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Introduction
All complex nervous systems consist of two main cell types,
neurons and glia. The evolution of increasing complexity in the
nervous system is accompanied by a steady rise in glial cell
number. In the mammalian nervous system, glia outnumber
neurons by far. During evolution vertebrates not only expanded
the numbers of their glial cells but have also developed the
myelin sheath. This is one of the most abundant membrane
structures in the vertebrate nervous system. It is produced by
two types of specialized glial cells, oligodendrocytes in the
central nervous system (CNS) and Schwann cells in the
peripheral nervous system (PNS). The myelin sheath is formed
by the spiral wrapping of glial plasma membrane extensions
around the axon, followed by the extrusion of cytoplasm and
the compaction of the stacked membrane bilayers (Fig. 1A).
These tightly packed membrane stacks provide electrical
insulation around the axons and maximizes their conduction
velocity.

The structure and molecular composition of myelin are
unique. In contrast to most plasma membranes, myelin is a
lipid-rich membrane (lipids constitute 70% of dry myelin
weight) that is highly enriched in glycosphingolipids and
cholesterol. The major glycosphingolipids in myelin are
galactosylceramide and its sulfated derivative sulfatide (20%
of lipid dry weight). There is also an unusually high proportion
of ethanolamine phosphoglycerides in the plasmalogen form,
which accounts for one-third of the phospholipids. Myelin
contains a relatively simple array of proteins, myelin basic
protein (MBP) and the proteolipid proteins (PLP/DM20) being
the two major CNS myelin proteins. During the active phase
of myelination, each oligodendrocyte must produce as much as
~5-50�103 �m2 of myelin membrane surface area per day
(Pfeiffer et al., 1993). 

Since the ensheathment of the axons must occur at the
appropriate time of neuronal development, reciprocal
communication between neurons and oligodendrocytes is
essential to coordinate myelin biogenesis (Boiko and Winckler,
2006). Neurons control the development of oligodendrocytes
by regulating the proliferation, differentiation and survival of
oligodendrocytes (Barres and Raff, 1999). The signals are
important to match the number of oligodendrocytes to the
axonal surface requiring myelination. Furthermore, the timing
of myelination is crucial because the ensheathment of axons
must not occur before neurons signal to oligodendrocytes. In
turn, signals from oligodendrocytes to neurons are necessary
to cluster multiprotein complexes in the axonal membrane into
distinct subdomains at the nodes of Ranvier – the gaps beween
myelinated segments of neurons (Pedraza et al., 2001; Scherer
and Arroyo, 2002; Poliak and Peles, 2003; Salzer, 2003).
Moreover, the axonal cytoskeleton and the rate of vesicular
transport along the axons are modified by oligodendrocytes
(de Waegh et al., 1992; Hsieh et al., 1994; Edgar et al.,
2004). The reciprocal communication between neurons and
oligodendrocytes is thus important for the development of the
nervous system. Here, we discuss the cellular and molecular
mechanisms of myelin biogenesis focusing on the role of
neuron-oligodendrocyte communication in this process.

Neuronal control of oligodendrocyte development
Myelination of the axonal tracts of the CNS by
oligodendrocytes takes place primarily in early postnatal
life when oligodendrocytes have differentiated from
oligodendrocyte precursor cells (OPCs). OPCs arise from the
neuroepithelium of the ventricular/subventricular zone of the
brain and migrate from this region into the developing white
matter until they reach the appropriate axons. After OPCs have
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arrived at their final target, they exit the cell cycle, become
non-migratory and differentiate into myelin-forming
oligodendrocytes (Baumann and Pham-Dinh, 2001). To ensure
full and timely myelination of all axonal tracts, the timing of
OPC differentiation must be tightly controlled by their target
cells. This was not initially evident because the differentiation
of oligodendrocytes in cell culture occurs normally in the
absence of neurons (Mirsky et al., 1980; Dubois-Dalcq et al.,
1986). The differentiation of oligodendrocytes seems to follow
a default pathway in which intrinsic signals define the number
of cell divisions before the cells exit the cell cycle and undergo
their characteristic sequence of developmental steps (Temple
and Raff, 1986).

Many studies now point to the importance of extrinsic
neuron-derived signalling molecules at multiple stages of
oligodendrocyte development (Fig. 1B) (Barres and Raff,
1999). These extrinsic signals serve two major purposes. They
help to control the proper timing of OPC differentiation to
ensure myelination at the appropriate time and place, and they
control and match the number of oligodendrocytes to the
axonal surface area requiring myelination. Several growth
factors and trophic factors, such as PDGF-A, FGF-2, IGF-1,
NT-3 and CNTF, have been shown to regulate oligodendrocyte
development (Barres and Raff, 1994; Miller, 2002; Baron et
al., 2005). PDGF-A is produced by both astrocytes and neurons
and regulates the proliferation and survival of OPCs (Noble
et al., 1988; Raff et al., 1988; Richardson et al., 1988).
Overexpression of PDGF-A in transgenic mice results in a
dramatic increase in the number of OPCs in the embryonic
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mouse spinal cord and ectopic production of oligodendrocytes
(Calver et al., 1998). However, the excess oligodendrocytes die
at an immature stage of differentiation and the final result is a
normal number of myelin-forming oligodendrocytes.

