 1996)] that first suggested that these genes were involved in

damage tolerance, nor the antirecombinogenic helicase Srs2 (also see the

main text and Table 1). Although often used in the early literature the terms

‘error prone’ and ‘error free’ pathways are not always informative. Rad30

(also known as polg) is apparently required for an error-free pathway (denoted

‘error free*’ in the figure). However, this principally applies to the replication

of cyclobutane pyrimidine dimers, the common UV lesion, which

mechanistically it does by TLS.
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These mechanisms are broadly conserved in vertebrates.

PCNA is monoubiquitylated by RAD18 in response to DNA

damage, and this step is important for the recruitment of

translesion polymerases (Bienko et al., 2005; Kannouche et al.,

2004). However, there is good evidence that PCNA

ubiquitylation can also be mediated by activities other than

RAD18 (Simpson et al., 2006; Terai et al., 2010; Zhang et al.,

2008), including one of the vertebrate homologues of Rad5,

helicase-like transcription factor (HLTF) (Lin et al., 2011).

Vertebrate PCNA is also polyubiquitylated (Chiu et al., 2006),

which is, in part, mediated by the Rad5 homologues, SHPRH (for

SNF2, histone-linker, PHD and RING finger domain-containing

helicase) and HLTF (Motegi et al., 2008; Motegi et al., 2006;

Unk et al., 2008; Unk et al., 2006). However, the loss of SHPRH

and HLTF appears to result in only rather subtle effects on

damage tolerance in mice (Hendel et al., 2011; Krijger et al.,

2011a). It is currently not clear whether this means that PCNA

polyubiquitination is less important in vertebrate lesion bypass

than it is in yeast or that other mechanisms, such as homologous

recombination, can efficiently substitute.

K164, and the nearby K127, of PCNA can also be modified by

conjugation of the ubiquitin-related protein SUMO (Hoege et al.,

2002; Stelter and Ulrich, 2003). In budding yeast, PCNA

SUMOylation acts to inhibit classical homologous recombination

by recruiting the helicase Srs2, which is able to displace the

recombinase Rad51 from DNA, allowing Rad18-dependent

template switching to proceed (Papouli et al., 2005; Pfander

et al., 2005). However, although PCNA SUMOylation has been

observed in S. pombe (Frampton et al., 2006) and a number of

vertebrate species (Arakawa et al., 2006; Leach and Michael,

2005), the conservation of PCNA SUMOylation as a means of

regulating recombination is unclear.

Table 1. The Rad6 epistasis group

S. cerevisiae H. sapiens Function

Rad6 RAD6A, RAD6B E2 ubiquitin conjugating enzyme (Jentsch et al., 1987); works with the E3 ubiquitin ligase Rad18 in DNA damage
tolerance (Bailly et al., 1994)

Rad18 RAD18 Main E3 for PCNA monoubiquitylation (Hoege et al., 2002); works with Rad6; human protein also binds polg
(Watanabe et al., 2004)

Ubc13 UBC13 E2 ubiquitin conjugating enzyme; involved in a number of other processes in the cell, notably the double strand break
response where it works with the E3 Rnf8 (Huen et al., 2007)

Mms2 UBE2V2 E2-like protein; binds to Ubc13 and restricts chain formation to K63 linkage but has no catalytic activity of its own
(Hofmann and Pickart, 1999)

Rad5 SHPRH, HLTF E3 for PCNA polyubiquitination (Hoege et al., 2002); RAD5 also has ATP-dependent helicase activity (Blastyak et al.,
2007). HLTF can monoubiquitinate PCNA (Lin et al., 2011)

Rev1 REV1 Y-family polymerase; deoxycytidyl transferase (Nelson et al., 1996a); has a key role in coordinating TLS as its C-
terminus interacts with PCNA and the other TLS polymerases (Guo et al., 2003; Ross et al., 2005)

Rev3 REV3 Forms a complex with Rev7 to create the B-family polymerase, polf with Rev3 being the catalytic subunit (Nelson et al.,
1996b); has a key role in TLS, notably extension of a mismatched primer terminus created by incorporation opposite a
lesion

Rev7 REV7 Small subunit of polf (Nelson et al., 1996b); function unclear but probably regulatory; mediates binding to Rev1
(Murakumo et al., 2001)

