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Summary
Extracellular signal-regulated kinase 1/2 (ERK1/2) signalling is a key pathway in cardiomyocyte hypertrophy and survival in response to
many different stress stimuli. We have previously characterized melusin as a muscle-specific chaperone protein capable of ERK1/2
signalling activation in the heart. Here, we show that in the heart, melusin forms a supramolecular complex with the proto-oncogene

c-Raf, MEK1/2 (also known as MAPKK1/2) and ERK1/2 and that melusin-bound mitogen-activated protein kinases (MAPKs) are
activated by pressure overload. Moreover, we demonstrate that both focal adhesion kinase (FAK) and IQ motif-containing GTPase
activating protein 1 (IQGAP1), a scaffold protein for the ERK1/2 signalling cascade, are part of the melusin complex and are required
for ERK1/2 activation in response to pressure overload. Finally, analysis of isolated neonatal cardiomyocytes indicates that both FAK

and IQGAP1 regulate melusin-dependent cardiomyocyte hypertrophy and survival through ERK1/2 activation.
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Introduction
Melusin is a muscle-specific protein belonging to the cysteine-

and histidine-rich domain (CHORD)-containing protein family

(Shirasu et al., 1999). Melusin, in fact contains two CHORD sites

in its N-terminal region, and a CS (CHORD-containing protein

and Sgt1) domain in its C-terminal moiety, a domain frequently

found in Hsp90 co-chaperones. We recently demonstrated that

melusin is able to bind Hsp90 chaperone protein and possesses

chaperone activity per se (Sbroggiò et al., 2008). Chaperones, as

well as assisting protein folding and thus preventing aggregation

and degradation, play an essential role in regulating signal

transduction pathways assisting conformational changes required

for protein activation (Pearl et al., 2008).

We have previously shown that melusin expression in the heart is

upregulated by mechanical stress induced by surgical banding of the

aorta (Sbroggiò et al., 2008), an intervention mimicking pathological

condition of pressure overload such as aortic stenosis and

hypertension. Forced melusin overexpression in the heart of

transgenic mice leads to cardiomyocyte hypertrophy and protects

from pressure overload-induced apoptosis, allowing the development

of sustained compensatory cardiac hypertrophy and preventing the

development of heart failure in conditions of long-standing pressure

overload (De Acetis et al., 2005). Melusin overexpression in the

mouse heart is able to strongly enhance ERK1/2 phosphorylation

both in basal conditions and in response to pressure overload stimuli

and this signalling pathway is required for melusin-induced

cardiomyocyte hypertrophy (De Acetis et al., 2005).

Here, we demonstrate that melusin forms a complex with the

mitogen-activated protein kinases (MAPKs), the proto-oncoprotein

c-Raf, MEK1/2 (also known as MAPKK1/2) and extracellular signal-

regulated kinase 1/2 (ERK1/2), the focal adhesion kinase (FAK) and

IQ motif-containing GTPase activating protein 1 (IQGAP1;

UniProtKB Q9JKF1), a MAPK scaffold protein. Moreover, using

pharmacological kinase inhibitors and null mice, we show that FAK

and IQGAP1 are required for melusin-dependent MAPK activation in

response to aortic banding, and play an important role in melusin-
induced cardiomyocyte hypertrophy and survival.

Results
Melusin enhances MAPK phosphorylation and interacts
with Raf, MEK1/2 and ERK1/2

As shown in Fig. 1A, and as previously demonstrated, melusin

overexpression in the heart of transgenic mice (melusin-TG)
enhances ERK phosphorylation, both in basal conditions and in

response to pressure overload induced by aortic banding (AB)

(De Acetis et al., 2005). This result led us to investigate the

possibility that melusin interacts with MAP kinases. Melusin was

immunoprecipitated from hearts of melusin-TG mice that were

subjected to AB or sham operation (basal conditions), and

analysed by western blotting, which revealed the presence of

c-Raf, MEK1/2 and ERK1/2 in the immunocomplex (Fig. 1B). In

agreement with our previous results (Sbroggiò et al., 2008), we

also detected the presence of Hsp90 (Fig. 1B). Interestingly, we

found that the amounts of melusin-associated MEK1/2 and
Hsp90 significantly increase in response to AB (Fig. 1B). The

specificity of the co-precipitation is demonstrated by the fact that

b-Raf, which is also expressed in the heart, was not detected in

association with melusin (Fig. 1B).

Melusin-bound MAPKs are activated by AB

To investigate if melusin-bound MAPKs are involved in signal

transduction triggered by AB, we subjected the immunoprecipitated
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samples to a kinase assay using recombinant ETS domain-

containing protein ELK1 as a substrate for ERK1/2. Western blot

analysis using anti-phosphorylated ELK1 antibodies demonstrated

that melusin-bound ERK1/2 are activated following AB (Fig. 1C).

Interestingly, the specific MEK1/2 inhibitors PD89059 (1 mM) and

U0126 (0.1 mM) were able to abolish the AB-dependent ERK1/2

activation, indicating the involvement of MEK1/2 as an upstream

kinase of ERK1/2 in this pathway (Fig. 1D and supplementary

material Fig. S1).