This is a nice example of how increased proliferation can
be balanced by increased apoptosis. Even during normal
development, oligodendrocytes are greatly overproduced and
the cell number is adjusted to the number and length of the
axons requiring myelination. Only oligodendrocytes that
manage to ensheath the axon survive, whereas those that fail
degenerate (Barres et al., 1992; Trapp et al., 1997). One
mechanism that may determine the final number of
oligodendrocytes is competition for limiting amounts of target-
derived molecules, such as FGF-2, IGF-1, NT-3 and CNTF.
Because most of these factors are also produced by astrocytes,
the role of neurons was not initially apparent. An important
clue to the requirement for axonal factors came from
experiments on transected optic nerves. Removal of axons
reduces the number of oligodendrocytes significantly (Barres
et al., 1993). By contrast, transgenic optic nerves that display
an increased number of axons have more oligodendrocytes
(Burne et al., 1996). 

Which are the neuron-derived molecules that control
oligodendrocyte survival? One such a factor is neuregulin
(NRG). The NRGs constitute a family of proteins containing
an epidermal growth factor (EGF)-like motif that activates the
membrane-associated ErbB2, ErbB3 and ErbB4 receptor
tyrosine kinases. In the developing CNS, NRGs activate
ErbB on oligodendrocytes. In the absence of ErbB2,
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Fig. 1. Neuronal and glial signals in the regulation of myelin biogenesis. (A) An electron micrograph of myelinated nerve fibers within the optic
nerve. (B) (1) Astrocytes and/or neurons release several growth/trophic factors factors, such as PDGF, FGF-2, IGF-1, NT-3 and CNTF that
regulate oligodendrocyte proliferation and/or survival. (2) Membrane-associated or soluble neuregulin binds the ErbB receptor on
oligodendrocytes to promote survival and maturation of oligodendrocytes. (3) Interaction of the Notch 1 receptor with Jagged 1 inhibits the
differentiation of oligodendrocytes. (4) An increase in electrical activity causes the release of promyelinating factors such as LIF from
astrocytes (4a), adenosine from neurons (4b) and changes the expression level of axonal cell adhesion molecules (4c).
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oligodendrocytes fail to undergo terminal differentiation and to
ensheath axons (Park et al., 2001). In culture, NRG-1 supports
the survival of maturing oligodendrocytes (Fernandez et al.,
2000; Flores et al., 2000; Carteron et al., 2006) and the addition
of NRG decreases the amount of cell death that occurs during
normal development or optic nerve transection experiments
(Fernandez et al., 2000). However, NRGs not only promote the
survival and maturation of oligodendrocytes but also act as
powerful mitogens and strongly enhance OPC proliferation
(Canoll et al., 1996). Surprisingly, NRGs can also prevent or
even reverse oligodendrocyte maturation in OPC cultures
(Canoll et al., 1996; Canoll et al., 1999). Furthermore, recent
data from ErbB4-knockout mice indicate that ErbB4 inhibits
oligodendrocyte lineage maturation and is not required for
oligodendrocyte differentiation (Sussman et al., 2005).

How can the same growth factors have such opposite
effects? Multiple factors may be responsible for the variable
response to NRG at distinct stages of oligodendrocyte
development. These include different levels of the ligand, the
repertoire of receptors expressed and the presence of co-
factors. Recently, an integrin-mediated switch has been
implicated in the NRG signalling pathway (Colognato et al.,
2002; Colognato et al., 2004). Without neuronal contact, NRG
activates a PI(3)K-dependent proliferation pathway, whereas
adhesion of axons to �6�1 integrin on the surface of
oligodendrocytes leads to NRG-dependent survival through
MAPK signalling (Colognato et al., 2002; Colognato et al.,
2004). In this model, the integrin-mediated signalling defines
the action of NRG. The interaction of integrin with the axonal
surface depends on contact with laminin located there. This is
consistent with a study of laminin-2-deficient mice that
demonstrated a crucial role for laminin-2 in CNS myelination
(Chun et al., 2003).

