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Summary
One of the most complex molecular machines of cells is the nuclear pore complex (NPC), which controls all trafficking of molecules in

and out of the nucleus. Because of their importance for cellular processes such as gene expression and cytoskeleton organization, the
structure of NPCs has been studied extensively during the last few decades, mainly by electron microscopy. We have used super-
resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) to investigate the structure of NPCs in isolated
Xenopus laevis oocyte nuclear envelopes, with a lateral resolution of ,15 nm. By generating accumulated super-resolved images of

hundreds of NPCs we determined the diameter of the central NPC channel to be 4167 nm and demonstrate that the integral membrane
protein gp210 is distributed in an eightfold radial symmetry. Two-color dSTORM experiments emphasize the highly symmetric NPCs as
ideal model structures to control the quality of corrections to chromatic aberration and to test the capability and reliability of super-

resolution imaging methods.
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Introduction
The central role of nuclear pore complexes (NPCs) in

nucleocytoplasmic transport has been extensively studied since

their discovery in the 1950s (Callan and Tomlin, 1950; Gall,

1967). At the same time it has become evident that NPCs are not

only simple gates but are also involved in regulatory processes on

either side of the nuclear envelope (D’Angelo and Hetzer, 2008;

Kahms et al., 2011; Strambio-De-Castillia et al., 2010). The

structure of NPCs was elucidated by (cryo-) electron microscopy

enabling the reconstruction of structural models with , 10 nm

resolution (Beck et al., 2007; D’Angelo and Hetzer, 2008;

Hinshaw and Milligan, 2003; Stoffler et al., 2003; Strambio-De-

Castillia et al., 2010). NPCs are composed of multiple copies of

at least 30 different proteins, called nucleoporins, which have a

molecular mass of ,120 MDa in higher eukaryotes, i.e. they are

among the largest molecular machines in the cell. NPCs are

wheel-shaped, eightfold symmetrical cylindrical assemblies with

an ,125 nm diameter core structure and a height of ,70 nm.

They contain eight spokes arranged in a radially symmetrical

fashion and a central channel with a diameter of 35–50 nm, as

well as a cytoplasmic ring and a nuclear ring (Elad et al., 2009;

Scheer et al., 2005; Strambio-De-Castillia et al., 2010). Filaments

are attached to the cytoplasmic side and a basket structure to the

nucleoplasmic side of the NPC.

Light microscopy is ideally suited to study cellular structures

in a relatively non-invasive fashion. In particular, fluorescence

microscopy is a valuable tool and is compatible with specific

labeling protocols and live cell imaging. Owing to its sensitivity

and high temporal resolution it has been used successfully to

study dwell time durations of nuclear transport receptors (Dange

et al., 2008), three-dimensional distribution of transient

interactions in the NPC (Ma and Yang, 2010) and transport

kinetics of single mRNA through NPCs (Grünwald and Singer,

2010). The spatial resolution of fluorescence microscopy is,

however, limited to about half of the wavelength of light used

to observe the sample (Abbe, 1873). Only recently, has the

diffraction barrier been obviated by the introduction of so-called

‘super-resolution imaging’ methods that control the fluorescence

emission of fluorescent probes in time using either deterministic

approaches as in stimulated emission depletion microscopy

(STED) (Klar et al., 2000) and structured illumination

microscopy (SIM) (Gustafsson, 2000) or stochastic single-

molecule localization approaches including photoactivated

localization microscopy (PALM) (Betzig et al., 2006),
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fluorescence photoactivation localization microscopy (FPALM)

(Hess et al., 2006), stochastic optical reconstruction microscopy

(STORM) (Rust et al., 2006), direct STORM (dSTORM)

(Heilemann et al., 2008; van de Linde et al., 2011) and other

methods (Dertinger et al., 2009; Flors et al., 2007; Folling et al.,

2008; Giannone et al., 2010; Lidke et al., 2005; Mizuno et al.,

2011; Sharonov and Hochstrasser, 2006; Vogelsang et al., 2009).

Recently, three-dimensional SIM was used to resolve single

NPCs that colocalize with channels in the lamin network and

peripheral heterochromatin but the resolution was too low to

identify structural details of the NPC (Schermelleh et al., 2008).

We have used dSTORM for super-resolution imaging of NPCs

in nuclear envelopes isolated from Xenopus laevis oocytes.