Identification of melusin binding partners

To investigate the mechanisms involved in the activation of melusin-

bound ERK1/2, we further analyzed melusin co-immunoprecipitated

material using both western blotting with phosphotyrosine

antibodies and mass spectrometry of Coomassie-Blue-stained

bands to identify possible additional signal transduction molecules.

As shown in Fig. 2A, a prominent 125 kDa band was clearly stained

when the melusin co-immunoprecipitated material was probed with

anti-phosphotyrosine antibodies. Using a panel of antibodies to

signalling molecules we identified this band as FAK, a well-known

kinase acting downstream of integrins and involved in ERK1/2

pathway activation (Fig. 2B). The amount of FAK associated with

melusin was not altered by AB (Fig. 2B).

When melusin co-immunoprecipitated proteins were analyzed

by Coomassie Blue staining, four major bands were detected with

molecular masses of 190 kDa, 84 kDa, 71 kDa and 52 kDa

(Fig. 2C). Matrix-assisted laser desoption/ionisation-time of flight

(MALDI-TOF) and liquid chromatography-nanospray-iontrap

tandem (LC-nanospray-IT) analysis identified the co-precipitated

band at 190 kDa as IQGAP1. IQGAP1 is a multidomain protein

that acts as a scaffold protein for the MAPK pathway by binding to

b-Raf (Ren et al., 2007), MEK1/2 and ERK1/2 (Roy et al., 2005),

and thus represents a potentially interesting molecule in the

complex. The other three additional bands are currently under

investigation and are not related to ERK signalling. MAPKs and

FAK were not detected in this assay, probably because of low

sensitivity of the Coomassie Blue staining. The amount of

IQGAP1 associated with melusin did not change after AB and

the interaction with this molecule was specific because KSR1 and

paxillin, two other proteins reported to act as scaffold for MAPKs,

were not present in the co-precipitated material (Fig. 2D).

IQGAP1 and FAK also co-immunoprecipitate with melusin from

wild-type heart, further strengthening the physiological relevance

of the interaction (Fig. 2E).

Because IQGAP1 has been originally described to bind several

small GTPases (Bashour et al., 1997; Awasthi et al., 2010), we

Fig. 1. Melusin-bound MAPKs are activated

by aortic banding. (A) Western blot analysis of

phosphorylated and total ERK1/2 in hearts from

wild-type (WT) and melusin-overexpressing

(MelTG) mice in basal condition (SH; sham

operated) and after 10 minutes of aortic banding

(AB). The graph shows densitometric

quantification of western blot bands (n56 mice/

group). (B) Immunoprecipitation of melusin from

MelTG hearts after AB for 10 minutes or sham

operation. Melusin-null hearts were used as

negative controls. Co-immunoprecipitated

proteins were visualized by western blot analysis.

Input: heart total protein extract loaded on the

same western blot as reference for molecular

masses. Quantification of the co-precipitated

proteins is shown in the graph (n510/group).

(C) ERK1/2 kinase assays were performed using

GST–ELK1 as a substrate on melusin

immunocomplexes obtained from MelTG hearts

after AB for 10 minutes or sham operation.

ERK1/2 kinase activity was revealed by western

blot analysis with anti-phosphorylated ELK1

(Ser338; n56/group). (D) ERK1/2 kinase assay

performed on melusin immunocomplex in

absence or presence of MEK1/2 inhibitor

PD89059 (1 mM; n53/group). *P,0.05;

***P,0.001; IP, immunoprecipitation;

KA, kinase assay.
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probed melusin immunoprecipitates with antibodies against Rac1,

Cdc42, Rap1 and Ras. As shown in supplementary material Fig. S2,

none of these proteins was detected in the complex.

FAK activity is required for ERK1/2 activation in melusin

complexes after AB

Previous works have described a role of FAK in ERK1/2

activation in several cell types (Guo and Giancotti, 2004; Mitra et

al., 2005; Vadali et al., 2007). We, therefore, investigated the

possibility that FAK has a role in melusin-associated ERK1/2

family MAPK activation in response to AB. As shown in Fig. 3A

and supplementary material Fig. S1, the FAK inhibitor PF573228

(0.1 mM) and inhibitor 14 (1 mM) abolished ELK1

phosphorylation in the ERK1/2 kinase assay, demonstrating

that melusin-associated ERK1/2 activation in response to AB

depends on FAK activity.

In agreement with these results, FAK kinase assays performed

on melusin immunocomplexes demonstrated that melusin-bound

FAK is activated by AB (Fig. 3B). In addition, direct

immunoprecipitation of FAK from heart extracts showed an

increased FAK kinase activity in response to AB (Fig. 3C), in

agreement with previous reports (Franchini et al., 2000).

IQGAP1 contributes to ERK1/2 activation in melusin

complexes after aortic banding.

