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Summary

Microtubule dynamic instability plays a fundamental role
in cell biology, enabling microtubules to find and interact
with randomly distributed cargo and spatially localized
signals. In vitro, microtubules transition between growth
and shrinkage symmetrically, consistent with the
theoretical understanding of the mechanism of dynamic
instability. In vivo, however, microtubules commonly
exhibit asymmetric dynamic instability, growing
persistently in the cell interior and experiencing
catastrophe near the cell edge. What is the origin of this
behavior difference? One answer is that the cell edge causes
the asymmetry by inducing catastrophe in persistently
growing microtubules. However, the origin of the persistent
growth itself is unclear. Using a simplified coarse-grained
stochastic simulation of a system of dynamic microtubules,
we provide evidence that persistent growth is a predictable
property of a system of nucleated, dynamic, microtubules
containing sufficient tubulin in a confined space — MAP
activity is not required. Persistent growth occurs because
cell-edge-induced catastrophe increases the concentration

of free tubulin at steady-state. Our simulations indicate
that other aspects of MT dynamics thought to require
temporal or spatial changes in MAP activity are also
predictable, perhaps unavoidable, outcomes of the ‘systems
nature’ of the cellular microtubule cytoskeleton. These
include the mitotic increase in microtubule dynamics and
the observation that defects in nucleation cause changes in
the behavior of microtubule plus ends. These predictions
are directly relevant to understanding of the microtubule
cytoskeleton, but they are also attractive from an
evolutionary standpoint because they provide evidence that
apparently complex cellular behaviors can originate from
simple interactions without a requirement for intricate
regulatory machinery.

Supplementary material available online at
http://jcs.biologists.org/cgi/content/full/119/22/4781/DC1
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Introduction
Microtubules (MTs) are components of the cytoskeleton, the
network of proteinaceous fibers that endows the cell with
structural  integrity, motile properties, and internal
organization. MTs play a particularly important role in cell
organization: they pull the chromosomes apart at mitosis, act
as a ‘railroad system’ for intracellular transport, and define the
localization and structure of internal membrane systems
(Kline-Smith and Walczak, 2004; Musch, 2004; Rogers and
Gelfand, 2000). Two characteristics of MTs are particularly
significant for these functions. First, MT nucleation is
regulated, and the limitation of nucleation to an organelle near
the nucleus (the centrosome) endows most cell types with a
radial organization. Second, and perhaps more importantly, the
MT cytoskeleton is dynamic: individual MTs in the same cell
(or same test tube) constantly change in length, either growing
or shrinking with random transitions between these phases
(Desai and Mitchison, 1997).

This counterintuitive behavior is termed dynamic instability
and is fundamental to MT function. First, dynamic instability
is a mechanism for exploring cellular space, bringing MT

railroads into contact with poorly diffusible cargo, such as
chromosomes for subsequent transport (Hill, 1985; Holy and
Leibler, 1994; Mitchison and Kirschner, 1984; Wollman et al.,
2005). Second, this turnover ensures rapid response of the
cytoskeleton to internal and external signals. Selective
stabilization of dynamic MTs probably plays a key role in
morphogenesis and appears to play a central role in the self-
organizing properties of the mitotic spindle (Heald et al., 1996;
Kirschner and Mitchison, 1986; Wollman et al., 2005).
Understanding the role of MTs in cell organization requires
a detailed understanding of dynamic instability and its
regulation. MTs are noncovalent polymers of the protein
tubulin. Dynamic instability originates in conformational
changes that occur in tubulin subunits after polymerization.
Briefly, tubulin subunits (which are obligate dimers of
the polypeptides «- and B-tubulin) bind GTP. Upon
polymerization, this GTP is hydrolyzed to GDP, but only after
a short delay. This delay is thought to result in a ‘GTP cap’,
which predisposes the MT to continued growth. The idea is
that if this cap is lost (via hydrolysis or other mechanism), the
exposed GDP-tubulin subunits rapidly depolymerize in an
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event termed catastrophe (reviewed in Desai and Mitchison,
1997). This elegant explanation has recently been modified to
include the possibility that the conformational state of the
tubulin subunits in the cap may be more important than the
state of the bound nucleotide (Arnal et al., 2000; Chretien et
al., 1995; Wang and Nogales, 2005). Dynamic instability
occurs in solutions of pure tubulin and GTP, but it can be
modulated by a variety of MT-binding proteins (also called
microtubule-associated proteins or MAPs), including MAP4,
stathmin, and CLIP-170 (Andersen, 2000; Arnal et al., 2004;
Desai and Mitchison, 1997).

