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Introduction
Activation of the transcription factor nuclear factor kappa B 
(NF-B) is a crucial step in cellular responses to a variety of
internal and external stimuli, such as bacterial or viral infections,
physical or oxidative stress and hyperosmotic shock (Hoffmann
and Baltimore, 2006; Oeckinghaus and Ghosh, 2009). Consistent
with its role downstream of a multitude of stimuli, the target genes
induced by NF-B are numerous and comprise functionally diverse
proteins, including immunoregulatory factors, cytokines, cyclins
and regulators of apoptosis as well as of the NF-B pathway itself
(Hoffmann and Baltimore, 2006; Oeckinghaus and Ghosh, 2009).

Owing to its role as a central mediator of processes that are
essential to homeostasis and the integrity of the organism, aberrant
activation of NF-B can have deleterious consequences (Ben-
Neriah and Karin, 2011; Courtois and Gilmore, 2006; Hayden and
Ghosh, 2008; Wullaert et al., 2011). To avoid pathological
outcomes, multiple regulatory mechanisms are in place to prevent
untimely or excessive NF-B activation. Many aspects of this
regulation are based on post-translational modifications (Liu and
Chen, 2011; Perkins, 2006; Wertz and Dixit, 2010). The two main
regulatory modifications are phosphorylation (reviewed by Karin
and Ben-Neriah, 2000; Schmitz et al., 2001; Sebban et al., 2006;
Viatour et al., 2005) and ubiquitylation.

The term ubiquitylation refers to the covalent attachment of the
small protein ubiquitin to target proteins. This reaction involves

the concerted action of a ubiquitin-activating enzyme (E1) and a
ubiquitin-conjugating enzyme (E2), which, in the presence of a
ubiquitin ligase (E3), mediates the formation of an isopeptide bond
between the C-terminus of ubiquitin and the -amino group of a
lysine residue within a target protein. Because all seven lysine
residues (K6, K11, K27, K29, K33, K48 and K63) present in
ubiquitin, as well as the N-terminal methionine (M1) can be used
to create inter-ubiquitin linkages, eight different ubiquitin chain
types exist in total. Depending on the linkage type, ubiquitin chains
differ both structurally and functionally. The mechanism of
ubiquitylation, the structural differences between ubiquitin chains,
their recognition by specific ubiquitin-binding domains (UBDs)
and the resulting functional differences have been reviewed
elsewhere (Behrends and Harper, 2011; Dikic and Dotsch, 2009;
Fushman and Walker, 2010; Hochstrasser, 2006; Komander, 2009;
Passmore and Barford, 2004), and these aspects will therefore not
be covered in detail here. Instead we will focus on ubiquitylation
as a regulatory mechanism that is employed at multiple stages of
NF-B activation: depending on the linkage type, ubiquitylation
mediates the processing of NF-B precursors, the degradation of
the inhibitor of kappa B (IB) proteins (Kanarek et al., 2010) and
favours the assembly of protein complexes that are required for
NF-B activation. Recent studies have revealed that, in achieving
regulation of NF-B through these mechanisms, the classical
linkage types (i.e. K48- and K63-linked chains) are assisted by
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Summary
Although it has been known for a long time that ubiquitylation has a major role in the activation and regulation of the nuclear factor
kappa B (NF-B) pathway, recent studies have revealed that the picture is a lot more complex than originally thought. NF-B and
ubiquitylation initially became linked when it was recognised that lysine (K)48-linked ubiquitin chains are involved in the processing
of NF-B precursors and the degradation of inhibitor of kappa B (IB) proteins. Soon thereafter, it was reported that K63-linked chains
were involved in the assembly of IB kinase (IKK)-activating complexes and required for activation of the NF-B signalling pathway.
Recently, the discovery that atypical ubiquitin linkages, including linear and K11 linkages, are also involved in the activation of 
NF-B has led to the need to re-evaluate existing models of how activation of this transcription factor is initiated and regulated. It is
now becoming apparent that not only the canonical types of ubiquitin chains but possibly all linkage types have to be investigated in
order to fully comprehend NF-B activation. This can be considered a turning point in our view of the regulation of one of the most
important pathways of gene induction. Hence, in this Commentary, we summarise the information that is currently available and
incorporate it into a new model of NF-B activation, thereby highlighting the emerging new challenges in understanding the role of
ubiquitylation in NF-B activation.
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atypical ubiquitin chains, such as linear and K11-linked chains
(Dynek et al., 2010; Gerlach et al., 2011; Haas et al., 2009; Ikeda
et al., 2011; Tokunaga et al., 2011; Tokunaga et al., 2009; Emmerich
et al., 2011). In this Commentary, we discuss the effects of both
the well-established, as well as these more recently discovered,
ubiquitin chains on NF-B activation.

The NF-B family of transcription factors
The term NF-B refers not to a single protein but to a family of
dimeric transcription factors. The dimers are formed by
combinations of members of the Rel protein family that are
characterised by the presence of a Rel homology domain (RHD),
which enables the formation of homo- and hetero-dimers (Hayden
and Ghosh, 2008) and is important for DNA-binding. The Rel
protein family comprises RelA (also known as p65), RelB, Rel,
p52 and p50 (Fig. 1A); p50 and p52 are generated by the processing
of their precursors, p100 (encoded by NFKB1) and p105 (encoded
by NFKB2), respectively.