Because IQGAP1 is a multidomain protein that acts as a scaffold

for the MAPK pathway by binding to b-Raf (Ren et al., 2007),

MEK1/2 and ERK1/2 (Roy et al., 2005), we investigated in

greater detail the possible role of IQGAP1 in melusin induced-

ERK1/2 activation. To this purpose we took advantage of

Iqgap1-null mice (Li et al., 2000; Bahou et al., 2004) and of

double transgenic mice overexpressing melusin in the heart in the

absence of IQGAP1 (melusin-TG/Iqgap1-null). Interestingly, we

noticed that absence of IQGAP1 abolished melusin-induced

ERK1/2 over-phophorylation both in basal conditions and in

response of aortic banding (supplementary material Fig. S3A).

Fig. 2. Melusin interacts with FAK and the MAPK scaffold

IQGAP1. (A) Western blot analysis of tyrosine phosphorylated proteins

in melusin immunocomplexes from MelTG hearts. (B) FAK co-

immunoprecipitation revealed by western blots of melusin

immunocomplexes isolated from MelTG hearts after AB for 10 minutes

or sham operation (n54 mice/group). Melusin-null hearts were used as

negative controls. (C) Coomassie Blue staining of melusin

immunoprecipitate from MelTG hearts. The indicated bands were cut

out and subjected to mass spectrometry analysis. (D) Western blot of

IQGAP1, KSR-1 and paxillin in melusin immunocomplexes isolated

from MelTG hearts after AB for 10 minutes or sham operation (n54

mice/group). (E) Western blot of IQGAP1 and FAK in melusin

immunoprecipitate from wild-type (WT) hearts after AB for 10 minutes

or sham operation (n54/group). Melusin-null hearts were used as

negative controls. Input: heart total protein extract.
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This finding led us to investigate whether IQGAP1 is required

for melusin–MAPK interaction. Co-immunoprecipitation of

melusin from double transgenic melusin-TG/Iqgap1-null hearts,

indicated that IQGAP1 is not required for melusin binding to

c-Raf, MEK1/2 or ERK1/2 (supplementary material Fig. S3B).

However, melusin is not required for IQGAP1 binding to

ERK1/2 family MAPKs, as shown by pull-down experiments

with IQGAP1 fragments (supplementary material Fig. S3C) from

wild-type and melusin-null hearts (supplementary material Fig.

S3D). Moreover, analysis of melusin and IQGAP1 binding

indicated a direct interaction through the CS domain of melusin

and the IQ domain of IQGAP1 (supplementary material Fig.

S3E–H). Thus, melusin and IQGAP1 can independently bind

ERK1/2 family MAPKs and can directly bind to each other.

To investigate the role of IQGAP1 in melusin-bound ERK1/2

activation in response to AB, we immunoprecipitated melusin

from melusin-TG and melusin-TG/Iqgap1-null mice hearts in

basal conditions and upon AB. We then subjected the

immunoprecipitated samples to an ERK1/2 kinase assay using

recombinant ELK1 as a substrate. As shown in Fig. 3D, the

absence of IQGAP1 clearly reduced ERK1/2 activity,

demonstrating that ERK1/2 activation in response to AB

depends on the presence of IQGAP1.

Melusin overexpression enhances ERK1/2

phosphorylation in cultured neonatal cardiomyocytes

through FAK and IQGAP1

Analysis of neonatal cardiomyocytes from melusin-TG mice

demonstrated that melusin overexpression induces significant

upregulation of ERK1/2 phosphorylation (Fig. 4A). We therefore

investigated the possibility that FAK activity is required for the

melusin-dependent MAPK phosphorylation in cardiomyocytes.

Wild-type and melusin-TG primary mouse cardiomyocytes were

treated with the FAK inhibitor PF573228 (3 mM) for 30 minutes,

and total protein extracts were then subjected to western blot

analysis with anti-phosphorylated ERK1/2. As shown in Fig. 4B,

both in wild-type and melusin-TG cardiomyocytes, FAK

inhibition reduced ERK1/2 phosphorylation to the same degree.

At the concentration used, PF573228 did not inhibit MEK1/2

activity as tested on MDA-MB-231 cells in which the ERK1/2

pathway is activated by constitutively active Ras (not shown).

This result indicates that increased ERK1/2 phosphorylation due

to melusin overexpression is dependent on FAK activity. The

efficacy of the inhibition was further confirmed by analyzing the

phosphorylation of tyrosine (Y) 397, a well-known

autophosphorylated residue on FAK (Fig. 4B).

Considering that MEK1/2 is the only known direct activator of

ERK1/2, our findings suggested that FAK is upstream of MEK1/

2. To investigate this we studied the effect of the FAK inhibitor

on MEK1/2 phosphorylation. As shown in Fig. 4B, melusin

overexpression increased MEK1/2 phosphorylation to a

comparable extent as that observed with ERK1/2. Notably, this

increased phosphorylation was abolished when cardiomyocytes

were treated with the FAK inhibitor PF573228 (Fig. 4B),

pointing to a causal relationship between FAK and MEK1/2.