Although this molecular-level explanation has been
extremely useful, many aspects of MT behavior remain poorly
understood. In particular, what determines dynamic-instability
parameters? One expects them to be a function of fundamental
chemical parameters (association constants, dissociation
constants and hydrolysis rates) and environmental parameters
(the concentration of tubulin, the number of nucleation sites
and the presence of spatial constraints), but no complete
mathematical description of the relationship between these
quantities has been derived. A major reason for this incomplete
understanding is that dynamic instability is an emergent
phenomenon — a behavior that arises from the independent
interaction of many individual components, resulting in
system-level properties that are not obviously predictable from
the characteristics of the components.

One approach that has proven useful for studying such
complex systems is computational modeling, in which the
behavior of a system is simulated by allowing components of
the system to interact according to defined rules. Insight into
the system is obtained by seeing how the system changes when
the rules are altered, and comparing these observations to
expectation or experiment. Significant efforts have been made
to predict and explain MT behavior using both deterministic
models (systems of interacting equations) and stochastic
simulations (Markov chain/Monte Carlo approaches) (e.g.
Bayley et al., 1989; Bolterauer et al., 1999; Dogterom and
Leibler, 1993; Flyvbjerg et al., 1996a; Freed, 2002; Gliksman
et al., 1993; Govindan and Spillman, Jr, 2004; Hill and Chen,
1984; VanBuren et al., 2002).

These studies have provided insight into numerous aspects
of MT behavior, including the origin of dynamic instability, the
nature of the stabilizing cap, and the effect of physical
boundaries on MT length distributions. However, many of
these efforts examine the behavior of single MTs. Those with
multiple MTs occur in semi-infinite space and/or have
variables, such as tubulin concentration or transition
frequencies, defined to be constants. None of these studies
examines how the behavior of MTs is influenced by the
constraints of a cell-like environment, in which multiple MTs
(but not an infinite number) compete for a limited pool of
tubulin subunits and microtubule growth is spatially confined.

To begin to address these issues, we have performed a series
of Monte-Carlo simulations of a system of dynamic MT in
such a cell-like environment. In these simulations, MTs
(nucleated by a defined number of seeds) compete with each
other for free GTP tubulin subunits in a ‘cell’ of defined size
and shape. MTs can be followed visually or statistically at the
level of an individual or the population. Dynamic instability
parameters (transition frequencies, growth rates, and shrinkage
rates) are not set by the user but instead evolve from the

interactions of the different parts of the system as the
simulation proceeds. A recent article by Janulevicius et al.
(Janulevicius et al.,, 2006) describes a model that has
similarities to the one we used here, but which was used to
address different questions.

Using our model, we find that several cellular phenomena
that were thought to require complex regulatory machinery are
instead predictable outcomes of interactions between a system
of dynamic MTs and its physical environment. More
specifically, we find that the surprisingly persistent growth of
MTs observed in vivo is a predictable property of a nucleated
system of dynamic MTs containing sufficient tubulin and
polymerizing in a constrained space. This perturbation of MT
dynamics is an outcome of the increase in the steady-state
concentration of free tubulin, resulting from interactions of
MTs with the cell boundary. Similarly, changes in nucleation
activity are expected to have major effects on MT length and
transition frequencies, dictating changes such as those seen at
the interphase-mitosis transition (Piehl et al., 2004; Rusan
et al.,, 2001). These observations do not exclude MAP
involvement (obviously, MAPs play central roles in these
processes), but they imply that MAPs modulate these behaviors
instead of creating them. These studies indicate that the classic
concept of critical concentration requires revision when
applied to cellular systems, and they provide a foundation for
quantitative understanding of MT dynamics in vitro and in
vivo.

Results and Discussion

Recapitulation of dynamic instability by our Monte Carlo
model

Using the rules outlined in the Materials and Methods, we have
built a simplified coarse-grained stochastic simulation of MT
dynamics that incorporates the major elements of the MT
polymerization process in vivo, including spatially constrained
nucleation, competition between MTs for tubulin subunits, and
the imposition of physical limitations to MT polymerization by
the cell edge. Adjustable parameters are the total tubulin
concentration, cell size, rate of GTP hydrolysis, and
association and dissociation rate constants for GTP and GDP
tubulin. MT dynamic instability parameters (rate of growth,
rate of depolymerization, catastrophe frequency, and rescue
frequency) are not set by the modeler but instead change with
time and conditions, emerging from the dynamic interactions
of the system. This model recapitulates the obvious qualitative
features of dynamic instability (Fig. 1, Movie 1 in
supplementary material). When appropriate adjustable
parameters are chosen (see Materials and Methods), it can
approximate the quantitative features, including growth rate
and transition frequencies (Table 1). Unless otherwise
indicated, all data presented in this manuscript are obtained
from simulations run under a set of reference parameters
chosen to approximate the behavior of tubulin in vivo in
interphase (Rusan et al., 2001), and are from steady-state (see
Materials and Methods for details).