The combinatorial association of the five NF-B monomers
results in the formation of 15 different dimers, of which nine are
potential transcription factors. The others either cannot bind DNA
or, owing to the lack of transactivation domains, do not exhibit
transcriptional activity (Hoffmann and Baltimore, 2006; O’Dea
and Hoffmann, 2009). A common feature of all transcription factors
of the NF-B family is that their activity is inducible. In the
absence of a stimulus, all NF-B subunits are expressed and pre-
formed dimers exist within the cell (Baltimore, 2011; Hoffmann
and Baltimore, 2006; Oeckinghaus and Ghosh, 2009). In this latent
state, DNA binding of the NF-B dimers is prevented through their
association with members of the IB family. This family is
characterised by the presence of between five and seven ankyrin
repeat motifs (Oeckinghaus and Ghosh, 2009; Zheng et al., 2011)
and comprises the typical members IB, IB and IB, the
atypical IBs B-cell CLL/lymphoma 3 (BCL3) and IB, and the
NF-B precursors p105 and p100, which can also act as inhibitors
of NF-B activity (Fig. 1B) (Kanarek et al., 2010).

When bound to a p65–p50 dimer, IB, which is the best-
studied member of the IB family, masks the p65 nuclear
localisation sequence (NLS), thereby leading to a predominantly
cytoplasmic localisation of the IB-bound NF-B dimer. Freeing
NF-B dimers from IBs drastically shifts the balance towards
localisation in the nucleus, where NF-B dimers can bind B
sequences in regulatory elements of NF-B target genes and initiate
transcription (Baltimore, 2011; Kanarek et al., 2010; Oeckinghaus
and Ghosh, 2009). The removal of IBs involves both
phosphorylation and ubiquitylation events and can be achieved
through two distinct and evolutionarily conserved pathways that
are referred to as the canonical (or classical) and the non-canonical
pathways (Hoffmann and Baltimore, 2006; Sun, 2011).

The canonical pathway can be activated by a variety of stimuli
and consists of a fast-acting cascade of events that relies on IB
kinase  (IKK) and NF-B essential modulator (NEMO, also
referred to as IKK) as essential mediators in freeing NF-B
dimers from canonical IBs (Box 1, Fig. 2). The canonical pathway
is independent of de novo protein synthesis and is regulated by
multiple feedback mechanisms (Hoffmann and Baltimore, 2006;
Shih et al., 2011; Sun, 2011). By contrast, the non-canonical
pathway acts more slowly and uses the kinase activities of the NF-
B-inducing kinase (NIK, also known as MAP3K14) and an IKK
homodimer to remove p100 inhibition from NF-B dimers and to
provide long-lasting NF-B activity (Box 2) (Hoffmann and

Baltimore, 2006; Shih et al., 2011; Sun, 2011). Consistent with
these differences, the canonical pathway is predominantly involved
in regulating proliferation and death of lymphoid cells during the
immune response, whereas the non-canonical pathway is essential
for the development of lymphoid organs (Sun, 2011).

The role of K48-linked ubiquitin in NF-B
signalling
K48-linked ubiquitin in the removal of non-functional
proteins
K48-linked ubiquitin chains were the first linkage type to be
functionally characterised (Chau et al., 1989) and the attachment
of ubiquitin molecules linked in this fashion is an important step
in targeting proteins for proteasomal degradation (Pickart, 1997;
van Nocker and Vierstra, 1993). However, K48-linked chains are
not only components of a cellular waste-removal system but also
have an important role in signal transduction pathways by mediating
signal-induced degradation of both agonists and antagonists of
these signalling cascades.

Positive regulation of the canonical pathway through the
removal of IBs
The stimulation-induced phosphorylation of the canonical IBs by
the IKK complex generates a degron motif that is recognised by
the SCFTrCP E3 complex (TrCP is also known as FBW1A)
(Kanarek et al., 2010), which initiates the attachment of K48-
linked ubiquitin chains to and proteasomal degradation of IB
proteins (Kanarek et al., 2010). Phosphorylation of p105 by IKK
generates a similar degron, which results in ubiquitylation of p105
at multiple lysine residues and complete degradation of the protein
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Fig. 1. Members of the NF-B and IB protein families. (A)Schematic
representation of the five NF-B (Rel) family members. The proteins p50 and
p52 are generated from the precursor proteins p105 and p100, respectively, and
lack a transactivation domain. The characteristic Rel homology domains, as
well as other typical features, are indicated schematically. (B)Members of the
IB protein family are characterised by the presence of ankyrin repeats and
their ability to bind and sequester NF-B dimers. The NF-B precursors p100
and p105 fulfil both of these criteria and can therefore be assigned to the IB
family of proteins. According to mechanistic and structural differences,
members of this family can be subdivided into typical, atypical and precursor
IBs. RHD, Rel homology domain; TAD, transactivation domain; LZ, leucine
zipper; GR, glycine-rich region; A, ankyrin repeats; DD, death domain; PEST,
proline-, glutamic acid-, serine- and threonine-rich sequence.
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(Perkins, 2006). This process is favoured when p105 is bound to
other NF-B subunits and differs from both constitutive and
stimulation-induced partial processing of p105 to p50, which occur
independently of K48-linked ubiquitylation (Oeckinghaus and
Ghosh, 2009).

K48-chain-mediated regulation of the non-canonical
pathway
Processing of p100, when induced by the non-canonical pathway,
depends on K48-linked ubiquitylation. The E3 involved in attaching
these chains to p100 is SCFTrCP, which recognises its substrate
once p100 has been phosphorylated by the upstream kinases NIK
and IKK (Kanarek et al., 2010; Perkins, 2006). Processing of
p100 at the proteasome is terminated at the glycine-rich domain
that is present N-terminally of the ankyrin repeats and results in
the generation of p52 (Hoffmann and Baltimore, 2006; Oeckinghaus
and Ghosh, 2009). K48-linked ubiquitylation also positively
regulates activation of the non-canonical pathway by causing
degradation of components of the NIK-destruction complex. For
example it has been shown that in CD40 signalling, TNF-receptor-
associated factor (TRAF) 2 and 3 are degraded following their
ubiquitylation by cIAP1 and/or cIAP2 (cellular inhibitor of
apoptosis, also known as BIRC2 and BIRC3) (Sun, 2011).