Rad30 Polg, Poli Y-family TLS polymerase. Polg (also known as RAD30A in vertebrates) is important for error-free bypass of UV-
induced cyclobutane pyrimidine dimers (Johnson et al., 1999; Masutani et al., 1999)

A second Rad30 homologue (RAD30B or Poli) is present in most, but not all, vertebrates; its restrictive active site
makes it extremely error-prone on template deoxythymidine (dT), but helps in the accurate replication of
8-oxoguanine (Vaisman and Woodgate, 2001)

– Polk Y-family polymerase; not conserved in budding yeast but related to E. coli DNA polymerase IV (dinB). Mediates
efficient bypass of abasic sites and bulky dG adducts such as benzo[a]pyrene diol-epoxide (BPDE) but with a
propensity for 21 frameshifts (Ohashi et al., 2000)

Srs2 ? Antirecombinogenic helicase that can displace Rad51 filaments; a direct vertebrate homologue is not obvious, but a
number of vertebrate helicases have been shown to perform similar antirecombinogenic functions, including RECQL5
(Hu et al., 2007), RTEL (Barber et al., 2008) and PARI (Moldovan et al., 2011)

Box 1. Ubiquitylation

Ubiquitin is a 76-amino-acid protein that can be covalently

attached to accessible lysine residues on other proteins (Pickart,

2001). It can also be attached to itself to form chains through any

of its seven lysine residues or its N-terminus to form linear chains.

Ubiquitin is produced from a number of loci in yeast and human

cells both as linear multimers and as fusions with ribosomal

proteins. Ubiquitin monomers are produced by cleavage with

ubiquitin C-terminal hydrolases. Ubiquitin–protein conjugation

begins with the activation of ubiquitin by the attachment of its C-

terminal glycine residue to a sulfhydryl group in the E1 ubiquitin

activating enzyme. The ubiquitin is then transferred to the active

site of one of the 30–40 known E2 ubiquitin conjugating enzymes

by a transthioesterification reaction. Finally, transfer of the

ubiquitin to its target is mediated by an E3 ubiquitin ligase, of

which there are several hundred in the mammalian genome. E3

ligases fall into two groups, those containing a HECT domain and

those containing a RING domain (Pickart, 2001). The principal E3

ligases involved in damage tolerance all fall into the latter

category, and they play a crucial role in substrate recognition

and assisting the transfer of the ubiquitin directly from the E2.

Ubiquitylation has many diverse consequences for protein

function. It is best known for its role in promoting protein

degradation by the proteasome (through formation of K48-linked

chains), but it can also be used to alter protein–protein interactions

by interfering with existing binding interfaces or creating new

binding surfaces, thereby promoting dynamic changes in protein

complex formation (Grabbe et al., 2011; Welchman et al., 2005).

However, the precise role played by ubiquitylation in many aspects

of the DNA damage response, including DNA damage tolerance,

remains poorly understood, particularly the role of the different

topologies of ubiquitin chain (Ulrich and Walden, 2010).
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Competition
The classical model of lesion bypass (Fig. 1) envisages a series of
pathways competing to process a lesion with post-translational
modifications of PCNA regulating this competition (Fig. 2). The

sequential action of RAD6 and RAD18 to monoubiquitylate
PCNA, before ubiquitin chain extension by UBC13, MMS2 and
RAD5 (Hoege et al., 2002; Parker and Ulrich, 2009), provides a

common intermediate, monoubiquitylated PCNA, that allows the
decision between TLS and template switching to be made. Thus,
either monoubiquitylated PCNA recruits a TLS polymerase, or it

becomes polyubiquitylated and promotes template switching.
However, as discussed below, in vertebrates, TLS DNA
polymerases can be recruited independently of PCNA
ubiquitylation (Hendel et al., 2011; Szüts et al., 2008) and thus

the simple model of a genome-wide competition between bypass
pathways that is regulated by PCNA modification becomes
inadequate. Instead, the notion of competition between pathways

needs to be qualified by the context in which lesion bypass is
taking place. I now consider three examples of such context and
explore how context might influence pathway competition.