To investigate the role of IQGAP1 in melusin-dependent ERK

phosphorylation we analyzed primary cardiomyocytes from wild-

type, melusin-TG and melusin-TG/Iqgap1-null mice. As shown

in Fig. 4C the enhancement in ERK1/2 phosphorylation due to

melusin overexpression is dependent on IQGAP1.

Fig. 3. Melusin-bound ERK1/2 activation requires FAK and IQGAP1. (A) ERK1/2 kinase assays performed on melusin immunocomplexes obtained from

MelTG hearts after AB for 10 minutes or sham operation, in the absence or presence of the FAK inhibitor PF573228 (0.1 mM). ERK1/2 kinase activity was

revealed by western blot analysis with anti-phosphorylated ELK1 (Ser338; n54/group). (B) FAK kinase assays performed on melusin immunocomplex obtained

from MelTG hearts after AB for 10 minutes or sham operation. FAK kinase activity was assayed using GST–FAK378–406 as a substrate, and revealed by western

blot analysis with anti-phosphorylated-FAK (Tyr397; n53/group). Melusin-null hearts were used as negative controls. (C) FAK kinase activity measured on FAK

immunocomplexes obtained from wild-type (WT) hearts after AB for 10 minutes or sham operation. FAK kinase activity was revealed by western blotting with

anti-phosphorylated-FAK (Tyr397; n54/group). (D) ERK1/2 kinase assay performed on melusin immunocomplex obtained from MelTG and MelTG/Iqgap1-null

(MelTG/IQ2/2) hearts after AB for 10 minutes or sham operation. ERK1/2 kinase activity was revealed by western blot analysis with anti-phosphorylated ELK1

(Ser338; n54/group). Melusin-null hearts were used as negative controls.
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FAK and IQGAP1 are required for melusin-induced

cardiomyocyte hypertrophy and survival

We previously demonstrated that melusin overexpression in

cardiomyocytes in vivo induces hypertrophy and protects against

apoptosis after long-standing AB (De Acetis et al., 2005).

Moreover, because the ERK1/2 pathway has been shown to be

involved in melusin-dependent cardiomyocyte hypertrophy (De

Acetis et al., 2005), we investigated the role of FAK and IQGAP1

in these phenomena using FAK inhibition and taking advantage

of melusin-TG/Iqgap1-null mice. In accordance with our

previous results, melusin-TG neonatal cardiomyocytes were

significantly larger than wild-type cells (Fig. 5A). We also

demonstrated that treatment of melusin-TG primary

cardiomyocytes with the FAK inhibitor PF573228 totally

abolished the melusin-dependent hypertrophy (Fig. 5A). Similar

to previous results (De Acetis et al., 2005), the MEK1/2 inhibitor

PD89059 also reversed the effect of melusin overexpression on

cell area (Fig. 5A). To exclude an unspecific effect of the FAK

inhibitor, we knocked down FAK in cardiomyocytes using a

lentivirus carrying a short hairpin RNA (shRNA) against FAK.

As shown in Fig. 5B, FAK expression was downregulated to 20%

of the level of control-infected cells, as quantified by

densitometry of the western blot bands. FAK knock-down in

melusin-TG cardiomyocytes reduced cell areas to the level of

Fig. 4. Melusin enhances ERK1/2 phosphorylation through FAK and IQGAP1. (A) Western blot analysis of phosphorylated and total ERK1/2 in neonatal

cardiomyocytes obtained from wild-type and MelTG mice. The graph shows the densitometric quantification of western blot bands (n55/group).

(B) Phosphorylation and total protein levels of MEK1/2, ERK1/2 and FAK measured by western blotting on wild-type and MelTG cardiomyocytes untreated or

treated with 3 mM PF573228. Anti-phosphorylated FAK (Tyr397), anti-phosphorylated MEK1/2 (Ser217/Ser221) and anti-phosphorylated ERK1/2 (Thr202/

Tyr204) were used. Densitometric quantification of western blot bands is shown in the graph (n54/group). (C) Western blot analysis of phosphorylated and total

ERK1/2 on neonatal cardiomyocytes obtained from wild-type, MelTG and MelTG/Iqgap1-null (MelTg/IQ2/2) mice. The graph shows the densitometric

quantification of western blot bands (n54/group). *P,0.05; **P,0.01; ***P,0.001.
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wild-type cardiomyocytes (Fig. 5C), confirming the results

obtained with the pharmacological inhibition of FAK.

Moreover, primary neonatal cardiomyocytes obtained from

melusin-TG/Iqgap1-null mice had a significantly reduced cell

area with respect to melusin-TG cardiomyocytes and comparable

with wild-type cells (Fig. 5D). Notably, neonatal cardiomyocytes

isolated from Iqgap1-null hearts had a cell area comparable with

that of wild-type cells (supplementary material Fig. S4A).