In contrast with the above examples, K48-linked ubiquitylation
can also inhibit NF-B activation: in the absence of a stimulus, the
same destructive activity of cIAP1 and/or cIAP2 that is required
for TRAF degradation in CD40 signalling is directed towards NIK,
thereby restricting constitutive activation of the non-canonical
pathway (Matsuzawa et al., 2008; Vallabhapurapu et al., 2008;
Zarnegar et al., 2008).

Destabilisation of agonists of the canonical pathway
Other inhibitory effects of K48-linked ubiquitin on NF-B
activation are conveyed by the degradation of individual NF-B
subunits, such as Rel and RelA, following ubiquitylation (Perkins,
2006). Apart from the NF-B subunits that are induced by different
stimuli, stimulus-specific agonists of NF-B activation can also be
degraded in a ubiquitin-dependent manner. One example is the
destabilisation of receptor-interacting protein 1 (RIP1, also known
as RIPK1) in the context of the TNF receptor 1 (TNFR1)-associated
signalling complex. Here, the non-proteolytic K63-linked chains
attached to this protein are replaced with degradative K48-linked
ubiquitylation by the A20 ubiquitin-editing complex [for more
detail, refer to Harhaj and Dixit (Harhaj and Dixit, 2011)]. Other
E3s suggested to be involved in RIP1 ubiquitylation and
degradation are RING finger protein 216 (RNF216, also known as
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Box 1. The canonical NF-B pathway
The canonical NF-B pathway can be activated by a variety of stimuli, including inflammatory cytokines, bacterial or viral products and
oxidative or genotoxic stress conditions (Hadian and Krappmann, 2011; Miyamoto, 2011; Oeckinghaus and Ghosh, 2009). By activating their
respective receptors, these stimuli induce the formation of large protein complexes that serve as platforms for the recruitment and activation
of a preassembled protein complex that contains the kinases IKK, IKK and the regulatory subunit NEMO. Activation of this IKK complex is
essential for the induction of IB degradation. Depending on the stimulus, these IKK-activating complexes can either be receptor-associated
or secondary complexes that are dissociated from the originally stimulated receptor. Furthermore, they can differ greatly in their localisation
and composition (see Fig. 2) (Harhaj and Dixit, 2011; Liu and Chen, 2011; Ruland, 2011; Wertz and Dixit, 2010).

Despite their distinct compositions, IKK-activating complexes share certain common features: in all of these protein assemblies, kinase
recruitment and activation is achieved in a ubiquitin-dependent manner (Chen and Sun, 2009; Harhaj and Dixit, 2011; Liu and Chen, 2011;
Wertz and Dixit, 2010). Polyubiquitin modifications on complex components are specifically recognised by NEMO and the TAK1-binding
proteins 2 and 3 (TAB2 and TAB3) – the regulatory subunits of the IKK and TAB–TAK complexes, respectively (Cheung et al., 2004; Rothwarf
et al., 1998; Shibuya et al., 1996) – and hence serve as recruitment platforms for these kinase complexes (Ea et al., 2006; Kanayama et al.,
2004; Wu and Ashwell, 2008; Wu et al., 2006). It is not clear whether the phosphorylation events that are required for IKK activation occur by
trans-autophosphorylation or are carried out by an upstream kinase, possibly TAK1 (Hayden and Ghosh, 2008; Oeckinghaus and Ghosh,
2009; Wang et al., 2001; Yang et al., 2001). In addition, binding of NEMO to ubiquitin chains results in conformational changes in the protein
itself and possibly also in the associated kinases IKK and IKK. These changes are likely to favour IKK activation. Furthermore, the
recruitment of IKK to clusters of signalling proteins induces sufficient proximity between kinases for phosphorylation to occur through either of
the two mechanisms (Hayden and Ghosh, 2008). In the context of the canonical pathway, activation of IKK is both necessary and sufficient
to phosphorylate IBs. Phosphorylated, canonical IBs are recognised by the E3 complex SCFTrCP (Skp, cullin, F-box containing complex
together with -TrCP) (Shirane et al., 1999; Wu and Ghosh, 1999; Yaron et al., 1998). This leads to IB ubiquitylation and proteasomal
degradation, thereby exposing the nuclear localization sequence (NLS) of NF-B subunits and allowing NF-B dimers to translocate to the
nucleus and to initiate transcription (Kanarek et al., 2010). The resulting response is limited by different mechanisms, including the induction
of the expression of IBs (Hayden and Ghosh, 2008; Hoffmann and Baltimore, 2006). NES, nuclear export sequence.

IκB

Y
NLS
IκB

P
SCFβTrCP

NES

X Y
NLS

X Y
NLS

IκB
NES

IKK-activating
complex

X

IKKα
IKKβ

P
IKKα

IKKβ
P

X Y
NLS
IκB

P
NES

N
LS N

LS

N
LS

NEMO

NEMON
LS

P
Key Non-proteolytic ubiquitin chains Phosphorylated residue

No stimulus After stimulus

K48-linked chainsX Y
NLS

N
LS NF-κB dimer

Jo
ur

na
l o

f C
el

l S
ci

en
ce



TRIAD3 and ZIN) (Fearns et al., 2006) and CARP2 (for caspases
8 and 10-associated RING finger protein 2) (Liao et al., 2008).
Their importance for TNF-induced NF-B activation is, however,
controversial (Ahmed et al., 2009).