This model is similar to the stochastic simulations used by
Hill and Chen (Hill and Chen, 1984), but there are two key
differences. First, in our model, a system of dynamic MTs is
simulated instead of a single MT, and the concentration of
soluble tubulin ([Tu]omble) in this system changes as MTs grow
and compete for subunits (in most previous simulations,
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Fig. 1. Recapitulating dynamic instability. (A) Snapshots of
the simulation at different time steps (T). The MTs grow from
seeds at left towards the ‘cell’ edge (right). The colors
describe the state (red, GTP ; green, GDP) of each subunit. At
early times, when free tubulin is near the initial value, MTs
grow persistently. As the polymer fraction increases and the
concentration of free tubulin drops, catastrophe becomes
more frequent. Eventually the steady-state is reached, and the

system behavior exhibits behavior very similar to

experimentally observed dynamic instability (see Movie 1,

supplementary material). (B,C) Comparison between life
history plots obtained experimentally in vitro (B) and with
our model (C). Experimental data were adapted from
Fygenson et al. (Fygenson et al., 1994). C shows three
adjacent steady-state MTs from the simulation shown in (A).
In this simulation, parameters were chosen arbitrarily; all
other simulations reported in this manuscript are correlated to
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physiological concentrations and dimensions as described in
Materials and Methods.

including those of Hill, [Tu]soube 1S @ set parameter). Second,
we have imposed MT-length limits (analogous to the
limitations imposed by the cell boundary). The sum of these
characteristics suggests that this model is useful for
investigating the constraints on MT dynamics imposed by cell-
like systems.

Persistent growth of MTs in vivo and in silico

Perturbation of the simulation by changing the concentration
of total tubulin ([Tulir), leaving all other parameters
unaltered, reveals an important relationship between tubulin
concentration and MT behavior. At low [Tu]igta, MTs in the
simulation mimic MTs observed in vitro at steady-state:
catastrophe is frequent, rescue is relatively rare and MT lengths
decay exponentially (short MTs significantly outnumber long
MTs) (Fig. 2ALE, Table 1, Movie 2 in supplementary material).
However, at relatively high [Tu]i,, dramatically different
behavior is observed: MTs begin to grow persistently, meaning
that many MTs reach the cell edge without ever undergoing
catastrophe (Fig. 2B and Table 1, Movie 3 in supplementary
material). Most catastrophes occur near the cell edge and
rescue becomes more frequent, resulting in an accumulation of
MT ends near the cell edge (Fig. 2F). This behavior mimics
that observed in vivo (Komarova et al., 2002b).

What is the origin of this change from an in-vitro-like
behavior to an in-vivo-like behavior? The observation that
catastrophe frequency displays position dependence in vivo has
been addressed previously: Komarova et al. and Maly et al.
have suggested that the cell edge induces catastrophe in
persistently growing MTs, causing the catastrophe asymmetry
and resulting in the MT length distribution observed in vivo
(Komarova et al., 2002b; Maly, 2002). Induction of catastrophe
by physical boundaries has been observed experimentally
(Janson et al., 2003). We have incorporated these ideas into our
model by stipulating that the cell edge prevents the addition of
new tubulin subunits, resulting in loss of the GTP cap, which
then leads to catastrophe.

However, although the °‘edge-induced depolymerization’
explanation is attractive, it is not complete. It explains the
catastrophe asymmetry, but fails to address the key issue of the
cause of the persistent growth. Komarova and colleagues
proposed that MAP activities are involved, and provided
evidence that the MT plus end tracking protein CLIP-170 plays
arole in persistent growth (Komarova et al., 2002a). However,
the only difference between the simulations in Fig. 2A,B (one
exhibiting persistent growth and one not) is the amount of total
tubulin in the system.

Consideration of the behavior of our computational model

Table 1. Dynamic instability parameters derived from experiments and simulations

In vivo? In silico
Low [Tu]lolal ngh [Tu]lolal ngh [Tu]lolal ngh [Tu]lotal
1X no. of MTs I1X no.of MTs ~ 4X no. of MTs 0.25X no. of MTs
Interphase Mitosis (interphase-like) (mitosis-like)