Timing of lesion bypass

The first way in which bypass events can be distinguished is by

when they take place relative to the passage of the replication
fork. There has been a long debate over this issue. Early models
envisaged the formation of post-replicative gaps opposite DNA

lesions that are subsequently sealed (Rupp and Howard-Flanders,
1968; Rupp et al., 1971). However, alternative models for bypass

that takes place at the fork thereby maintaining fork progression
were also proposed (Higgins et al., 1976). These ideas gained
further ground with evidence for a recombination mechanism in

Escherichia coli that did not depend on daughter strand gaps but
that could be used to repair forks stalled by UV damage
(Courcelle et al., 1997). By the time the catalytic activity of the
TLS polymerases had been identified (Woodgate, 1999), most

models proposed envisaged bypass taking place at the fork. So,
what is the evidence that distinct mechanisms do indeed operate
at forks and at gaps?

Evidence to suggest that bypass at the fork and at post-
replicative gaps could be distinguished genetically initially came
from work in the avian cell line DT40 (Edmunds et al., 2008). In

DT40 cells, PCNA ubiquitylation does not have the same central
role in the control of TLS as it does in yeast, as double mutants
lacking both PCNA ubiquitylation and either REV1 or Polk, are

more sensitive to DNA damage than either of the single mutants
(Arakawa et al., 2006; Edmunds et al., 2008; Okada et al., 2002;
Ross et al., 2005). PCNA ubiquitylation and REV1 also have

independent roles in mutagenesis in DT40 cells (Arakawa et al.,
2006; Szüts et al., 2008). We proposed an explanation for these
observations by suggesting that PCNA ubiquitylation and REV1
defined the temporally distinct pathways of bypass at the fork and

at gaps behind the fork (Edmunds et al., 2008). We suggested that
at the fork TLS proteins could be recruited independently of
PCNA ubiquitylation by the C-terminal domains of REV1, which

binds both PCNA and the other TLS polymerases (Guo et al.,
2003; Ohashi et al., 2004; Ross et al., 2005; Tissier et al., 2004).
A similar division of labour might also exist in mammalian cells.

A REV1-dependent mode of TLS is seen at the fork (Jansen
et al., 2009) and PCNA ubiquitylation, which has been proposed
to largely control post-replicative gap filling (Niimi et al., 2008),

has recently been shown to be unessential for TLS (Hendel et al.,
2011; Krijger et al., 2011b). This suggests that REV1-dependent
TLS might well be able to operate independently of PCNA
ubiquitylation. However, in mice REV1 also plays a clear role in

post-replicative gap filling (Jansen et al., 2009), indicating that
REV1 could have both PCNA-ubiquitylation-dependent and
-independent roles.

Location of the lesion on the leading versus lagging strand

The location of a lesion on the leading or lagging strand template
might also have a significant influence on how it is bypassed. The
formation of post-replicative gaps will be more likely on the

lagging strand owing to the inherently discontinuous nature of
lagging strand replication. There is also some emerging genetic
evidence of distinct bias in pathway usage at leading and lagging
strand blocks. In the case of TLS, REV1 might be particularly

important in replicating lesions and structures present on the
leading strand template (Sale et al., 2009; Sarkies et al.,
2010). Likewise, the role played by Rad5 in template switching

in yeast has been proposed to be strand-specific, with Rad5
required for processing blocked leading strands, and Rad52-
dependent recombination operating at blocked lagging strands

(Gangavarapu et al., 2007).

The nature of the lesion itself

The chemical and structural nature of the lesion is frequently an
important determinant of the mechanism employed to repair it. For

Rad6
Rad18

Ubc9
Siz1

Ubc13
Mms2
Rad5

Ubiquitin

SUMO

Rev1, Rev3 or Rev7
Rad30

Srs2

Translesion
synthesis

Template
switch 
(SCJs dependent 
on Rad6 group 
and Rad51)

Homologous 
recombination 
(SCJs dependent
only on 
Rad51 or Rad52)

Fig. 2. The PCNA switchboard in S. cerevisiae: regulation of competition

between bypass pathways. The DNA sliding clamp PCNA is a trimer, but for

clarity only one subunit is shown as being modified. In practice, the PCNA

trimer could have three different modifications simultaneously, either the

same modification on all three subunits or any combination. PCNA can be

modified at K164 with either ubiquitin, which is added by Rad6 and Rad18, or

by SUMO, which is added by Ubc9 (the SUMO E2) and Siz1 (a SUMO E3

ligase) (Ulrich, 2009). Monoubiquitin facilitates the recruitment of the TLS

polymerases to PCNA through interaction with the ubiquitin-binding domains

found in Rev1 and Rad30 (polg) and hence promotes TLS (Bienko et al.,

2005). Alternatively extension of the monoubiquitin with a K63-linked chain

promotes template switching by a poorly understood mechanism (Hoege

et al., 2002). SUMOylation of PCNA at K164 in S. cerevisiae, recruits the

antirecombinogenic helicase Srs2 that displaces Rad51 from single-stranded

DNA and prevents the initiation of classical recombination (Papouli et al.,

2005; Pfander et al., 2005). SCJ, sister chromatid junction.
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instance the 8-oxoguanine lesion mentioned above can be
specifically recognised and excised by the DNA glycosylase
OGG1 (van der Kemp et al., 1996). Such selectivity is also