Destabilisation of agonists is a concept that is also employed in
the regulation of other NF-B signalling cascades. For example, the
phosphorylation- and ubiquitylation-dependent degradation of
BCL10 following TCR activation has been reported. The positive
regulators of NF-B signalling that have been described to be subject
to ubiquitylation and degradation in the pathways activated by
interleukin 1 (IL1) or Toll-like receptor (TLR)-stimulation are IL1
receptor-associated kinase 1 (IRAK1) and members of the pellino
E3 family. Once activated by phosphorylation, pellino proteins act
as agonists of NF-B activation by mediating the signal-promoting
K63-linked ubiquitylation of IRAK1 (Moynagh, 2009). RIG-I
(retinoic acid inducible gene-I, also known as DDX58) signalling is
also subject to degradation of agonistic components: RIG-I itself is
modified with K48-linked chains by RNF125. The same E3 also
mediates degradation of the downstream protein mitochondrial
antiviral signalling protein (MAVS) (Arimoto et al., 2007).

Overall, K48-linked chains are implicated in both positive and
negative regulation of the canonical and non-canonical NF-B
pathway at multiple stages. They act through a number of different
mechanisms, some of which are common to all NF-B-inducing
stimuli, whereas others are specific for only some of these stimuli.

The role of K63-linked polyubiquitylation in 
NF-B signalling
In contrast to K48-linked chains, K63-linked chains do not target
proteins for proteolytic degradation and act mainly in favour of
NF-B activation. Although this type of ubiquitin chain exerts it
regulatory effects at different stages of the pathway, its key
regulatory functions are in influencing the assembly and stability
of IKK-activating complexes and in kinase activation.

K63-linked ubiquitin chains as recruitment platforms in
TNF signalling
In the TNFR1-associated signalling complex (TNF-RSC),
components that become modified with K63-linked chains include
RIP1, TRAF2, cIAP1 and cIAP2 as well as TGF--activated 
kinase 1 (TAK1, also known as MAP3K7) and NEMO (Wajant
and Scheurich, 2011) (Table 1, Fig. 3). TRAF2 (Lee et al., 2004;
Wertz et al., 2004) and cIAP1 and cIAP2 (Bertrand et al., 2008;
Park et al., 2004) have been suggested to be the relevant E3 in
RIP1 modification. One model proposes that TRAF2, in the
presence of its cofactor sphingosine 1-phosphate (S1P), directly
mediates this modification (Alvarez et al., 2010). Another model
suggests that TRAF2 is responsible for the recruitment of cIAP1
and cIAP2 to the receptor complex, and the E3 activity of cIAP1
and/or cIAP2, but not of TRAF2, is required for attaching K63-
linked chains to RIP1 (Bertrand et al., 2008; Park et al., 2004;
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Box 2. The non-canonical NF-B pathway
The non-canonical NF-B pathway differs from the classical signalling cascade in terms of its slower and more persistent kinetics, its
physiological functions and its components (Sun, 2011). One of the first steps required for activation of the non-canonical pathway is the
stabilisation of the kinase NIK. In the resting state a ʻdestruction complexʼ comprising TRAF2, cIAP1 and cIAP2 as well as TRAF3, which links
NIK to this complex, mediates the proteasomal degradation of NIK, thereby keeping its levels very low (Liao et al., 2004; Vallabhapurapu et
al., 2008; Zarnegar et al., 2008). Following recruitment to a receptor, TRAF2 modifies cIAP1 and cIAP2 with non-proteolytic ubiquitin chains,
thereby changing their substrate specificity from NIK to TRAF3. This results in degradation of TRAF3, dissociation of the destruction complex
from NIK and, consequently, in NIK accumulation (Sun, 2011).

Consistent with this mechanism, receptors that can induce the non-canonical NF-B pathway commonly contain a TRAF-binding motif in
their intracellular domain (Sun, 2011). This group of receptors comprises a subset of TNFR superfamily members, including BAFFR, CD40,
LTBR, RANK, TNFR2 and FN14 (also known as TNFRSF12A) (Sun, 2011). FN14 employs a mechanistic variant of NIK stabilisation, whereby
removal of TRAF2 and cIAPs involves lysosomal rather than proteasomal degradation (Vince et al., 2008).

Once sufficient levels of NIK have accumulated, the kinase mediates the phosphorylation of p100 and activates IKKhomodimers, which
allows activated IKK to phosphorylate the p100 subunit at several additional sites (Shih et al., 2011; Xiao et al., 2004; Xiao et al., 2001).
Phosphorylated p100 is then recognised by the SCFTrCP complex and the subsequent ubiquitylation of p100 results in partial processing by
the 26S proteasome and the formation of the p52 subunit. This favours the activation of certain, mainly RelB-containing, NF-B dimers.
Considering the selectivity of the non-canonical pathway in activating only certain NF-B dimers, it is not surprising that the targets induced
and the functional roles served by this signalling cascade differ from those of the canonical pathway. In fact, this specificity also contributes to
the different kinetic properties because the main mediators of the non-canonical pathway, the RelB-containing dimers, exhibit low affinities for
binding to canonical IBs and are therefore less responsive to the highly dynamic feedback regulation exerted by these inhibitors (Derudder
et al., 2003; Shih et al., 2011). Instead, other mechanisms, such as the NF-B-inducible expression of TRAF3 and the inhibitory
phosphorylation of NIK by the downstream kinase IKK (Razani et al., 2010; Shih et al., 2011) are in place to limit activation of the non-
canonical pathway.
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Vince et al., 2009). K63-linked ubiquitin is clearly present on RIP1
(Gerlach et al., 2011; Newton et al., 2008) and it has been reported
that it is essential for the recruitment of the IKK- and TAK1-
binding protein (TAB)–TAK1-complexes (Ea et al., 2006;
Kanayama et al., 2004; Lee et al., 2004; Wu et al., 2006). Especially
the TAB–TAK1 complex depends on K63-linked ubiquitin for its