Reaching near-molecular resolution, dSTORM is ideally suited to

study the structural features of NPCs, which are known to have a

symmetrical structure with a diameter well below the diffraction

barrier and a high density of up to ,60 NPCs/mm2 in mature

Xenopus laevis oocytes (Spector, 1993). Furthermore, the highly

symmetrical structure of NPCs makes it possible to reconstruct

accumulated super-resolution images avoiding subjective

selection processes (‘cherry picking’) and providing statistically

confirmed super-resolution data.

Results and Discussion
For super-resolution imaging of NPCs we labeled gp210 proteins

in the nuclear pore membrane indirectly by immunofluorescence

using the primary antibody X222 directed against an epitope

in the luminal side of gp210 (Gajewski et al., 1996) and Alexa

Fluor 647 (Alexa647) secondary antibodies. Of the two integral

membrane proteins, POM121 and gp210, identified so far only

the latter is detectable in both animals and plants (Cohen et al.,

2003). Evidence has been provided that gp210 is able to self-

associate, forming homodimers that further associate into large

arrays and it has been speculated that the dimers could form large

circular multimers that surround and anchor the NPC on the

luminal side of the pore membrane (Favreau et al., 2001). The

established model requires the presence of at least eight dimers

per NPC, which is compatible with the ,25 gp210 molecules

estimated previously using conventional biochemical methods

(Gerace et al., 1982).

dSTORM images of NPCs reveal an eightfold symmetrical

arrangement of gp210 proteins around NPCs (Fig. 1A–D,

Fig. 2A–D and supplementary material Figs S1–S4). The

resolved structures resemble, almost perfectly, the eightfold

symmetrical ring structures seen by electron microscopy using

negative staining (Fig. 1E). The isolation method used caused

slight elongation of the nuclear envelopes so that they no longer

appeared circular. Therefore, we selected NPCs that had a clear

round appearance and calculated an average diameter for the

eightfold symmetrical assembly of 161617 nm (Fig. 2A,C).

To confirm statistically the eightfold symmetry, and

demonstrate that the structures determined from the data are

generally present in the dSTORM data and not only in a selected

subset (Fig. 2A–C) we generated accumulated super-resolution

images (Fig. 3). We automatically detected possible pores from

the dSTORM image by template matching (Materials and

Methods and supplementary material Figs S5–S7) and

combined all identified 426 individual rings into one combined

super-resolved image by rotation alignment (Fig. 3A). Analysis

of the average super-resolution image revealed a perfect eightfold

symmetry of the gp210 ring with a diameter of 16467 nm

(Fig. 3A).

To assess the width of the central channel of NPCs we used

fluorescently labeled wheat germ agglutinin (WGA) binding to N-

acetylglucosamine-modified nucleoporins (Fig. 2; supplementary

material Fig. S3) (Cordes et al., 1991; Davis and Blobel, 1987).

Because of small differences in labeling efficiency caused by steric

hindrance or accessibility of epitopes the homogeneity of the

fluorescent ring structures varies, especially in the narrow central

channel (Fig. 2; supplementary material Fig. S3). Nevertheless, we

could clearly resolve the central channel with a diameter of 35–

50 nm in individual NPCs (Fig. 2B,C; Fig. 4). This was possible

because we used the bright photoswitchable fluorophore

Alexa647, which can be detected with nanometer precision

(Smith et al., 2010). We determined the spatial resolution of

WGA–Alexa647 in the central channel of 50 different NPCs from

the full width at half maximum (FWHM) of the dSTORM images

to be 1564 nm (Fig. 2D). From the subpopulation of selected ring

structures we determined the diameter of the central channel to be

3865 nm (Fig. 2D).

Fig. 1. dSTORM of the NPC integral

membrane protein gp210. (A) Comparison of

widefield fluorescence (upper left corner) and

dSTORM image (lower right corner). gp210

proteins in nuclear envelopes isolated from

Xenopus laevis oocytes were labeled by indirect

immunofluorescence using the primary antibody

X222 directed against an epitope located in the

lumen of the nuclear envelope bordering the

pore wall (Gajewski et al., 1996) and Alexa647

secondary antibodies. (B–D) Higher

magnifications of fluorescent circular structures

to highlight the eightfold symmetrical

arrangement of gp210 proteins in NPCs.

(E) NPCs are generally seen as eightfold

symmetrical ring structures in electron

microscopy using negative staining. Scale bars:

1 mm (A), 250 nm (B), 150 nm (C–E).
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The accumulated super-resolution images of 621 small rings of

the central channel reveal an inner diameter of 4167 nm, a value

that agrees very well with previous findings (Fig. 3B) (Elad et al.,

2009; Scheer et al., 2005; Strambio-De-Castillia et al., 2010).