apparent in TLS, with particular polymerases, or combinations of
polymerase, being deployed at specific lesions (Shachar et al.,
2009). For example, UV-induced cyclobutane pyrimidine dimers

appear to be efficiently, and fairly specifically, replicated by DNA
polymerase g (Johnson et al., 1999; Masutani et al., 1999).
However, it remains unclear to what extent the polymerase

selection exerted by a lesion is mediated by specific protein–
protein or protein–DNA interactions and to what extent it is simply
stochastic. An interesting further example of specialisation for
different lesions has recently been documented in the template-

switching pathway. The two vertebrate Rad5 homologues, SHPRH
and HLTF, are differentially required for bypassing DNA damage
that results from either UV, which requires HLTF, or the DNA-

adducting agent methylmethane sulphonate, which requires
SHPRH (Lin et al., 2011).

These examples illustrate that consideration of the context of a
lesion is important for interpreting the potential competition

between alternative pathways that could replicate it. In the next
section, I consider how recent evidence has led to the distinction
between the classically defined pathways becoming increasingly
blurred.

Collaboration
As experimental techniques to examine the intermediates and
outcomes of DNA lesion bypass reactions have advanced, it has
become clear that the rather static view of the bypass pathways

provided by classical genetics is too limited. In this section, I will
examine the evidence for crosstalk between the classical bypass
pathways (Fig. 3A).

Crosstalk between classical homologous recombination
and template switching

Many models of template switching resemble classical
homologous recombination (Fig. 1), and the involvement of
recombination proteins in template switching was anticipated by

some of the earliest genetic analyses (reviewed in Broomfield
et al., 2001). It has become increasingly clear that this mechanistic
resemblance is more than superficial. Recent evidence from

experiments using two-dimensional electrophoresis to analyse
the Rad18-dependent template switch reaction has shown that
the formation of key intermediates also depends on core

recombination proteins, notably Rad51 (Branzei et al., 2008;
Minca and Kowalski, 2010; Vanoli et al., 2010). Yeast cells
deficient in the RecQ family helicase Sgs1 accumulate
recombination structures, or X-molecules, during normal growth

and more so following treatment with DNA-damaging agents such
as methylmethane sulphonate (Liberi et al., 2005). Although the
formation of these structures depends on the recombinase Rad51

(Liberi et al., 2005), it also requires Rad18 and Rad5 when PCNA
can be SUMOylated, but not in the absence of PCNA
SUMOylation (Branzei et al., 2008). This suggests that Rad18

and Rad5 are only needed to promote bypass in certain contexts,
which are possibly defined by the presence of SUMOylated
PCNA.

As well as RAD51 being required for the formation of RAD18-

dependent template switch intermediates, RAD18 also appears to
modulate classical RAD51-dependent recombination, notably the
frequency at which crossovers are formed (Simpson et al., 2006;

Szüts et al., 2006). The involvement of RAD18 in homologous

recombination appears to be mediated by its recruitment to DSBs

through its zinc finger domain, which binds break-associated

polyubiquitin chains (Huang et al., 2009). In this context,

RAD18 is proposed to act as an adaptor protein, independently

of its ubiquitin ligase activity, bridging break-induced

ubiquitylation with the recruitment of the recombination

mediator protein RAD51C (Huang et al., 2009). The extent to

which Rad18 is directly involved homologous recombination in

yeast is less clear. However, Rad18-deficient S. cerevisiae

exhibit sensitivity to ionising radiation that is independent of

K164 of PCNA (Chen et al., 2005) which supports the

possibility of a role for Rad18 in processing DSBs that is

independent of PCNA ubiquitylation. In yeast, Rad5 has also

been implicated in DSB repair (Chen et al. 2005), again a role

that is independent of its ubiquitin ligase function. Furthermore,

there is evidence that both the fission yeast (S. pombe) and plant

(Arabidopsis thaliana) homologues of Rad5 are also involved in

recombination (Chen et al., 2008; Doe et al., 1993). However, it

is not clear that this putative role for Rad5 in recombination is

maintained in the vertebrate Rad5 homologues SHPRH and

HLTF (Unk et al., 2010).