recruitment, as its regulatory subunit, TAB2, has been shown to
preferentially bind this linkage type (Kulathu et al., 2009).
Recruitment of the TAB–TAK1 complex leads to activation of the
kinase subunit TAK1. This could be achieved by conformational
changes induced by ubiquitin binding or by positioning TAK1 in
proximity of an E3 that subsequently mediates K63-linked
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Fig. 2. Composition of IKK-activating complexes. In response to ligand stimulation, receptors that activate NF-B recruit intracellular proteins to initiate signal
transduction. (A)TNFR1 recruits TRADD, RIP1, TRAF2, cIAP1 and 2, and LUBAC (which comprises SHARPIN, HOIP and HOIL1). Formation of ubiquitin
chains allows the TAB–TAK and IKK complexes to be recruited. (B)The CD40-associated IKK-activating complex consists of TRAF3, TRAF2, cIAPs, LUBAC
and the TAB–TAK and IKK complexes. (C)Stimulation of IL1R or TLRs induces recruitment of MYD88 and the kinases IRAK1 and IRAK4. IRAK4-mediated
phosphorylation of IRAK1 causes dissociation of IRAK1 from the receptor and formation of a secondary complex that contains IRAK1, TRAF6 and pellino and
the TAB–TAK and IKK complexes. (D)Following TCR engagement, activated protein kinase C (PKC) phosphorylates CARMA1. A complex composed of
CARMA1, BCL10, MALT1, TRAF2 and TRAF6 is assembled, which recruits the TAB–TAK and IKK complexes. (E)Binding of bacterial peptidoglycans to
NOD1 or NOD2 results in the assembly of a complex consisting of RIP2, TRAF6, TRAF2, cIAP, XIAP and the TAB–TAK and IKK complexes. (F)TRIM25-
mediated ubiquitylation of RIG-I allows association with MAVS and recruitment of TRAF6, TRAF2 and the TAB–TAK and IKK complexes. (G)DNA double-
strand breaks (DSBs) induced by ionizing radiation are sensed by poly(ADP-ribose) polymerase 1 (PARP1) and ATM. This triggers formation of a nuclear
complex, phosphorylation and sumoylation of NEMO and the export of ATM to the cytoplasm. Here, a complex containing TRAF6, cIAP and the TAB–TAK and
IKK complexes is assembled. (H)DSBs induced by chemotherapeutic agents are sensed as in G, but lead to coupled nuclear export of ATM and NEMO and to the
formation of an XIAP- and ELKS-containing complex which mediates IKK activation. K63-linked ubiquitylation is shown in blue, with linear chains in red. Green
circles marked ‘P’ represent phosphorylation, sumoylation is indicated by purple circles marked ‘S’ and yellow circles in G and H indicate ADP-ribosylation.
PIAS, protein inhibitor of activated STAT protein gamma; IR, ionizing irradiation.

Table 1. Ubiquitin linkages present on components of the TNF-RSC

Linkage type

Modified

component Function References

K11 RIP1 Recruitment platform; degradation and possibly signal termination (Dynek et al., 2010; Gerlach et al., 2011)

K48 RIP1 Degradation and signal termination (Gerlach et al., 2011; Newton et al., 2008)

RIP1 Recruitment platform (Ea et al., 2006; Gerlach et al., 2011; Li et al., 2006;

Newton et al., 2008; Wu et al., 2006)
TRAF2 Recruitment platform (Li et al., 2009; Shi and Kehrl; 2003)

K63

TAK1 Kinase activation (Fan et al., 2010)

RIP1 Recruitment platform; complex stabilisation (Gerlach et al., 2011)M1

NEMO Recruitment platform; kinase activation; complex stabilisation (Gerlach et al., 2011; Ikeda et al., 2011;

Tokunaga et al., 2011; Tokunaga et al., 2009)
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ubiquitylation of the kinase. It has been suggested that
ubiquitylation of TAK1 is required for its full activity and that
TRAF2 is involved in enabling this modification (Fan et al., 2010).

Like TAB2, NEMO can also bind to K63-linked chains and this
binding event promotes IKK activation, again either through
conformational changes induced by ubiquitin binding (Laplantine
et al., 2009; Wu et al., 2006; Yoshikawa et al., 2009), by placing
IKK in a context where it can be phosphorylated by upstream
kinases such as TAK1, MEKK2 (MAPK/ERK kinase kinase 2,
also known as MAP3K2) or MEKK3 (also known as MAP3K3)
(Schmidt et al., 2003; Wang et al., 2001; Yang et al., 2001), or by
inducing the clustering of IKK complexes and thereby favouring
activation by transautophosphorylation (Hayden and Ghosh, 2008).

K63-linked ubiquitylation of NEMO has been reported to occur
in response to a variety of stimuli and to be mediated by different
E3s, including TRAF6 (Gautheron and Courtois, 2010). As
discussed previously, this modification might induce conformational
changes in or clustering of IKK complexes. However, it is also
possible that other linkage types are more important both as a
binding platform for, and as a modification of, NEMO (see below).

K63-linked ubiquitin chains as recruitment platforms in
other signalling pathways
The roles of K63-linked chains in the recruitment and activation of
kinase complexes are also relevant in signalling systems other than
TNF-induced NF-B activation. However, the components
modified with this chain type vary between signalling pathways.
In IL1R and TLR signalling the ubiquitylated proteins required for

recruitment of the TAB–TAK- and IKK-complexes are TRAF6
and IRAK1, respectively (Conze et al., 2008; Kishida et al., 2005;
Windheim et al., 2008), and the relevant E3 might be TRAF6 in
both cases (Conze et al., 2008; Deng et al., 2000). Alternatively,
IRAK ubiquitylation could be mediated by pellino proteins
following their phosphorylation and activation by IRAK1 or IRAK4
(Ordureau et al., 2008).