Considering the molecular size of a the WGA dimer of ,5 nm

(Schwefel et al., 2010) and random fluorophore labeling, the

diameter of the central NPC channel appears to be surprisingly

consistent. Owing to the large molecular size of gp210 (200 kDa)

(Favreau et al., 2001) and the fact that we used IgG antibodies

and F(ab9)2 fragments for indirect labeling with molecular sizes

of 8–10 nm, the exact size of the NPC-anchoring gp210 proteins

was difficult to determine. Therefore, we cannot explicitly

distinguish between gp210 monomers and dimers. However, our

data suggest that gp210 proteins are organized by interactions

with the pore complex core octamer and support the model in

which eight gp210 dimers are present for anchoring the NPC

(Fig. 1B–D; Figs 2, 3) (Favreau et al., 2001; Gerace et al., 1982).

Double-staining experiments with identical (Alexa647) and

different (Alexa647 and ATTO520) fluorophores revealed

similar structures: gp210 proteins form an eightfold

symmetrical ring arranged around NPCs with a central smaller

ring (Fig. 2C; Figs 3, 4; supplementary material Fig. S4).

Using both the gp210 and WGA dSTORM data (Figs 1, 4;

supplementary material Figs S1–S3) we calculated a NPC density

of 9–24 NPCs/mm2 for different Xenopus laevis oocyte nuclear

envelope preparations. The fact that the circular fluorescence

assemblies in dSTORM images show an eightfold perfectly

symmetrical gp210 ring around each NPC and a substantially

smaller central ring (Fig. 2C, Fig. 4; supplementary material Figs

S1–S4) demonstrates a high binding specificity of the X222

antibody to gp210 proteins and WGA at nucleoporins in the

central channel of the NPC. Our results underscore the ability of

dSTORM in combination with refined data analysis to resolve

complex molecular structures with an optical resolution well

below 20 nm. For the first time, we could resolve the eightfold

symmetry of the gp210 ring around each NPC and determine the

diameter of the central channel with nanometer accuracy using

light microscopy. Furthermore, we show that NPCs can serve as

Fig. 2. Distribution of gp210 and WGA in NPCs

as revealed by dSTORM. In each case two

representative examples are shown to emphasize

differences in labeling efficiency. (A) The integral

membrane protein gp210 surrounding the NPC

labeled by immunofluorescence with Alexa647. The

cross-section profile (below) of the left ring structure

yields a ring diameter of 146 nm. (B) Nucleoporins

of the central channel labeled with WGA–Alexa647.

The cross-section profile of the left image yields a

channel diameter of 40 nm. (C) Diameters were

confirmed by double staining of gp210 and WGA-

binding nucleoporins located in the central channel of

the NPC. Here diameters of 152 and 35 nm were

calculated from a cross-section profile of the left

image for the outer and the inner ring, respectively.

(D) Average values of outer ring and central channel

diameters as calculated from 50 different NPC ring

structures. The diameter of the gp210 ring structure

was determined as 161617 nm , and the diameter of

the central channel to be 3865 nm. In addition, the

distribution of FWHM values extracted from the

cross-sectional profiles for gp210 and WGA showed

the FWHM to be 2967 nm for gp210 and 1564 nm

for WGA. Scale bars: 150 nm (A,C) 50 nm (B).

Fig. 3. Image analysis of accumulated NPC dSTORM data.

(A) For gp210, 426 individual rings containing ,160,000

localizations were combined to yield an average diameter of

16467 nm for the gp210 ring surrounding the NPC. (B) For WGA,

621 rings containing ,40,000 localizations were combined and a

diameter of 4167 nm was determined for the central channel of

the NPC. (C) Superimposed image of both structures. Scale bars:

100 nm.
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model structures to demonstrate the capability and reliability of

super-resolution imaging methods. Additionally, NPCs are

ideally suited to control the efficiency of chromatic aberration

corrections in multicolor super-resolution imaging experiments

(Fig. 4; supplementary material Fig. S8).

Our results emphasize the remarkable optical resolution that

stochastic single-molecule based super-resolution imaging

methods can achieve using standard, commercially available

fluorescent probes. We envisage that live-cell dSTORM (Klein

et.al., 2011; van de Linde et al., 2011; Wombacher et al., 2010) in

combination with single-molecule tracking (Grünwald and

Singer, 2010) could pave the way towards NPC functional

imaging with previously unmatched spatiotemporal resolution.