Catastrophe frequency (seconds™) 0.026+0.024 0.058+0.045 0.051+0.003 0.033+0.003 0.043+0.003 -
Rescue frequency (seconds™) 0.175+0.104 0.045+0.111 0.070+0.007 0.096+0.006 0.086+0.007 -
Growth rate (um/second) 0.191+0.123 0.212+0.094 0.095+0.003 0.167+0.004 0.122+0.003 -
Shortening rate (wm/second) —0.218+0.140 —-0.236+0.131 -0.18+0.01 —-0.34+0.02 —0.28+0.02 -
Mean MT length (cell radius fraction) ~85%" Shorter than in interphase  0.09+0.01 0.76+0.03 0.23+0.01 0.95+0.03
Initial [Tu] (M) - - 5.0+0.0 14.0+0.0 14.0+0.0 14.0+0.0
Steady-state [Tu] (M) - - 4.1020.06 6.4+0.1 4.7+0.2 11.64+0.07

The values of the simulations are the mean and standard deviation of 50 repetitions. n vivo data are from Rusan et al. (Rusan et al., 2001), except T, which is
from Komarova et al. (Komarova et al., 2002b). No numbers are given for the first four cells of the last column because microtubules in these simulations were
too close to the boundary to allow accurate measurements. Note that though the precise values of the experiments and simulations do not match (and are not

meant to), the trends are similar.
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Fig. 2. Relationship between the concentration of total tubulin ([Tu]yy), the number of MTs and the behavior of MTs in a spatially constrained
environment. (A-D) Life history plots of representative MTs in simulations run under the indicated conditions. (E,F) Distribution of MT lengths
taken from a series of simulations conducted under the indicated conditions.

leads to an alternative hypothesis for the origin of the persistent
growth: (1) the cell boundary induces catastrophe prematurely
(Komarova et al., 2002b; Maly, 2002); (2) this catastrophe
induction causes [Tu]sowble at steady-state to be higher than it
would be in the absence of the barrier; (3) this higher
availability of [Tulspie is what allows the MTs to grow
persistently, experiencing few catastrophes and undergoing
more frequent rescues. This hypothesis predicts that a physical
boundary can cause the [Tu]supie Steady-state to rise above its
natural steady-state level, and this increase in [Tu]sople can be
sufficient to cause persistent MT growth.

Relationship between total tubulin and soluble tubulin:

expected behavior according to the classic model
As a first test of this hypothesis, we investigated the
relationship between [Tulim and [Tulsouple at steady-state.
Before examining our system, we wanted to first understand
what was expected from the existing literature. The classic
understanding of monomer/polymer partitioning as defined by
Oosawa and colleagues, and refined by Johnson and Borisy is
shown in Fig. 3A (Johnson and Borisy, 1977; Oosawa and
Asakura, 1975; Oosawa and Kasai, 1962), see also Howard for
a more recent discussion (Howard, 2001). Examination of this
figure shows that tubulin put into a system is expected
to remain unpolymerized until the concentration of
unpolymerized tubulin reaches a critical concentration, after
which point all additional tubulin is incorporated into
polymer. Under this model, [Tu]soble reémains at the critical
concentration no matter how much additional tubulin is added
(assuming that all of it is active).

Deviation from this expected behavior
This Oosawa model has been the dominant framework for
understanding bulk MT polymerization. Our model reproduces
this expected behavior when MT length is unconstrained

(compare red solid curves in Fig. 3A,B)!. However, when MT
length is physically constrained — as it would be in a cell — the
concentration of soluble tubulin deviates significantly from the
behavior according to the classic model (Fig. 3B, dashed
curve): there is no clearly observed critical concentration and,
instead of plateauing after the initial rise, [Tu]sople cOntinues
to rise with [Tu]i, at first slowly and then more quickly.
Because the two curves of Fig. 3B are produced under
conditions that are identical except for the presence or absence
of catastrophe induction by the cell edge, these observations
suggest that the ‘edge effect’ predicted above can cause
[Tulsouple to rise above that expected from standard
considerations of critical concentration®. Moreover, the effect
increases as more tubulin is added to the system.

Effect of small changes in the [Tu]soiuple ON MT
behavior
We next examined the effect of such changes in [Tu]soupe ON
MT behavior. The differences seen between the solid and
dashed lines of the curves in Fig. 3B are relatively small: when
[Tu]iotar rises from 5 uM to 14 uM, [Tu]sopupie rises only from
~4 to ~6 uM, respectively. Although this increase may seem

IThe sharper transition to the plateau of the curve in panel A (compared with the curve
in panel B) results from the fact that the model used to yield curve A incorporates a very
unfavorable nucleation step, which normally exists when tubulin polymerizes in vitro. Our
model, which is meant to simulate microtubule polymerization from stable nucleation sites
in vivo, produces a similarly sharp transition if the difficulty in initial growth from the
stable seeds is increased (supplementary material Fig. S1).