Following TCR stimulation, BCL10 and MALT1 are K63-
ubiquitylated (Oeckinghaus et al., 2007; Wu and Ashwell, 2008),
whereas in the context of nucleotide-binding oligomerization domain
2 (NOD2) signalling, NOD2 itself and RIP2 have been shown to be
modified (Abbott et al., 2007; Bertrand et al., 2009; Gautheron and
Courtois, 2010; Hasegawa et al., 2008; Yang et al., 2007). In response
to genotoxic stress, TRAF6, ELKS (protein rich in glutamate, leucine,
lysine, and serine) and RIP1 have been suggested to be the targets
of K63-linked ubiquitylation (Hinz et al., 2010; Wu et al., 2010;
Yang et al., 2011). In the RIG-I pathway, TRIM25-mediated
ubiquitylation facilitates the association of RIG-I with MAVS. In the
resulting complex, TRAF2 and/or TRAF6, and potentially cIAP1
and/or cIAP2, could be both generators and acceptors of ubiquitin
chains (Damgaard and Gyrd-Hansen, 2011; Gack et al., 2007;
Oshiumi et al., 2009). Whereas recruitment of preassembled kinase
complexes is an important function of K63-linked chains, these
post-translational modifications also serve as binding platforms for
other regulators of NF-B signalling, like the E3 complex LUBAC,
which is required for full activation of NF-B in response to TNF
(Gerlach et al., 2011; Haas et al., 2009).

K63-linked chains recruit negative regulators of NF-B
The final group of proteins that are recruited to the IKK-activating
complex downstream of TNFR1, and possibly other receptors, in
a ubiquitin-dependent manner are negative regulators of NF-B
activation. These include A20 binding inhibitor of NF-B (ABIN1)
and optineurin (Mauro et al., 2006; Wagner et al., 2008; Zhu et al.,
2007). Both proteins, like NEMO, contain a ubiquitin binding in
ABIN and NEMO (UBAN) motif that allows recruitment to
ubiquitylated proteins (Bloor et al., 2008; Wagner et al., 2008; Zhu
et al., 2007). However, owing to the ubiquitin-binding properties
of the UBAN domain (i.e. the preferential binding to M1-linked
chains), other linkage types might be more important for the
recruitment of optineurin and ABIN1 (see below). Furthermore, it
has been shown that IL1- but not TNF-induced IKK-activation is
blocked by the absence of the ubiquitin-conjugating enzyme
UBCH13 (also known as UBE2N) (Yamamoto et al., 2006), an E2
that specifically generates K63 linkages (Deng et al., 2000;
Hofmann and Pickart, 1999), and by replacement of wild-type
ubiquitin with a K63R ubiquitin mutant that prevents the formation
of K63-linked chains (Xu et al., 2009). This suggests that the
polyubiquitylation involved in TNF signalling is not restricted to
K63-linked chains, and that linear and K63-linked ubiquitylation
and potentially other atypical linkages fulfil distinct and non-
redundant functions. This view is corroborated by the recent
identification of a role for M1- and K11-linked chains in the
context of different stimuli (Verhelst et al., 2011).

Linear ubiquitylation in context of NF-B
signalling
Linear ubiquitin linkages are generated when the N-terminal 
-amino group on M1, rather than the -amino group of a lysine
residue, is used as the acceptor site for additional ubiquitin
molecules. Hence, the M1-linkage generates a peptide bond,
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whereas all other linkage types result in the formation of isopeptide
bonds. Nevertheless, M1-linked chains resemble K63-linked chains
in the overall structure, as both chain types adopt an apparently
similar extended conformation (Komander et al., 2009b). Although
these structural similarities suggest a certain degree of redundancy
between M1- and K63-linked chains, the conformation of M1-
linked chains is more restrained, and it has been shown that some
UBDs bind exclusively, or at least with much higher affinity, to
one or the other linkage type (Kulathu et al., 2009; Lo et al., 2009;
Rahighi et al., 2009).

Currently, the only E3 known to promote generation of M1
linkages is LUBAC (Kirisako et al., 2006; Verhelst et al., 2011).
LUBAC is an E3 complex that consists of HOIL1 (for heme-
oxidized IRP2 ubiquitin ligase-1), HOIP (for HOIL1-interacting
protein) and SHARPIN (for shank-associated RH domain
interactor) (Gerlach et al., 2011; Ikeda et al., 2011; Kirisako et al.,
2006; Tokunaga et al., 2011). When in complex with SHARPIN,
HOIL1 or both in vitro, HOIP exclusively generates linear ubiquitin
chains independently of the E2 supplied. M1-linkages were initially
shown to mediate proteasomal degradation of a model substrate
(Kirisako et al., 2006). This observation was supported by studies
that showed that fusion of a non-cleavable linear tetra-ubiquitin
chain to a target protein can lead to the degradation of this protein
(Prakash et al., 2009) and that linear chains can bind the same
proteasomal receptors as K48-linked chains (Thrower et al., 2000).
In the context of the RIG-I pathway, LUBAC activity has been
linked to the degradation of TRIM25 and hence to suppression of
type I interferon induction (Inn et al., 2011).

Linear chains positively regulate NF-B signalling
A positive regulatory role for linear chains in signalling first
became apparent when it was shown that TNF-induced NF-B
activation is impaired when the expression of one or two of the
LUBAC components are suppressed by RNA interference (Haas et
al., 2009; Tokunaga et al., 2009) and when LUBAC was identified
as a functional component of the native TNF-RSC (Haas et al.,
2009; Walczak, 2011). Recruitment of LUBAC to the TNF-RSC
depends on HOIP (Gerlach et al., 2011) and the E3 ligase activity
of cIAP1 and/or cIAP2, which suggests that LUBAC, through
HOIP, binds to cIAP-generated ubiquitin chains on a component
of the TNF-RSC (Haas et al., 2009). It is probable that further
UBDs present in SHARPIN and HOIL1 enable more stable
interaction of LUBAC with the TNF-RSC once it has been
recruited. Since the initial discovery of a role for LUBAC in
signalling pathways, additional studies have revealed that its
function is not restricted to signalling downstream of TNFR1 and
IL1R but that it also regulates CD40-, lipopolysaccharide (LPS)-
and lymphotoxin- receptor (LTR)-induced signalling (Gerlach
et al., 2011; Ikeda et al., 2011; Tokunaga et al., 2011) and the
response to genotoxic stress (Niu et al., 2011).