Materials and Methods
Materials

Xenopus laevis were purchased from Xenopus Express (Vernassai, France) and
kept in tanks of water at 20 C̊. Mouse monoclonal antibodies X222 and Asc222a2
directed against gp210 were provided by Georg Krohne (Gajewski et al., 1996).
Alexa647-conjugated F(ab9)2 fragments of goat anti-mouse-IgG (A-21237) and
Alexa647-conjugated wheat germ agglutinin (W32466), were purchased from
Invitrogen. WGA (lectin from Triticum vulgaris) was from Sigma-Aldrich (L9640)
and ATTO520 N-hydroxysuccinimidyl ester from ATTO-TEC (Siegen, Germany;
AD 520).

Manual isolation and fixation of nuclear envelopes

Small pieces of ovaries were removed from anesthetized animals and placed in
modified Barth’s medium (Gurdon, 1976). After manual removal of the follicle
epithelium, oocytes were transferred in ‘3:1 medium’ (75 mM KCl, 25 mM NaCl,
Tris-HCl, pH 7.2) and the nuclei were manually isolated as described elsewhere
(Krohne et al., 1978). Briefly, an oocyte was torn open in 3:1 medium and the
released nucleus was cleaned of yolk and other cytoplasmic contaminants by
repeated sucking up and down in a narrow-bore pipette. The nucleus was then
transferred into a Lab-Tek II chambered coverglass containing 3:1 medium. With a
pair of no. 5 Dumont forceps the nuclear envelope was opened and spread on the
coverglass. In this condition, with the nuclear envelope attached to the coverglass,
the nuclear contents pop out of the envelope. The nuclear envelope was then
washed twice in 3:1 medium and fixed for 20 minutes with 2% paraformaldehyde
in phosphate-buffered saline (PBS; supplementary material Fig. S1).

Immunofluorescence and WGA labeling

The spread nuclear envelopes were washed in PBS and saturated with 0.5% bovine
serum albumin (BSA; Serva) in PBS for 10 minutes. After incubation with X222
antibodies for 45 minutes, the nuclear envelope was washed for 10 minutes in
PBS, followed by a second incubation step with Alexa647 F(ab9)2 fragments of
goat anti-mouse IgG for 30 minutes and a final washing step for 20 minutes. For

double staining of gp210 and N-acetylglucosamine-modified nucleoporins of the
central channel, a third incubation step was performed using custom-labeled
WGA-ATTO520 with a washing step in between. Staining was performed by
incubating the sample for 10 minutes with 5 mg/ml WGA–ATTO520. Before
dSTORM imaging, the sample was incubated in 2% paraformaldehyde in PBS for
5 minutes. Samples were stored in PBS with 0.2% sodium azide. The degree of
labeling (DOL) with Alexa647-labeled antibodies was determined to ,4. WGA
was labeled with ATTO520 according to standard coupling protocols given by the
supplier. The conjugates were purified on NAP-5 filtration columns (Sephadex G-
25 DNA Grade, GE Healthcare). The DOL of WGA–ATTO520 was determined to
0.5–1.0.

Photoswitching buffer

Reversible photoswitching of Alexa647 and ATTO520 was performed in 100 mM
b-mercaptoethylamine (MEA; Sigma) in PBS, pH 7.4–8.0, applying an oxygen
scavenger system [0.5 mg/ml glucose oxidase (Sigma), 40 mg/ml catalase (Sigma),
10% w/v glucose] (van de Linde et al., 2011).

Electron microscopy

Electron micrographs of negatively stained nuclear envelopes of X. laevis oocytes
were taken as described by Krohne et al. (Krohne et al., 1978).

Super-resolution imaging

dSTORM was performed as described elsewhere (van de Linde et al., 2011), using
an inverted microscope (Olympus IX-71) equipped with an oil-immersion
objective (660, NA 1.45; Olympus). A 641 nm diode laser (Cube 640–100C,
Coherent, Santa Clara, CA) was used for excitation of Alexa647, and a 488 nm
laser (Sapphire 488LP; Coherent) was used for excitation of ATTO520. A
polychromatic mirror (HC 410/504/582/669; Semrock, Rochester, NY) was used
to separate laser and fluorescence light; the latter was imaged on an electron-
multiplying CCD (EMCCD; Ixon DU897, Andor) camera. Additional band pass
filters were used in the detection path of the setup (ET700/75, HQ535/50;
Chroma). Additional lenses were used to achieve a final camera pixel size of
105 nm. 20,000–30,000 frames were recorded with frame rates of 100–140 Hz at
irradiation intensities of 1–5 kW/cm2.