These results demonstrate that both FAK and IQGAP1 are

required for melusin-dependent hypertrophic effects on

cardiomyocytes. We thus decided to investigate the role of

FAK and IQGAP1 on melusin-dependent protection from

apoptosis (De Acetis et al., 2005). To this end wild-type and

melusin-TG neonatal cardiomyocytes were treated with H2O2

and apoptotic cells were detected with TUNEL assays. As shown

in Fig. 5E, melusin-TG cardiomyocytes showed a significantly

reduced number of apoptotic cells when treated with H2O2

compared with wild-type cardiomyocytes. Interestingly, both the

FAK inhibitor PF57322 and the MEK1/2 inhibitor PD89059 were

equally able to abolish the protective effect (Fig. 5E).

Furthermore, FAK knock-down abolished the melusin-mediated

protection from apoptosis, closely replicating the effects of FAK

pharmacological inhibition (Fig. 5F). Moreover, melusin-TG/

Iqgap1-null neonatal mouse cardiomyocytes had a significantly

higher mortality rate than melusin-TG cardiomyocytes, when

treated with H2O2 (Fig. 5G). The absence of IQGAP1 in wild-

type cardiomyocytes also resulted in increased apoptotic death in

response to oxidative stress (supplementary material Fig. S4B)

Fig. 5. FAK and IQGAP1 are required for melusin-induced cardiomyocyte hypertrophy and survival. (A) The effect of the FAK inhibitor PF573228 and

the MEK1/2 inhibitor PD89059 on cardiomyocyte surface areas, measured on at least 100 a-actinin-positive cells for each group (five cultures/group).

(B) Representative western blots of FAK protein levels in cardiomyocytes infected with lentivirus encoding Fak shRNA or control viruses. Vinculin was used as a

control for loading and RNA interference specificity. (C) Cardiomyocyte surface areas of cells treated as in B, measured on at least 100 a-actinin-positive, GFP-

positive cells for each group (four cultures/group). (D) Wild-type, MelTG and MelTG/Iqgap1-null cardiomyocyte surface areas measured on at least 100 a-

actinin-positive cells for each group (five cultures/group). (E) Percentage of apoptotic cardiomyocytes treated as in A, as indicated by TUNEL nuclear staining,

measured on at least 100 a-actinin-positive cells for each group (five cultures/group). (F) Percentage of apoptotic cardiomyocytes treated as in B and C, as

indicated by TUNEL nuclear staining and measured on at least 100 a-actinin-positive, GFP-positive cells for each group (4 cultures/group). (G) Percentage of

apoptotic cardiomyocytes after treatment with H2O2, as indicated by TUNEL nuclear staining, measured on at least 100 a-actinin-positive cells for each group

(five cultures/group). ***P,0.001; ˚˚˚P,0.001 versus untreated cells (NT).
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further demonstrating a role of IQGAP1 in cardiomyocyte
survival (Sbroggiò et al., 2011). These results demonstrated

that FAK and IQGAP1 act on the same melusin-activated signal
transduction pathway in promoting cell survival.

In conclusion, we have demonstrated that both FAK and
IQGAP1 are needed for the melusin-activated MAPK pathway
leading to hypertrophy and survival.

Discussion
Our previous findings demonstrated a key role of melusin in

triggering a compensatory hypertrophic program and in
preventing left ventricle dilation and heart failure in response

to long standing pressure overload. Melusin is a chaperone
molecule regulated by mechanical stress (Sbroggiò et al., 2008),

capable of activating AKT and ERK signalling, two pathways
required for melusin-induced cardiomyocyte hypertrophy and
survival (De Acetis et al., 2005). Here we show that melusin is

able to interact with the MAP kinases and it is part of a molecular
complex that includes the FAK, the scaffold protein IQGAP1 and

the chaperone protein Hsp90. FAK and IQGAP1 were identified
as key molecules in the complex responsible for ERK1/2

activation in response to pressure overload. To our knowledge
this is the first report describing a supramolecular complex

involved in the activation of the ERK1/2 cascade in hearts
challenged by pressure overload.

The MAPK pathway involves a cascade of three kinases (Raf,

MEK1/2 and ERK1/2) that sequentially activate each other by
phosphorylation. A key role in regulating such cascades is played

by scaffold proteins, which enhance signal efficiency by
assembling the molecules involved in signal transduction in
close proximity. IQGAP1 is a widely expressed multidomain

protein regulating different aspects of cell physiology and

capable of binding to distinct signalling molecules (Brown and

Sacks, 2006). Emerging evidence indicates that IQGAP1 acts as a

scaffold for the MAPK cascade by binding b-Raf, MEK1/2 and

ERK1/2, and regulating their activation in response to EGF in

fibroblasts and epithelial cells (Brown and Sacks, 2009). We

recently showed that IQGAP1 also acts as a scaffold of the

MAPK pathway in the heart by binding to c-Raf, MEK1/2 and

ERK1/2 (Sbroggiò et al., 2011). The role of IQGAP1 is

highlighted by the fact that in its absence, ERK1/2 activation is

impaired (see Fig. 3D), consistent with the property of scaffold

molecules to spatially organize the components of the MAPK

cascade.