Linear chains in signal activation
In most, if not all, of the pathways involving LUBAC, this E3
ligase seems to act by a di- or possibly a tripartite mechanism.
Similar to K63-linked chains, linear polyubiquitin serves as a
recruitment platform for NEMO, thereby promoting IKK activation.
However, binding of NEMO to K63- and linear chains differs both
quantitatively and qualitatively (Lo et al., 2009; Rahighi et al.,
2009). Mutations in NEMO that affect its ability to bind linear
ubiquitin have been shown to lead to decreased NF-B activation
(Hadian et al., 2011; Rahighi et al., 2009). Mutations in the UBAN

domain were also identified in patients suffering from X-linked
ectodermal dysplasia and immunodeficiency, indicating that
alterations that interfere with the ability of NEMO to bind linear
ubiquitin not only inhibit the canonical pathway of NF-B
activation on a molecular level but can also have detrimental
effects for the whole organism (Rahighi et al., 2009).

The modification of the regulatory subunit of the IKK complex
at K285 and K309 with linear ubiquitin chains (Tokunaga et al.,
2009) represents the second leg of the mechanism by which
LUBAC could enhance NF-B signalling. In vitro assays have
indicated that NEMO is a direct target of LUBAC-mediated
ubiquitylation (Gerlach et al., 2011; Tokunaga et al., 2009).
Furthermore, the reconstitution of NEMO-deficient cells with a
K285R and K309R double-mutant, in which the ubiquitylation
sites are mutated, is not able to rescue the induction of NF-B
signalling by LUBAC or IL1 (Tokunaga et al., 2009). Although the
precise role of the attachment of M1-linked chains to NEMO
remains unclear, this modification might cause conformational
changes or clustering of IKK units, thereby favouring their
activation.

In the context of the TNF-RSC, a third aspect of positive
regulation by linear chains has been identified. The activity of
LUBAC, probably at least partially by modification of RIP1 and
NEMO (and by providing a binding site for the latter), leads to an
overall stabilisation of the receptor complex (Haas et al., 2009). By
retaining RIP1, TRAF2, cIAP and TAK1 in the complex, LUBAC
extends the half-life of the TNF-RSC, thereby allowing enhanced
IKK activation. This effect of linear ubiquitylation is probably also
a result of linear chains being more refractory to cleavage by most
of the deubiquitylating enzymes (DUBs) that are present in the
receptor complex (Komander et al., 2009b).

Linear chains in signal termination
In addition to positively regulating NF-B signalling, linear chains
might also be required for efficient termination of the NF-B
response, as they serve as recruitment platforms for the UBAN-
containing proteins ABIN1 and optineurin. It has been reported
that optineurin interferes with TNF-induced NF-B activation by
competing with NEMO for binding to ubiquitylated RIP1 (Zhu et
al., 2007) and by assisting the DUB protein cylindromatosis
(CYLD) in its negative regulatory role in TNF signalling (see
Harhaj and Dixit, 2011). A similar mode of action has been
suggested for ABIN1 which mediates the interaction of the DUB
A20 with ubiquitylated NEMO, thereby negatively affecting
activation of IKKs (Harhaj and Dixit, 2011).

Further studies will be required to clarify which aspects of the
mechanism involving linear ubiquitin chains – namely, (1) provision
of binding platforms by ubiquitylation of RIP1, NEMO and possibly
other factors, (2) kinase activation by conformational changes
induced by NEMO ubiquitylation, and (3) stabilisation of IKK-
activating complexes – are relevant in the context of a particular
stimulus. In addition, it will be interesting to investigate whether
other E3s are capable of forming M1-linkages in the context of
native signalling complexes.

Atypical polyubiquitin chains and
monoubiquitylation
There is accumulating evidence that other polyubiquitylation events,
and monoubiquitylation, are also important for efficient and
controlled NF-B activation in different contexts. It was reported
recently, that, following TNF stimulation, cIAP1, together with
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UBCH5 (also known as UBE2D1), generates K11-linked chains on
RIP1 and that NEMO can bind to K11 and K63 linkages with
similar affinities, which suggests a role for K11 linkages in promoting
NF-B activation (Dynek et al., 2010). However, considering that
K11-linked ubiquitin chains were previously characterised as a
degradative signal with roles in cell cycle regulation (Matsumoto 
et al., 2010), a similar effect on RIP1 and, hence, a negative regulatory
role in TNF-signalling could also be envisioned.

Another linkage type that has been reported to influence protein
complex assembly in NF-B signalling is K33-linked ubiquitin
chain formation, which has been suggested to negatively regulate
TCR signalling by targeting TCR and thereby preventing its
association with, and phosphorylation by, the downstream kinase
zeta-chain associated protein kinase 70 kDa (ZAP70) (Huang 
et al., 2010). Furthermore, there are reports on the modification of
NEMO with different ubiquitin linkage types. This includes K27-
linked polyubiquitylation following TLR stimulation (Arimoto 
et al., 2010), in which TRIM23 is the relevant E3, and the cIAP-
mediated attachment of K6 linkages, which was described in the
context of TNFR1 signalling (Tang et al., 2003). It is suspected
that the role of at least some of the atypical ubiquitin linkages in
activating and regulating signalling pathways has so far been
underestimated. However, further studies are required to validate
this hypothesis and to identify which linkage types are important
in which context. Similarly, enzymes involved in generating these
linkages and their targets will need to be characterised in more
detail.