Crosstalk between template switch and TLS

The original screen for yeast mutants that exhibit impaired UV-

induced mutagenesis identified the rev2 mutant (Lemontt,

1971a), together with rev1 and rev3, which subsequently were

shown to be TLS polymerases (Nelson et al., 1996a; Nelson et al.,

1996b). rev2, it turns out, is allelic with rad5 (Game and Cox,

1971). Although Rad5 is now best known as a key factor in the

‘error-free’ branch of the Rad6 post-replication repair pathway

(Johnson et al., 1992), Lemontt had suggested that Rev1 and

Rev2 (Rad5) act in parallel pathways that both generate a

common intermediate that is processed by Rev3 to generate

mutations (Lemontt, 1971b), clearly implicating Rev2 (Rad5) in

TLS. However, subsequent results from analyses of the role of

Rad5 in mutagenesis appeared to depend on the reporter allele

used (Lawrence and Christensen, 1978). Recently, the ability to

analyse the bypass of specific lesions at a known site in plasmids

has allowed an unambiguous demonstration of the role of

Rad5 in TLS in both S. cerevisiae (Pages et al., 2008; Zhang

and Lawrence, 2005) and S. pombe (Coulon et al., 2010).

Intriguingly, this role appears to be independent of Mms2 and

Ubc13 in S. cerevisiae and, furthermore, does not require either

the helicase or ubiquitin ligase activity of Rad5 (Pages et al.,

2008), suggesting that Rad5 has a structural role. Supporting this

hypothesis, Pagès et al. demonstrated a physical interaction

between S. cerevisiae Rad5 and Rev1 (Pagès et al., 2008).

However, in S. pombe, the role of the Rad5 homologue, Rad8, in

TLS does require Mms2 and Ubc13, suggesting a different mode

of action in this organism (Coulon et al., 2010). Moving further

up the evolutionary scale to mammalian cells, recent evidence

suggests that the Rad5 homologue HLTF can help suppress UV

mutagenesis by enhancing PCNA ubiquitylation and the

recruitment of polg (Lin et al., 2011). However, another recent

study found that there is no impact on TLS in shuttled plasmids in

murine cell lines where both the Rad5 homologues (SHPRH and

HLTF) have been disrupted (Hendel et al., 2011). Thus, the

evidence for a conservation of the role of Rad5 and its

homologues in coordinating TLS is patchy and might, as seen

Bypassing DNA damage 1637

J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e



in the initial studies on the rad5 yeast mutants, be highly
dependent on context.

Crosstalk between TLS polymerases and recombination

A causal relationship between recombination and mutagenesis
was established by examination of the repair of a chromosomal

break that was induced by the HO endonuclease in S. cerevisiae

(Strathern et al., 1995). This revealed that DNA synthesis
associated with the recombinational repair of the break is error

prone compared with that of normal replication. Subsequent work
showed that these errors are dependent on Rev3, although Rev3 is
not required for the recombination reaction itself (Holbeck and

Strathern, 1997). Both Rev3 and Rev1 are enriched at DSBs

(Hirano and Sugimoto, 2006) and although their recruitment does

not require PCNA ubiquitylation, it does depend on functional

mitosis entry checkpoint protein 1 (MEC1), the yeast homologue

of the ataxia telangiectasia and Rad3-related protein (ATR)

checkpoint kinase. This role for Rev1 and Rev3 might be

conserved as homologues of both proteins have been implicated

in homologous recombination in vertebrates (Okada et al., 2005;

Sharma et al., 2011; Sonoda et al., 2003).