Activation of ERK1/2 in response to AB is also dependent on

MEK1/2 and FAK kinase activities. In fact, FAK is also part of

the melusin complex, and specific inhibition of this kinase

abolished ERK1/2 activation in response to AB. FAK is a

ubiquitously expressed non-receptor tyrosine kinase acting as a

primary integrin effector at focal adhesion sites (Giancotti and

Ruoslahti, 1999; Parsons, 2003). Using kinase assays, we

demonstrated that melusin-bound FAK is activated in response

to AB, in agreement with previous findings (Franchini et al.,

2000). Several reports in the literature have indicated that FAK is

a crucial transducer for ERK1/2 activation downstream of

integrins and growth factor receptors (Guo and Giancotti, 2004;

Mitra et al., 2005; Vadali et al., 2007). The activation of ERK1/2

by FAK involves the recruitment of the adaptor protein Grb-2 to

the FAK C-terminal region, leading to the activation of the small

GTPase Ras through the guanosine exchange factor Sos. Ras,

however, was not detected in the melusin supramolecular

complex. Moreover, other GTPases known to be involved in

ERK1/2 signalling and to interact with IQGAP1, such as Rac1,

Cdc42 (Bashour et al., 1997) and Rap1 (Awasthi et al., 2010)

Fig. 6. Hypothetical model of the melusin supramolecular complex involved in ERK1/2 activation in cardiomyocytes. The protein complex indicated above

schematically illustrates the molecular interactions described in the results section. The model does not take into account the stoichiometry of the interactions and

it is not comprehensive of all possible interactions among the different protein in the complex. Chaperones are in blue, kinases are in orange and the scaffold

protein is in green. The stars indicate the activated state of the kinases.
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were not detectable in the complex, indicating that these GTPases
are not involved in FAK- and melusin-dependent ERK1/2
activation. Interestingly, however, our results demonstrated that
FAK activity is required for melusin-dependent MEK1/2

phosphorylation, indicating that FAK activates ERK1/2 through
MEK1/2. FAK-mediated and Ras-independent ERK1/2
activation has been reported in a number of experimental

systems (Chen et al., 1996; Hood et al., 2003; Slack-Davis et
al., 2003), but further studies are required to clarify the ability of
FAK to activate the MAPK pathway in a Ras-independent way.

Comparison of the supramolecular complexes isolated from
basal level and pressure-overloaded hearts indicated that the

amounts of FAK, IQGAP1, c-Raf and ERK1/2 were unaltered
following pressure overload. However, recruitment of MEK1/2 and
Hsp90 to the complex was significantly enhanced by pressure
overload. Because melusin binds Hsp90 and possesses chaperone

activity per se, we recently proposed a role for melusin as a co-
chaperone in the Hsp90 machinery (Sbroggiò et al., 2008). Hsp90 is
able to bind and protect a wide range of substrates or ‘client

proteins’ from degradation, and has a key role in signal transduction
because of its ability to maintain proteins in a three-dimensional
conformation that favours their activation (Pearl et al., 2008).

Therefore, a plausible hypothesis is that melusin, by interacting
with FAK, IQGAP1, c-Raf, MEK1/2 and ERK1/2 regulates the
MAPK pathway through its own chaperone activity and Hsp90

recruitment. In line with this hypothesis is the fact that FAK, c-Raf
and MEK1/2 are known Hsp90 client proteins (Schulte et al., 1997;
Sbroggiò et al., 2008). We hypothesize that the scaffold protein
IQGAP1 and the chaperone proteins melusin and Hsp90, are both

needed to fully activate the ERK1/2 pathway in response to
pressure overload in the heart. In fact, ERK1/2 activation requires
chaperones for stimulus-dependent conformational changes and

scaffold-mediated assembly of the three MAP kinases signalling
complex (Casar et al., 2009). An hypothetical model of the melusin
supramolecular complex is illustrated in Fig. 6.

Analysis of isolated cardiomyocytes from melusin-TG mice,
indicated that melusin-dependent ERK1/2 activation leads to

cardiomyocyte hypertrophy and protection from apoptosis in
response to stress stimuli, confirming and further extending our
previous data obtained from rat primary cardiomyocytes (De Acetis
et al., 2005). Moreover, FAK and IQGAP1, in addition to being

required for melusin-dependent ERK1/2 activation, are crucial in
melusin-induced cardiomyocyte hypertrophy and survival.

These findings on isolated cardiomyocytes are in agreement
with in vivo data obtained from transgenic mice. In fact, Fak-null
(DiMichele et al., 2006), melusin-null (unpublished data) and

Iqgap1-null mice (Sbroggiò et al., 2011) all show an impaired
wave of ERK1/2 phosphorylation in response to AB. Moreover,
absence of either FAK, melusin or IQGAP1 strongly impairs the
AB-induced cardiomyocyte hypertrophy, exacerbating cardiac

dysfunction in response to long-term AB (Brancaccio et al.,
2003; DiMichele et al., 2006; Sbroggiò et al., 2011).

Overall, these data underlie an important role of ERK1/2 in
adaptive cardiac remodelling (Kehat and Molkentin, 2010; Kehat
et al., 2011) and indicate a key role for melusin, FAK and

IQGAP1 in this pathway.