Image reconstruction and data analysis

dSTORM images were reconstructed and analyzed with the open source software
rapidSTORM 1.4.11 (Wolter et al., 2010). Only fluorescent spots containing more
than 500 photons (ATTO520) and more than 1000 photons (Alexa647) were
analyzed. By analyzing their ellipticity, multi-fluorophore events were discarded
from further analysis (Wolter et al., 2011). Typically, 1000 photons were detected
per ATTO520 molecule and frame, whereas 3500 photons were detected per
Alexa647 molecule and frame. The structure shown in Fig. 4A was reconstructed
from ,371,000 localizations of ATTO520 and ,1,290,000 localizations of
Alexa647. Reconstructed images were convolved with a Gaussian function with a
standard deviation of 1 pixel (supplementary material Fig. S9) using ImageJ
(Abramoff, 2004). Distance measurements as shown in Fig. 2A–C were performed
with unprocessed data. Overviews of dSTORM images are shown with a grid of
15–20 nm pixel size, whereas detailed images are shown with a grid of 5–7 nm

Fig. 4. Two-color dSTORM images of NPCs using

WGA-ATTO520 and Alexa647-labeled secondary

antibodies directed against an epitope of gp210 on the

luminal side. (A) Comparison of conventional widefield

fluorescence image (lower left corner) and dSTORM

image (upper right corner). (B–D) Higher magnification

reveals the typical eightfold symmetrical ring structure of

gp210 proteins (violet) surrounding the NPC and N-acetyl

glucosamine-containing nucleoporins in the central

channel labeled with WGA-ATTO520 (green). Scale bars:

2.5 mm (A), 100 nm (B–D).
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pixel size. To determine the diameter of the gp210 ring structure, cross-section
profiles were made through the center of the ring. The intensity distribution along
the profile was fitted with a model of a double Gaussian function, where the
difference of both centroids represents the diameter of the ring (Fig. 2A). The
diameter of N-acetylglucosamine-modified nucleoporins of the central channel
was determined in the same way (Fig. 2B). The FWHM of each Gaussian function
was calculated to determine the optical resolution in the lateral direction. Data
from double stained NPCs were analyzed by fitting a quadruple Gaussian model
function (Fig. 2C). The average diameter and FWHM of gp210 and WGA were
determined from different NPCs. Error bars in Fig. 2D represent the standard
deviation of 25–28 and 50–56 measurements to determine the diameter and the
FWHM, respectively.

Average image analysis

To show that the structures that were determined are generally present and not just
found in a selected subset of the data, we combined individual pores into one
‘average’ pore to increase the number of detections per image. To this end we
automatically detected possible pores from the super-resolution image
(supplementary material Fig. S5) by template matching using DIPimage (www.
diplib.org) and Matlab (Mathworks). For all possible pores a model was fitted to the
detected localizations: either an eightfold ring (gp210-labeled images) or just a ring
(WGA-labeled images). As a cost function we optimized the sum of the distances
from the detected localizations to the closest model point. All localizations were then
aligned by shift and/or rotation, based on the fit parameters, and combined into one
image (Fig. 3). For gp210 we combined ,160,000 detected localizations in 426
individual rings and estimated a diameter of 16467 nm, and for WGA, we
combined ,40,000 detected localizations in 621 rings, and estimated a diameter of
4167 nm (means 6 standard deviations). The radius of the combined ring was
estimated from its angular average (supplementary material Figs S6, S7). The peak
of this average can be estimated very precisely because of the very large number of
localizations, however, the peak position has to be corrected (van Vliet and Verbeek,
1994). The correction is –0.5s2/R2, where s is the standard deviation of the
distribution and R is the peak position.

Two-color imaging and image alignment

Dual-color imaging was performed by imaging Alexa647 and ATTO520
sequentially. Alexa647 was imaged first to prevent photobleaching. To correct
shifts due to chromatic aberrations, usually both channels are aligned by using
multifluorescent beads. By determining the vector field, one image is transformed
to fit the other image. In the case of dual-labeled NPC proteins, the highly
symmetrical nature of the structure can be used for intrinsic alignment. Therefore,
the center of gp210 and WGA ring structures that clearly belong to each other
were identified manually and used as reference points. Thereby several reference
points in different parts of the image were used for transformation of the red
(Alexa647) channel image using ImageJ (bUnwapJ) (Arganda-Carreras et al.,
2006) (supplementary material Fig. S8).
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