’In 1987, Mitchison and Kirschner performed a theoretical analysis suggesting that
[Tulsomble increases with [Tuli in mass- and number-limited systems of dynamic
microtubules, such as those in a cell, even in the absence of spatial constraint (Mitchison
and Kirschner, 1987). Some of their conclusions are similar to those discussed here.
However, their conclusions depend on the assumption that rescue does not occur. Because
rescue is common in cellular systems, and because our simulations behave according to
their predictions only when both rescue and spatial constraint are ‘turned off’
(supplementary material Fig. S1), we believe that the conclusions of their analysis were
prescient but the equations leading to these conclusions are of limited use.
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Fig. 3. Relationships between total tubulin and soluble tubulin
([Tulsouble) at steady-state. (A) Classically expected behavior. Note
that little polymer is seen until the critical concentration (C,) is
achieved. At total tubulin concentrations above C,, all additional
tubulin is incorporated into polymer, and the concentration of
unpolymerized tubulin remains at C.. See Materials and Methods for
the equations used to plot these curves. (B) Relationship observed in
our simulations. Solid red line: system without spatial confinement.
Dashed red line: system with spatial confinement. The dotted grey
line gives C. (i.e. [Tulsoble) that is asymptotically approached as
[Tu]oral increases. Notice that, in confined systems there is no easily
observed C.. Instead, the concentration of free tubulin continues to
rise as total tubulin rises, at first slowly, and then more steeply. The
curves in B are not fits to an equation but are provided to guide the
eye as it follows the progression of the data.

insignificant, Fig. 4 shows that it is predicted to have a major
effect on the behavior of the simulated MTs: Changing
[Tulsoruple from 4.1 M to 6.4 uM shifts the behavior of the
simulated MTs from classic dynamic instability to apparently
persistent growth (Fig. 4A). Note that, to test the dependence
of MT behavior on [Tu]somble @s in Fig. 4A, it is necessary to
hold [Tu]ople constant (i.e. we altered the simulation so that
in these trials the MTs do not compete for tubulin. In addition,
there is no spatial constraint).

To better understand this transition to persistent growth, we
examined the relationship between [Tu]soupie and average MT
length in more detail. When [Tu]sopupie is held constant at low
to moderate levels, the length of MTs at steady-state increases
as soluble tubulin increases, but it is finite across this
concentration range (Fig. 4B). However, as [Tulsuple
increases more, there is a narrow range in which the average
steady-state length rises steeply, appearing to approach
infinity at some threshold (between 5 and 6 wM soluble
tubulin under these conditions) (Fig. 4B). This threshold is

the transition to persistent growth — as can be seen in a plot
of net MT growth rate as a function of [Tu]sople (Fig. 4C).
When this threshold is passed, MTs still experience
catastrophes but the balance between catastrophe and rescue
is such that, the amount of polymer in such a system increases
constantly with time (Fig. 4A,C). On the basis of this
analysis, small increases in the steady-state concentration of
soluble tubulin (like those caused by interaction of MTs with
the cell edge) should induce persistent growth if the initial
[Tulsoluble is close enough to the persistent growth threshold.
Note that the transition to persistent growth occurs at a
concentration empirically similar to the critical concentration
observed in the absence of spatial constraint (compare the
dotted line in Fig. 3B with the x-axis intercept of the dashed
line in Fig. 4C), but we have not yet developed a formal
demonstration of this relationship.

These observations are consistent with previous analyses
indicating that average MT length should increase with
[Tulsomubles and that MTs should show a transition from
‘bounded’ to ‘unbounded’ growth when [Tu]suple passes a
threshold (Dogterom and Leibler, 1993; Verde et al., 1992). In
a physiological system, the total mass of tubulin is constant,
and competition between MTs for this tubulin would be
expected to keep [Tulsowble below the transition to persistent
growth. However, if a physical boundary limits polymerization
and the edge effect (Fig. 3B) causes [Tu]somuble to rise above the
threshold, persistent growth should occur.

One conclusion of this work is that the classic concept of
critical concentration must be used carefully in cellular
systems — [Tu]soble at steady-state is not simply equal to the
critical concentration. Instead, the steady-state [Tu]souple i @
dynamic parameter that depends on a host of variables
including the number of nucleation sites, the total amount of
tubulin and the cell size. Transition frequencies and MT length
distribution are coupled to these same variables through
[Tulsoble: As originally suggested by Mitchison and
Kirschner (Mitchison and Kirschner, 1987), the increase of
[Tulsotuple With [Tulia is probably a major part of the
mechanism, allowing total tubulin levels to be tightly
regulated in vivo.