Parallel investigations have suggested that polg has a role in

extending Rad51-coated primer termini following the strand-

invasion step of homologous recombination (McIlwraith et al.,

Replication fork stall

Template switch
(fork reversal)

TLS

Post-replicative gap Template switch
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recombination

Template switch
(hemicatenane)
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Reinitiation
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at the fork
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TLS polymerases
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RAD18
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polyUb–PCNA
RAD51

Ub-PCNA
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RAD52
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Fig. 3. Collaboration between homologous, template switching and TLS. (A) Summary of interactions between the three main classically defined pathways

operating at stalled forks. Each is shown with the key proteins that represent the pathway within the coloured boxes. Genetic and mechanistic overlaps discussed in

the main text are indicated next to the arrows. (B) A modular approach to replicating damaged DNA. Instead of simple genetic pathways, combinations of bypass

proteins work together in discrete mechanistic ensembles, or ‘modules’. The green boxes represent mechanisms that act at the fork. The modules shown in pale

pink act at post-replicative gaps that are formed remotely from the replicative helicase by reinitiation of DNA synthesis downstream of the block. Key genes acting

in each ‘module’ are indicated alongside each box. The situations illustrated are necessarily limited and do not, for instance, cover the different requirements that

might be dictated by contexts such as the lesion being on the leading or lagging strand or the nature of lesion itself (see main text for further discussion).

polyUb, polyubiquitylation.

Journal of Cell Science 125 (7)1638

J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e



2005), an activity that could not be replaced by other specialised

polymerases or pold. Furthermore, polg interacts with the Rad51
recombinase (McIlwraith et al., 2005). Supporting this model,
Kawamoto and colleagues showed that polg-deficient DT40 cells

display a decrease in gene conversions that are induced by DSBs
or abasic sites at the immunoglobulin loci (Kawamoto et al.,
2005). However, the impact of polg disruption is much less
pronounced than that of core recombination factors, such as

RAD54 (Bezzubova et al., 1997) or the Rad51 paralogues (Sale
et al., 2001). Furthermore, neither polg-deficient DT40 cells nor
cells derived from xeroderma pigmentosum variant (XP-V)

patients, which carry a mutation in polg (Masutani et al., 1999),
exhibit sensitivity to ionising radiation. In fact, XP-V-derived
cells exhibit an increased UV-induced sister chromatid exchange

(Cleaver et al., 1999) suggesting that failure to bypass UV-
induced dimers results in an increased reliance on recombination-
mediated resolution of arrested or collapsed forks. Thus, despite a

considerable amount of evidence implicating TLS polymerases in
recombination, further work is needed to clarify their mechanistic
role, which again might be heavily dependent on the context of
the recombination reaction.

In summary, recent studies have demonstrated that the
boundaries between the classically defined genetic pathways of
DNA damage bypass are more blurred than was initially

appreciated. This should probably not come as a surprise given
that the mechanisms of damage bypass have evolved to deal with
a wide range of different problems rather than to fit neatly into
simple pathways that would make our understanding more

straightforward! However, these observations do mean that it
becomes more important to consider bypass mechanisms on a
fork-by-fork basis, rather than as a single process operating on an

entire population of replication forks or, indeed, cells. Taking this
idea to its logical conclusion would suggest that we could
dispense with the idea of distinct pathways altogether and replace

them with permutations of various factors in order to describe the
process in terms of discrete mechanistic ensembles or ‘modules’
(Fig. 3B). To bypass simple replication blocks, a single ‘module’

might suffice, but the replication of more complex lesions or
clusters of DNA damage would require the carefully coordinated
deployment of a series of ‘modules’ and it is this coordination
that I will consider in the final section.

Coordination
The concept of a modular approach to processing blocked
replication forks suggests that there is the need for coordination

to ensure that factors are deployed in the correct order,
particularly when dealing with complex lesions or clusters of
damage in large genomes. To illustrate this idea, I will first

consider how the Fanconi anaemia group of proteins coordinate
the repair and replication of interstrand crosslinks in vertebrate
cells. I will then explore the dual role of NBS1, which is deficient

in the autosomal recessive chromosome instability disorder
Nijmegen breakage syndrome (NBS), in both recombination
and TLS (Yanagihara et al., 2011) and speculate how this might
provide a platform for coordination of the two processes in some

circumstances.