Materials and Methods
Mice
The use of animals was in compliance with the Guide for the Care and Use of
Laboratory Animals published by the US National Institutes of Health and was
approved by the Animal Care and Use Committee of Turin University.

Mice were anesthetized with sodium pentothal (50 mg/kg, intraperitoneally)
and, after 20 minutes pressure overload was imposed to the left ventricle through
the surgical ligation of the abdominal aorta (aortic banding). After 10 minutes of
aortic banding, mice were sacrificed and hearts were collected. Sham-operated
animals underwent the same surgical procedures without aortic stenosis.

Cell culture

Cardiomyocytes were isolated from 1-day-old neonatal mice of the following types:
melusin-TG in the FVB genetic background, Iqgap1-null in the 129SV genetic
background and double transgenic melusin-TG/Iqgap1-null in the FVB/129SV
mixed background. Neonatal hearts were pre-digested overnight at 4 C̊ in Hank’s
balanced salt solution (HBSS) with 0.5 mg/ml trypsin (Sigma), followed by four
sequential dissociation cycles with 240 IU/ml collagenase type II (Worthington) in
HBSS. Fibroblasts were removed by two rounds of pre-plating for 2 hours on plastic
tissue culture dishes. Cardiomyocytes were plated on gelatin- and fibronectin-coated
dishes or glass coverslips and maintained in DMEM–M199 medium, 10% horse
serum (Gibco) and 5% FBS (Gibco). Final cultures contained .90%
cardiomyocytes as determined by immunofluorescence staining for sarcomeric a-
actinin (antibody from Sigma). When indicated, cells were treated with the inhibitor
PD890959 (50 mM; Calbiochem) or PF537228 (3 mM; Tocris) after 3 days in
culture. For western blot analyses of signalling pathways, cells were lysed for
30 minutes after treatment with inhibitors. For measurements of cell area, cells were
fixed after 2 days of treatment with the inhibitors. For analysis of apoptotic death
cells were treated with 1 mM H2O2 for 10 minutes and then cells were maintained in
normal culture medium in the absence or presence of inhibitors.

FAK knock-down was performed by infecting cardiomyocytes with pGIPZ
lentiviral particles expressing FAK shRNA together with green fluorescent protein
(GFP) reporter (Open Biosystems; clone ID V3LMM_440799) 24 hours after plating.
Empty pGIPZ lentiviral vector, expressing GFP reporter, was used as control. For
measurements of cell area and apoptosis, cells were fixed 4 days after infection.

Cardiomyocyte surface area and TUNEL assay

Neonatal cardiomyocytes were cultured on coverslips and maintained as described
above for 5 days after plating, and they were then fixed with 3% paraformaldheyde
(PFA) in PBS. To measure the surface area of cells, cells were treated with
immunofluorescent antibodies against a-actinin (sarcomeric) and phalloidin. Cell
areas were measured on images captured at 4006 magnification using Axio
Vision (Zeiss) software.

Cardiomyocyte apoptosis was assayed using the In Situ Cell Death Detection
Kit TMR red (Roche), following the manufacturer’s instructions. To ensure
exclusive counting of cardiomyocytes nuclei, cells were stained with anti-a-actinin
(sarcomeric) antibodies and nuclei were counterstained with DAPI. Cell area
measurements and apoptotic cell counts on FAK-knockdown cardiomyocytes were
only performed on a-scarcomeric-actinin- and GFP-positive cells, indicative of
lentivirus-infected cardiomyocytes.

Immunoprecipitations and western blotting

For immunoprecipitation experiments, hearts were homogenized in lysis buffer
(50 mM HEPES, 100 mM NaCl, 0.1% sodium deoxycholate, 0.1% Triton X-100,
1 mM EGTA, 2 mM EDTA), containing Roche complete protease inhibitor
cocktail, 10 mM NaF, 1 mM PMSF and 1 mM Na3VO4. Protein extracts were
clarified with three sequential centrifugations for 20 minutes at 20,000 g, at 4 C̊.
Immunoprecipitations were performed for 2 hours at 4 C̊ using 5 mg of total heart
proteins and 15 mg of anti-melusin (clone 5E1) (Sbroggiò et al., 2008) antibody,
covalently conjugated to CNBr–Sepharose beads (GE Healthcare). After
immunoprecipitation, beads were washed 10 times in lysis buffer and
resuspended in Laemmli buffer.

For western blotting, hearts were lysed in Tris-buffered saline with 1% Triton X-
100, plus phosphatase and protease inhibitors as indicated above. Neonatal
cardiomyocytes were lysed in RIPA buffer. Western blot band quantifications were
performed with Quantity One software (Bio-Rad).