On the basis of these simulations and the reasoning above,
we propose that the persistent growth of MTs observed in vivo
is an expected outcome of placing a sufficient amount of
tubulin in a spatially confined system under conditions where
nucleation is limited. This reasoning does not exclude the
involvement of MT-binding proteins in persistent growth in
vivo, but argues that they tune the behavior instead of
generating it. Although physiological systems differ from our
simulations (and from each other) in their quantitative details,
this analysis suggests that persistent growth in the presence of
an appropriate spatial constraint is an intrinsic property of any
system of MTs or, indeed, of any nucleated two-state polymer
system.

Effect of MT nucleation on MT dynamics

A key aspect of MT growth, both in vivo and in our model, is
that it normally occurs from stable nuclei or ‘seeds’. We were
interested to see whether our simulations could provide insight
into two experimental observations related to nucleation: (1)
the changes in MT length and dynamics seen together with
increases in nucleation during mitosis; (2) the ability of
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mutations in S. pombe nucleation factors to alter MT length
and dynamics. In both cases, the effects on MT length and
dynamics have been proposed to result from the direct action
of MAPs.

Implications for the transition to mitosis
When cells transition into mitosis, the MT cytoskeleton
changes from a relatively stable interphase array that has long,
persistently growing MTs into an early mitotic array that has
shorter, more numerous MTs that are also more dynamic (Piehl
et al., 2004; Rusan et al., 2001). Using our computational
model, we investigated the relationship between these
characteristics. We found that, simply increasing the number
of MT seeds in an interphase-like simulation causes the system
to adopt mitosis-like dynamic instability characteristics: MTs
become significantly shorter and more dynamic, undergoing
more spontaneous (not-edge-induced) catastrophes and fewer
rescues (Fig. 2C, compare with 2B, Table 1).

These changes in length and dynamics result from the
reduction in [Tu]subie that occurs as the number of nucleation
sites is increased (supplementary material Fig. S2). This

Fig. 4. Dependence of MT behavior on the concentration of soluble
tubulin ([Tulye;) available at steady-state. (A) Life-history plots of
individual MTs at different values of [Tu]somble- * and **, average
length of MTs at steady-state in 4.1 uM and 4.7 uM free tubulin,
respectively. At 6.4 wM free tubulin, there is no steady-state length —
the mass of polymer increases with time (MT growth is ‘unbound’; see
also supplementary material Fig. S1); (B) relationship between
[Tulsouble and the mean MT length at steady-state. (C) Relationship
between persistent growth and [Tu]souble- The data plotted on the y-axis
give average rates of increase in polymer length as a function of
[Tulsouble- The concentration of free tubulin required for the transition
to persistent growth is indicated by the x-axis intercept of the dashed
line. In B and C, error bars give the standard deviation of values
observed from 50 different simulations at the indicated [Tu]sojuple.
Notice that, in all three panels, the MTs do not compete with each other
for free tubulin (because free tubulin is held constant at the indicated
value), and the cell size is made so large so that no MTs interact with
the edge during the course of the simulation. This is similar to an
experimental situation in vitro in which the pool of free tubulin is not
depleted during the time course of the experiment.

reduction in [Tu]soupie results from the decreased likelihood of
edge-induced catastrophe: when a given mass of tubulin is split
between a greater number of microtubules, the MTs get shorter,
eventually reaching a natural length that is too short to interact
significantly with the cell boundary (compare Fig. 2B with 2C).
These considerations suggest that, the increase in MT
dynamics observed in vivo during mitosis is an obligatory
consequence of the observed increase in MT nucleation. Note
that, this assumes that nucleation is controlled directly. An
alternative hypothesis is that MAPs could increase the
frequency of catastrophes, causing [Tu]soupie to rise. Given that
MT growth from centrosomes is reported to increase with
[Tulsolubles an increase in [Tu]goupie could cause the observed
increase in the number of MTs. The main point of this analysis
is to stress the obligatory connection between [Tu]a,
[Tu]solubles microtubule number and transition frequencies.

Implications for the interpretation of nucleation

mutants
Similarly, reducing the number of seeds can be expected to
have profound effects on MT length and dynamics (Table 1,
Fig. 2, supplementary material Fig. S2). Mutations in +y-
tubulin-complex proteins, which cause defects in MT
nucleation, also cause abnormalities in MT dynamics,
including inappropriately continuous growth, abnormally long
MTs, increased growth rate, and catastrophe defects
(Zimmerman and Chang, 2005). A number of explanations
have been proposed for these effects, including inappropriate
regulation of MT-binding proteins, such as Tiplp. Our analysis
suggests that, these effects are expected outcomes of the
increase in the steady-state concentration of soluble tubulin
that is predicted to result from reduction in the number of MTs
(Fig. 2D, compare with 2B; Table 1; supplementary material
Fig. S2).