Another example of an axonally derived signalling pathway
that influences oligodendrocyte development is the Notch
signalling pathway. OPCs express the Notch 1 receptor and
interaction with Jagged 1 located at the axonal surface results
in the activation of the Notch pathway in OPCs, which inhibits
their differentiation into oligodendrocytes (Wang et al., 1998).
Because the expression of Jagged 1 is developmentally
regulated in neurons, decreasing with a time course that
parallels myelination, it is likely that neurons help to regulate
the timing of myelination by preventing oligodendrocyte
differentiation. This view is supported by in vivo experiments
using a conditional knockout approach to selectively eliminate
Notch signalling from oligodendrocytes. This results in
premature oligodendrocyte differentiation in the CNS (Genoud
et al., 2002). In addition, the axonal cell adhesion molecule
contactin was shown to act as an alternative Notch ligand,
promoting rather than inhibiting oligodendrocyte
differentiation (Hu et al., 2003) and thereby adding another
level of regulation to the Notch signalling pathway in
oligodendrocytes.

Neuronal factors in myelination
The next event after differentiation of OPCs is the formation
of myelin. Myelination is a multi-step process requiring precise
coordination of several different signals. The following steps
can be distinguished: (1) recognition of and adhesion of the
oligodendrocytes to the appropriate axon; (2) synthesis and
transport of myelin components to the axon; (3) the wrapping

of the myelin membrane around the axons; and (4) the
compaction of the myelin sheath. Here, we restrict ourselves
to recent findings that shed light on those poorly understood
processes, examining how myelin-forming glia recognize their
targets and how neurons regulate the synthesis and transport of
myelin components.

Oligodendrocytes do not wrap their plasma membrane
randomly around neuronal processes but carefully select axons
that have a diameter of >0.2 �m; they also exclude dendrites.
A recent study shows that NRG1 type III on the axonal surface
is required for the myelination by Schwann cells in the PNS
(Taveggia et al., 2005). In fact, the levels of NRG1 type III
define not only whether or not an axon will be myelinated
but also the thickness of the sheath: transgenic mice with
reduced NRG-1 expression display hypomyelination, whereas
overexpression of NRG-1 induces increased myelin thickness
(Michailov et al., 2004). Myelin-forming Schwann cells thus
appear to use NRG-1 signals to know whether and to what
extent axons require myelination. The signalling pathways
involved in the CNS are not known. Whether oligodendrocytes
have the ability to read NRG-1 levels and thereby signals from
CNS axons in a similar way to that used by Schwann cells is
still an open issue.

After oligodendrocytes have established proper contact with
the axonal membrane, they start to extend their membrane by
spirally wrapping it around the axon. Because each
oligodendrocyte is able to produce up to 40 myelinated
segments on multiple axons, they have to synthesize a
tremendous amount of membrane in a short time (Pfeiffer et
al., 1993). Intuitively, one would assume that the production of
these myelin components is strictly under neuronal control
because they are required at the time oligodendrocytes begin
wrapping their membrane around axons. However, this is only
partially true. Although neurons seem to regulate myelin gene
expression to some extent (Macklin et al., 1986; Goto et al.,
1990; Scherer et al., 1992), the production of myelin
components is initiated and also continues at a high rate in
primary cultures of oligodendrocytes in the absence of neurons
(Mirsky et al., 1980; Dubois-Dalcq et al., 1986). Because
the uncoordinated production of myelin membrane by
oligodendrocytes in the absence of axons may have deleterious
consequences (e.g. formation of intracellular myelin), it is
likely that control mechanisms exist in vivo. Thus an intrinsic
program within oligodendrocytes lays out the timing of their
development (Temple and Raff, 1986), which can be influenced
by external factors. 

One signal that seems to be required to trigger myelination
is the electrical activity of neurons (Demerens et al., 1996).
Note however, that a recent study in the zebrafish demonstrated
that neither neuronal activity nor synaptic function is required
for myelination in the larval nervous system (Woods et al.,
2006). There are numerous studies that address the mechanism
of how electrical activity in axons after target innervation may
influence myelination. There is evidence that it leads to the
secretion of promyelinating factors such as adenosine from
neurons (Stevens et al., 2002). In the PNS, by contrast,
impulses in premyelinated axons trigger the release of
adenosine triphosphate, which inhibits proliferation and
differentiation of Schwann cells (Stevens and Fields, 2000).
Recent work reveals a role for astrocytes in initiation of
myelination in response to electrical impulses: they appear to
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release leukemia inhibitory factor (LIF), which then stimulates
the oligodendrocytes (Ishibashi et al., 2006). 

Electrical activity of neurons not only controls the secretion
of promyelinating factors but also leads to a change in the
expression pattern of axonal proteins (Coman et al., 2005). The
removal of some of these proteins, such as the polysialated
adhesion molecule NCAM, is essential and allows the
myelination process to proceed (Charles et al., 2000). The
molecular mechanisms by which these factors influence myelin
membrane generation are not clear. One pathway recently
shown to coordinate myelination is the regulation of RhoA
activity by LINGO-1 in oligodendrocytes (Mi et al., 2005).
Activation of RhoA by LINGO-1 negatively regulates
myelination (Liang et al., 2004; Mi et al., 2005). It will now
be important to find out how these different signaling cascades
act on the cellular machinery that generates myelin membrane
in oligodendrocytes.