The assembly of polyubiquitin is not always necessary to mediate
signalling effects, as modification with single ubiquitin moieties at
one (monoubiquitylation) or several sites (multi-
monoubiquitylation) can be sufficient as a signal (Hoeller et al.,
2006). Indeed, it has been reported that constitutive processing of
p105 to p50 involves monoubiquitylation of p105 (Perkins, 2006).
In addition, monoubiquitylation of phosphorylated and
SUMOylated NEMO in the nucleus, potentially by cIAP1, leads to
its export to the cytoplasm, which represents a crucial step in
genotoxic-stress-induced NF-B activation (Hadian and
Krappmann, 2011).

The role of DUBs in NF-B signalling
In addition to the enzymes that mediate post-translational
modifications, proteins that catalyse the reversal of these processes
are equally important for the system to work in a stimulus-
dependent and regulated manner. In the case of ubiquitylation, this
is carried out by a set of cysteine- or metallo-proteases (Harhaj and
Dixit, 2011; Komander et al., 2009a), the so-called DUBs. Like
E3s, DUBs can exhibit specificity for certain linkage types, which
can be mediated by the presence of UBDs in the DUB itself, by
ubiquitin-binding adaptor proteins or by selectivity of the catalytic
core (Harhaj and Dixit, 2011; Komander, 2010; Komander and
Barford, 2008; Komander et al., 2008).

Several DUBs have been implicated in NF-B signalling. This
includes the A20 ubiquitin-editing complex [components of this
complex as well as their specific activities are given elsewhere
(Harhaj and Dixit, 2011)], CYLD, cezanne (also known as
OTUD7B), ubiquitin-specific peptidase 11 (USP11), USP15 and
USP21, which all serve as negative regulators of the canonical 
NF-B pathway (Bremm et al., 2010; Brummelkamp et al., 2003;
Heyninck et al., 1999; Jaattela et al., 1996; Kovalenko et al., 2003;
Schweitzer et al., 2007; Sun et al., 2010; Trompouki et al., 2003;
Xu et al., 2010).

The DUBs A20, CYLD, cezanne and USP21 work on upstream
complexes by removing non-proteolytic ubiquitylation from
components such as RIP1, TRAF6, RIP2, NOD2 and MALT1
(Harhaj and Dixit, 2011). These DUBs differ in their linkage
specificities (Wertz et al., 2004) and act in a temporally distinct
manner, but show overlapping target specificities. For instance, all
four DUBs have been shown to remove ubiquitin chains from
RIP1 in the context of TNF signalling. The reason for this overlap
in target specificity between the different DUBs has not been
clarified. However, considering that mass spectrometric analysis
of the TNF-RSC revealed the presence of K48-, K63-, K11- and
M1-linked ubiquitin on TNF-RSC-associated RIP1 (Gerlach et al.,
2011), it is an intriguing possibility that different ubiquitin linkages,
attached to specific sites on RIP1, fulfil distinct functions and that
their individual removal is mediated by specialised DUBs.

It has been reported that the two other DUBs, USP11 and USP15
negatively regulate NF-B activation by removing K48-linked
chains from IB, which might serve as a fine-tuning mechanism
in NF-B activation (Harhaj and Dixit, 2011). Whereas DUBs are
as important for the regulation of NF-B signalling as the enzymes
that generate ubiquitin chains, our understanding of the specificities
and mechanisms of actions of these enzymes is far from complete.
Further studies are required to elucidate the complex interplay
between different ubiquitin linkages, and to clarify the mechanisms
leading to their stimulus-dependent generation on and removal
from individual signalling complex components by specific
enzymes.

Conclusions and perspectives
Ubiquitylation is a major principle in the regulation of NF-B
activation. The functional outcome of modification with ubiquitin
chains does not only depend on the target protein but also on the
residues involved in forming the inter-ubiquitin linkage. K48-
linked ubiquitin chains mediate both positive and negative
regulation of NF-B signalling by targeting both agonists and
antagonists of this signalling cascade for proteasomal degradation.
Non-proteolytic chain types, such as K63- and M1-linked chains,
exert their effects by providing binding platforms for mediators of
NF-B activation, such as the IKK- and TAK–TAB-complexes,
and for protein complexes involved in the termination of the signal,
such as DUBs and their adaptor proteins. The roles of atypical
chain types are less well understood and further studies are required
to characterise the generation of these chains in the context of 
NF-B signalling, to identify target proteins and to analyse
functional outcomes of modification with certain linkage types.

NF-B activation is crucial for raising and maintaining an
immune response, but also for the appropriate termination of such
a response (Ben-Neriah and Karin, 2011). Owing to this role as a
central regulator of the immune system, aberrant activation of 
NF-B is associated with many acute and chronic inflammatory
diseases (Wullaert et al., 2011), and other disorders including
cancer have also been shown to be caused or aggravated by
dysregulated NF-B signalling (Ben-Neriah and Karin, 2011;
Kirkin and Dikic, 2011). Mutations in components of the NF-B
signal transduction machinery (e.g. NEMO) or in proteins mediating
the ubiquitin-dependent regulation of this pathway (e.g. CYLD)
(Courtois and Gilmore, 2006; Courtois and Israel, 2011; Shifera,
2010) have been associated with a variety of diseases. This makes
the NF-B pathway an attractive target for therapeutic intervention
in a number of diseases. However, because of its role in a multitude
of processes required for homeostasis and survival, serious side
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effects have to be reckoned with. Therapeutic approaches that
target more specific regulatory events within the pathway might
therefore be a promising alternative. Disrupting the attachment of
a particular type of ubiquitin chain to a specific site in a defined
target protein might be sufficient to interfere with certain outcomes
of NF-B signalling, while not affecting others. However, the
design of this kind of specific therapy requires a complete
knowledge of the events taking place during activation and
termination of this pathway and of their direct and indirect effects.
Further studies on the specific roles of the different types of
ubiquitin linkages, as well as their interplay with other post-
translational modifications, are required to truly understand the
fascinating mechanisms that regulate the activity of NF-B.
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