Implications for the study of MAPs

Although we did not directly study MAPs in these simulations,
our analysis has implications for the understanding of MAP
function. Experimental characterization of MAPs has often
produced conflicting results (e.g. Cassimeris, 2002; McNally,
2003). We propose that some of the discrepancies stem from
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failure to take into account the fact that a solution of dynamic
MTs in vitro is an evolving system. For example, a protein that
suppresses catastrophe without altering other parameters under
pre-steady-state conditions (when [Tu]sople 1S near the initial
concentration) could have little or no effect on catastrophe at
steady-state because the protein would reduce [Tulsouple at
steady-state, and catastrophe frequency increases as [Tu]sojuble
decreases. Indeed, such a protein could have the paradoxical
effect of slowing MT growth under steady-state conditions.
These issues highlight the systems nature of the MT
cytoskeleton and suggest that comprehensive understanding
of MAP function is likely to require integration between
experimental and computational approaches.

Concluding remarks

We have provided evidence that several aspects of MT dynamics
that are often thought to be imposed by MAP activity (or changes
in MAP activity) are instead simple, perhaps unavoidable,
outcomes of the systems nature of the cellular MT cytoskeleton.
More specifically, we find that the surprising persistent growth of
MTs observed in vivo is a predictable property of a nucleated
system of dynamic MTs polymerizing in a constrained space.
Moreover, our simulations indicate that the increase in MT
dynamics seen in mitosis is an expected outcome of the mitotic
increase in nucleation activity. Similarly, our work provides an
explanation for the observation that defects in nucleation cause
abnormally stable MT plus ends, without invoking action of
nucleation factors at MT plus ends. Our simulations indicate that
these effects are mediated by changes in the concentration of free
tubulin in the system at steady-state.

We do not mean to imply that regulatory proteins are not
involved in behaviors such as persistent growth and the
transition to mitosis — it is clear that MAPs play central roles
in these processes. However, we suggest that, instead of causing
these behaviors, this regulatory machinery tunes them, for
example by shifting the amount of free tubulin available or the
concentration of free tubulin at which persistent growth occurs.

A pressing question in the history of eukaryotic life is how
complex cellular processes arise. Our work indicates that
certain behaviors are intrinsic to a system of dynamic
microtubules in a confined space. It seems plausible that cells
with a rudimentary microtubule array could then, over time,
develop machinery to modulate these intrinsic behaviors. This
hypothesis is attractive from an evolutionary perspective
because it provides evidence that complex cellular behaviors
can have simple origins.

Materials and Methods

Essential features of the simulation

MTs are modeled as simple linear polymers of tubulin subunits, with addition and
loss of subunits from the tip occurring according to probabilities defined by the
following rules: (1) Tubulin subunits have two states that are assumed to be GTP-
and GDP-bound, but these states could represent other conformations. (2) Subunits
polymerize (add to the end of a MT or seed) in the GTP-bound state, then undergo
GTP hydrolysis after polymerization. (3) Hydrolysis of a given subunit occurs
according to a set probability that is independent of the nucleotide state of the
surrounding subunits, i.e. hydrolysis is a stochastic first order process, producing a
shifting ‘cap’ of GTP subunits of variable length. (4) The probability of subunit-
addition or -loss on a MT depends on the nucleotide state of the tubulin subunit
exposed at the tip. (5) Subunit addition at the tip depends on the concentration of
[Tulsoluble, Whereas subunit loss is independent of [Tu]souble- (6) The total number
of tubulin subunits in the system is fixed (unless otherwise indicated), resulting in
competition between microtubules for tubulin subunits and evolution of dynamic-
instability parameters as the simulation proceeds. (7) The maximum length of

microtubules is limited by a boundary (analogous to the cell edge). This is
summarized in the following mathematical terms:

Phydmlysis = Khydrolysis At,

{Kggi,m (Tl oA if the tip is in GTP state,

P =
oM | S0 L [Tul At if the tip is in GDP state W
and
p 0 if the tip is in GTP state,
shortening | g O ming At if the tip is in GDP state.

Note that, because the model is stochastic, probability transition constants (K) are
used in place of kinetic rate constants (k).