For western blot analysis antibodies against the following proteins were used:
ERK1/2, MEK1/2, phospho-T202/Y204 ERK1/2, phospho-S217/S221 MEK1/2,
phospho-Y397 FAK, phospho-S338 ELK1, Ras, Cdc42 (Cell Signaling), IQGAP1,
Raf, b-Raf, p-Tyr (PY99), Rap1 (Santa Cruz), myc clone 9E10, vinculin (Sigma),
GST (Invitrogen), Hsp90 (Stressgene), KSR-1, paxillin, Rac1 (BD transduction),
FAK clone 2A7 (Millipore), and the mouse monoclonal anti-melusin 5E1
(Sbroggiò et al., 2008). A second monoclonal antibody against melusin (clone
C3) was produced in our laboratory by immunizing melusin-null mice with
recombinant GST–mouse melusin and its reactivity was characterized by western
blotting and immunoprecipitation. The epitope was mapped in the N-terminal
CHORD I–II region.

Kinase assays

The kinase activity of the melusin-bound ERK1/2 was detected by performing a
cold kinase assay, using recombinant GST–ELK1 (Cell Signaling) as the ERK1/2
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substrate, on the melusin immunoprecipitation as described above. Briefly,
immunoprecipitated samples were washed, the washing buffer was completely
removed and resuspended in 18 ml of kinase buffer (25 mM Tris-HCl pH 7.5,
5 mM b-glycerophosphate, 2 mM dithiothreitol, 1 mM Na3VO4, 10 mM MgCl2,
200 mM ATP) and 2 mg recombinant GST–ELK1. For FAK kinase assays, a GST
fusion recombinant protein containing a Y397 FAK autophorylation site (pGEX-
FAK amino acids 378–406) was used as a substrate (Chen and Chen, 2006).
Where indicated, samples were pre-incubated in kinase buffer plus 1 mM
PD890959 (Calbiochem), 0.1 mM PF537228, 0.1 mM U0126 or 1 mM FAK
inhibitor 14 (Tocris) for 10 minutes at room temperature, before the addition of
the substrate. Reactions were carried out at 30 C̊ for 30 minutes and stopped by
adding an equal volume of 26 Laemmli buffer, followed by 5 minutes
incubation at 95 C̊.

Mass spectrometry

Coomassie-Blue-stained pieces of gel were trypsin-digested and analyzed by
MALDI-TOF and LC-nanospray-IT mass spectrometry. MALDI mass spectra
were acquired on an Ultraflex II TOF-TOF instrument (Bruker Daltonics, Bremen,
Germany) equipped with a 200 Hz all-solid-state laser. LC-nanospray-IT
experiments were performed on a HP 1100 nanoLC system coupled to a XCT-
Plus nanospray-ion trap mass spectrometer (Agilent Italia). A database search
using the data from MALDI-TOF experiments was performed against the
UniProtKB/SwissProt-TrEMBL database using the Aldente search algorithm
(http://www.expasy.org/tools/aldente/); for nanoLC-nanospray-ion trap experi-
ments we used the NCBInr database and Mascot search algorithm (http://www.
matrixscience.com/search_form_select.html).

Recombinant proteins

Expression vectors encoding glutathione S-transferase (GST) and maltose binding
protein (MBP) fused to melusin were prepared as previously described (Sbroggiò
et al., 2008). To produce recombinant MBP-fused IQGAP1 fragments, the
nucleotide sequences encoding the protein fragments indicated in supplementary
material Fig S3C were cloned in pMAL C2 vector.

MBP and GST fusion proteins were produced in Escherichia coli BL21 bacterial
strain and purified as described below.

Pull-down assays

Frozen heart samples were homogenized with an Ultra-Turrax (VWR, West
Chester, PA) in Tris-buffered saline (TBS) plus 1% Triton X-100 with protease
and phosphatase inhibitors, centrifuged three times for 20 minutes at 20,000 g at
4 C̊, and ,3 mg total proteins were used for pull-down assays. MBP-fused
IQGAP1 and melusin fragments or MBP alone as control, were purified from
bacterial protein extracts using an amylose resin (GE Healthcare) for 1 hour at 4 C̊.
Resin was washed five times with TBS plus 1% Triton X-100, and 5 mg
recombinant protein was incubated (with agitation) with 3 mg of heart total
proteins for 2 hours. Resin was washed 10 times with TBS plus 1% Triton X-100
and resuspended in Laemmli buffer.

Pull-down experiments, to evaluate the direct interaction between melusin and
IQGAP1, were performed using MBP–IQGAP1 and GST–melusin fusion proteins,
together with MBP and GST alone as controls. Resin-bound proteins were washed
five times with interaction buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1%
Triton X-100) and only the GST fusion proteins were eluted from the resin with
10 mM glutathione. The purified proteins were then quantified using SDS-PAGE
and Coomassie Blue staining. Resin-bound MBP–IQGAP1 fragments and eluted
GST–melusin fragments (4 mmol of each) were incubated for 2 hours at 4 C̊ in
interaction buffer. Following incubation, resins were washed 10 times with
interaction buffer and resuspended in Laemmli buffer.

Statistical analyses

The data are presented as means ¡ s.e.m. Differences between experimental
groups were evaluated for statistical significance using one or two-way ANOVA
with Bonferroni’s correction. For all analyses, a minimum value of P,0.05 was
considered significant. All statistical analyses were performed using GraphPad
Prism 4 (GraphPad Software version 4.0).
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