Interstrand crosslinks can arise from exposure to bifunctional
DNA-adducting agents, such as the chemotherapeutic agents

cisplatin and mitomycin C (Noll et al., 2006), and from
endogenous sources such as naturally generated aldehydes
(Langevin et al., 2011; Stone et al., 2008). They are highly

cytotoxic as they inhibit transcription and replication and, unlike
lesions involving only one strand, cannot be replicated simply by

the damage tolerance mechanisms discussed above. Thus, to
avoid continued replication arrest or the formation of potentially
lethal DSBs, vertebrate cells coordinately deploy a series of
mechanisms to bypass these lesions (reviewed in Deans and

West, 2011). Important aspects of the molecular mechanism of
replication-dependent interstrand crosslink repair have recently
been revealed by a series of elegant experiments in which the

replication of a plasmid containing a site-specific crosslink has
been monitored in Xenopus egg extracts (Knipscheer et al., 2009;
Long et al., 2011; Raschle et al., 2008). A summary of the

mechanism as it is presently understood is shown in Fig. 4.

How is this complex set of processes choreographed? There is
now very strong evidence of a pivotal role for the multiprotein
complex known to be mutated in the human genetic condition

Fanconi anaemia (reviewed by Kee and D’Andrea, 2010). It has
been known for many years that cells from Fanconi anaemia
patients are particularly sensitive to interstrand crosslinking

agents (Sasaki and Tonomura, 1973). Furthermore, genetic
evidence has shown that the Fanconi anaemia pathway
cooperates with both homologous recombination factors and

the TLS polymerases REV1 and Polf in conferring resistance to
interstrand crosslinking agents (Niedzwiedz et al., 2004). At the
centre of the Fanconi anaemia complex is a multisubunit
ubiquitin ligase comprising at least eight components, which

has two key targets in the related proteins Fanconi anaemia
complementation group D2 (FANCD2) (Garcia-Higuera et al.,
2001) and Fanconi anaemia complementation group I (FANCI)

(Smogorzewska et al., 2007). Ubiquitylation of these proteins is
significantly enhanced in response to fork arrest caused by an
interstrand crosslink, a step necessary for effective interstrand

crosslink repair (Knipscheer et al., 2009). Depleting FANCD2
from the Xenopus egg system results in failure of both the
nucleolytic incisions and TLS across the lesion (Knipscheer

et al., 2009), suggesting that the Fanconi anaemia proteins are
involved in the early steps of this reaction. Intriguingly, although
FANCD2 and FANCI appear to operate upstream of the
recombinational repair of the incised strand, they are not

needed for loading of RAD51, but instead for the initial
nucleolytic incisions (Knipscheer et al., 2009; Long et al.,
2011). How the Fanconi anaemia pathway promotes these

incisions is still unclear, but it appears probable that it involves
the scaffold protein SLX4, which has recently been shown to be
mutated in the FANCP complementation group and, hence, is

now also known as FANCP (Kim et al., 2011; Stoepker et al.,
2011). SLX4 binds to a number of nucleases, including SLX1,
MUS81–EME1 and ERCC1–XPF (Munoz et al., 2009), all of

which have been implicated in interstrand crosslink repair,
although complementation analysis of FANCP or SLX4-deficient
fibroblasts indicates that the interaction with ERCC1–XPF, but
not with SLX1, is important in mediating resistance to mitomycin

C (Crossan et al., 2011). Thus, the replication of interstrand
crosslinks in vertebrates requires the careful orchestration of
endonucleolytic incision, REV1-dependent TLS and RAD51-

dependent homologous recombination, with the Fanconi anaemia
complex apparently acting as principal conductor to ensure these
‘modules’ are deployed in the correct order.

NBS1 is part of the MRE11 complex comprising NBS1,
MRE11 and RAD50 (reviewed by Stracker and Petrini, 2011).
This complex has a key role in the DNA damage response by
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coordinating checkpoint activation through ataxia telangiectasia
mutated (ATM), stabilisation of damaged replication forks and

initiation of homologous recombination. However, a recent paper
has shown that NBS1 is also important for the recruitment of
RAD18 and for effective polg-dependent TLS (Yanagihara et al.,
2011). NBS1 contains a domain in its C-terminus, alongside

those responsible for it interaction with MRE11 and ATM, that
interacts with RAD18. Although NBS1 and RAD6 compete for
the same binding interface in the RAD18 molecule, the fact that

RAD18 is a homodimer allows for a simultaneous interaction
with both NBS1 and RAD6. Functionally, NBS1 is required for
efficient deployment of polg and this is likely to explain the

UV sensitivity of NBS1-deficient cells. Importantly, the UV
sensitivity is not due to defective recombination because cells
harbouring an NBS1 mutant that cannot bind MRE11 are
sensitive to ionising radiation but not UV. Although the most

straightforward explanation for this newly discovered role for
NBS1 is that it is parallel and independent from its role in
recombination, it is tempting to speculate that NBS1 provides a

platform for the coordination of recombination and TLS. Such
coordination might be particularly important for dealing with
clustered DNA damage, such as that created by ionising

radiation, which is characterised by a combination of DNA
breaks and base lesions in close proximity. Similar to the
replication of interstrand crosslinks, replication of clustered

damage is likely to require the coordinate deployment of several
of the ‘modules’ discussed above, and understanding this
coordination will be an important area of future work.