Parameter determination

The number of MT-nucleation sites, the size of the pool of tubulin subunits and the
size of the cell are set by the user. Unless otherwise indicated, the simulations were
run at [Tu]io=14 wM, 128 stable seeds (nucleation sites) and cell radius =10 pm.
These values were arbitrarily chosen within the range that is biologically plausible
(while mammalian cells have many MTs, yeast cells have few) and computationally
rapid. Probability transition constants can be varied, but for the purpose of these
simulations they were set to constant values chosen to qualitatively approximate the
behavior observed in mammalian cells during interphase (Rusan et al., 2001).
Specific constants used were Kgr};vpv‘h=2 ;.LM" seconds™!, Kg,]g\limzo.l ;.LM’] second™,
K ening=48 seconds™, Kitening=0 seconds™, Knydrolysis=0.1 seconds™'. Note that,
because the microtubules are modeled as simple linear polymers with subunits that
are larger than tubulin (20 nm vs 8 nm), these rate constants do not correspond to
experimentally determined values. We emphasize that, the purpose of these
simulations is to explore the relationships common to microtubule systems in
general, not to quantitatively replicate specific experimental observations. All other
parameters of the system (growth rates, depolymerization rates, transition
frequencies, concentrations of polymeric and soluble tubulin) are emergent
properties. Varying the user-defined constants over a large range changed the
specific values of the emergent parameters but did not alter the basic relationships
discussed in the text (data not shown).

Other aspects of the model

Induction of catastrophe by the simulation boundary (cell edge) is an indirect result
of inhibition of new subunit addition at the boundary, which leads to loss of the
GTP cap and eventual depolymerization. In some cases (indicated in the text),
simulations were run without spatial constraint, allowing unlimited MT length.
Some simulations (as indicated) were also run without constraints on the mass of
total tubulin (i.e. constant soluble tubulin). Both tubulin diffusion and regeneration
of GTP-tubulin from detached GDP-tubulin were assumed to be fast and, therefore,
modeled as instantaneous (Brylawski and Caplow, 1983; Odde, 1997). Therefore,
although we present the shape of the cell as rectangular in Fig. 1 and as radial in
the movies (see supplementary material, Movies 1-3 ), the actual cell geometry is
undefined. Investigations into the effects of finite diffusion rates or alternative
geometries are important avenues for future study. We refer to recent work by
Janulevicius et al. for analysis of the effects of limited compartment volume, such
as those that might be found in cell processes, on microtubule dynamics
(Janulevicius et al., 2006).

Computation and analysis of the simulations

The algorithm was coded in C language and run on PCs using Linux operating
systems. The output was analyzed and visualized with Matlab 7.0 SP2 (MathWorks,
Natick, MA); movies were made from Matlab output with QuickTime Pro (Apple
Computer, Inc., Cupertino, CA). Calculation of transition-frequencies and -rates was
performed with a Matlab script that filtered out the noise, and detected persistent
growth and shortening phases. Phase transitions occurring within 1% of cell radius
from MT seeds or cell edge were excluded from the calculations. Time conversion
is: first simulation step equals 0.02 seconds. Source code for all programs is
available upon request. Error bars depicted in figures represent the + standard
deviation of 50 repetitions of each simulation.

Classical relationship between [Tuliotas @and [Tulsoluble

The prediction depicted in Fig. 3A was plotted as described by Johnson and Borisy
(Johnson and Borisy, 1975). Briefly, the relationship between C, ([Tu]oa) and C;
([Tulsoble) is expected to satisfy

s %
C, = YiK'ICl + Y iK' VK(KC) )
i=1 i=s
For Fig. 3A, we used a MT nucleus size (s) of 5, in agreement with previous
analysis (Johnson and Borisy, 1975) and chose K=2.86X 107! and K'=1.43X107 to
produce an appropriate shape and plateau position. K and K’ have units of inverse
concentration.
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Limitations of the analysis

This model is an approximation chosen to be general (i.e. not dependent on
unknown details of the polymerization process) — consistent with MT behavior
observed microscopically — and computationally fast, while still incorporating key
aspects of tubulin biochemistry. Necessarily, the model has simplifications, the most
obvious of which is that MTs were modeled as simple linear polymers instead of
tubes composed of protofilaments. Incorporation of structural detail is an important
goal for future work, but we do not expect this simplification to alter our basic
conclusions because the rules governing the simulation are largely independent of
this structural detail (i.e. the rate of growth is expected to be a linear function of
subunit concentration (Flyvbjerg et al., 1996b), regardless of the size of the subunits
or the number of protofilaments). A second simplification is that, our simulation
assumes that tubulin has two states, with a stochastic transformation between them.
It is important to notice that the identity of the two states (GTP and GDP, GDP-Pi
and GDP, or open sheet and closed tube) is irrelevant — what is important is that
there are two states with different characteristics. There may in fact be several
conformational states at the end of the MTs but we assume that one of the transitions
is rate-limiting, and it is this rate-limiting transition that we are simulating. We chose
stochastic transitions instead of the commonly assumed vectorial hydrolysis because
previous modeling efforts have indicated that vectorially catalyzed transitions do
not fit the data well (Flyvbjerg et al., 1996a). Given the similarity of the simulation
to the behavior of MT systems observed experimentally (Table 1, Figs 1, 2), we
believe that this model is an informative approximation.
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