Conclusions and perspectives
We have moved from an apparently well-ordered view of lesion
bypass laid out by the early genetic studies to a much more fluid

model that has been revealed by recent experiments. The
existence of multiple, intersecting mechanisms not only
provides robustness to ensure safe bypass of lesions but also

allows a modular approach to enable the bypass of complex
lesions. A number of key issues remain to be resolved, some of
which are highlighted below.

The first concerns the function of PCNA polyubiquitylation

because the exact role of the K63-linked ubiquitin chains that
form on PCNA during damage bypass remains a mystery. Do
they simply provide a docking station for key reactants in the

process, thereby locally concentrating them? Another possibility
is that they have a role in maintaining the necessary apposition of
the sister chromatids. Or do they have a more active role in

‘remodelling’ the stalled fork (Goldfless et al., 2006)? And if so,
what is the nature of this process? The interaction of the bypass
pathways with chromatin is another rather unexplored area.
Recent evidence suggests that the timing of lesion bypass can

directly affect the ability of cells to accurately propagate
transcriptional states (Sarkies et al., 2012; Sarkies et al., 2010).
Use of post-replicative gap-filling can result in DNA synthesis

that is uncoupled from the supply of histones displaced ahead of
the advancing fork, and these histones carry modifications that
contribute to the specification of transcriptional states. This

provides a potential mechanism by which a defect in DNA
damage tolerance at the fork can give rise not only to genomic
instability but also to widespread changes in gene expression, a

feature of many cancers (Sarkies and Sale, 2012). It is also
probable that the chromatin structure itself influences DNA
damage tolerance pathways, and evidence for such interactions is
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Fig. 4. Model for replication-dependent interstrand crosslink repair in

vertebrates and its coordination by the Fanconi anaemia proteins. (A) In

the system used by Walter and colleagues, a site-specific interstrand crosslink

resides on a plasmid that it replicated in a Xenopus cell extract (Raschle et al.,

2008). The replication forks move from the origin around the plasmid until

they arrest ,20–40 nucleotides away from the crosslink (Raschle et al.,

2008). (B) One of the forks then advances to one base before the crosslink.

The Fanconi anaemia (FA) pathway recognises the lesion and is ‘activated’ by

ubiquitylation (red circle) of FANCD2 and FANCI (pink and purple ovals) by

the Fanconi anaemia core complex (orange cluster) (Knipscheer et al., 2009).

(C) RAD51 (green circles) is loaded onto the single-stranded DNA around the

crosslink prior to incisions being made either side of the lesion on one strand

(Long et al., 2011). This step depends on the presence of FANCD2. The

incision step is likely to be regulated by the nuclease complex ERCC1-XPF

(Niedernhofer et al., 2004) coordinated by FANCP (SLX4) (yellow oval)

(Crossan et al., 2011; Kim et al., 2011; Stoepker et al., 2011). (D) The now

‘unhooked’ crosslink can be bypassed by TLS, likely by REV1 with Polf

(blue and orange ovals) (Okada et al., 2005; Raschle et al., 2008). This step

also requires FANCD2. (E) The remaining broken duplex can now be

repaired by homologous recombination (Long et al., 2011). (F) The remainder

of the crosslink is removed from the duplex either by nucleotide excision

repair or hydrolysis. (G) Both duplexes are restored. The green line represents

the tract of DNA synthesised by the TLS polymerases.
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starting to emerge (Falbo et al., 2009). A final question is whether
DNA damage tolerance pathways have potential as therapeutic

targets. Recent data (Doles et al., 2010; Xie et al., 2010) provide
some of the first clear evidence that targeted inhibition of DNA
damage tolerance pathways holds promise as a chemotherapeutic

approach in cancer. Answers to these questions will therefore not
only further our understanding of the mechanism of DNA
damage tolerance and its regulation but also, hopefully, provide

new insights into how cancer arises and how it can be controlled.
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