Myelin assembly and trafficking
Myelin assembly and trafficking is much more than the
expression of myelin genes and involves the assembly of
particular components in a temporally and spatially regulated
manner. This requires specific sorting and transport
mechanisms for delivering myelin membrane components
from the site of synthesis to the newly forming myelin
membrane (Kramer et al., 2001; Pfeiffer et al., 1993). A level
of complexity is added by the division of myelin into distinct
specialized regions: PLP/DM20 and MBP are found in
compact internodal myelin; the immunoglobulin-like cell
adhesion molecule neurofascin-155 is localized to paranodes;
and myelin-associated glycoprotein (MAG) is concentrated in
periaxonal lamellae. What is known about the machinery that
sorts out myelin proteins and lipids, and is the transport
regulated by neurons? Below we discuss how the internodal
region, which comprises nearly 99% of total myelin, is formed,
before going into the mechanisms that organize the membrane
at the nodes.
Individual myelin components are synthesized in
oligodendrocytes at several subcellular localizations and
transported by different mechanisms to the growing myelin
membrane. For example, targeting of MBP to myelin depends
on transport of the respective MBP mRNAs. The MBP
mRNA is assembled into granules in the perikaryon of
oligodendrocytes, transported along processes and localized to
the myelin membrane (Ainger et al., 1993). The transport of

the RNA to the plasma membrane depends on a 21-nucleotide
sequence, the RNA transport signal (RTS), in the 3�UTR of the
MBP mRNA (Ainger et al., 1997). Whether the transport
and/or final localization of the mRNA or protein are regulated
by extrinsic signals is not known. However, the finding that
MBP is initially synthesized in the cell body and is found
within processes and the myelin sheath later during
development suggests that its transport may be under
developmental control (Shiota et al., 1989). The mechanistic
function of MBP in the formation of myelin is not understood.
The binding of the positively charged MBP to the negatively
charged inner leaflet of the plasma membrane suggests that it
can function as a lipid coupler by bringing the layers of myelin
close together. Recent data indicate that neurons increase
the lipid packing of the myelin-forming bilayer in
oligodendrocytes and that MBP is involved in this process of
plasma membrane rearrangement (Fitzner et al. 2006). 

The other major myelin protein, the integral-membrane
protein PLP/DM20, is transported by vesicular transport
through the biosynthetic pathway to myelin (Colman et al.,
1982). On its way to the plasma membrane, PLP/DM20
associates with cholesterol and galactosylceramide in the Golgi
complex, which might assist the targeting of PLP/DM20 to
myelin (Simons et al., 2000). The first hint of the signal
determining the selective targeting of PLP/DM20 to myelin
came from work on transgenic mice showing that the N-
terminal 13 amino acids of PLP are sufficient to target a
cytoplasmic fusion protein (lacZ) to the myelin membrane
(Wight et al., 1993). Recent work indicates that the
palmitoylation of this sequence is required for the selective
sorting to myelin (Schneider et al., 2005). These studies,
together with others, suggest the involvement of lipid rafts in
the transport of proteins to myelin (Kim et al., 1995; Kramer
et al., 1997; Simons et al., 2002; Taylor et al., 2002; Marta et
al., 2003).

The PLP-delivery pathway might be under the control of
neuronal signals (Fig. 2) (Trajkovic et al., 2006). In the
absence of neurons, PLP/DM20 is internalized and stored in
late endosomes/lysosomes (LE/L), entering a cholesterol-
dependent endocytosis pathway. After receiving an unknown
soluble signal from neurons, oligodendrocytes reduce the rate
of endocytosis and trigger transport from LE/L to the plasma
membrane. This regulation of PLP trafficking might represent
a mechanism to store superfluous membrane produced before
the onset of myelination and release it on demand in a regulated
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Fig. 2. Neurons organize the membrane-
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neurons, PLP is internalized and stored
in late endosomes/lysosomes (LE/L) via
a cholesterol-dependent endocytosis
pathway. After receiving signals from
neurons, the rate of endocytosis is
reduced and transport from LE/L to the
plasma membrane is triggered.
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fashion. Because MBP does not localize to LE/L, it may
also be an important mechanism for differentially
compartmentalizing myelin components to prevent premature
and inappropriate assembly of myelin.

It is interesting to compare the regulation of PLP trafficking
in oligodendrocytes by neuronal signals with the changes in
membrane trafficking during the development of polarized
tissue (Mostov et al., 2003). For example, during
tubulogenesis, cells depolarize and develop intracellular
compartments containing components that are normally found
at the surface. Polarization, by contrast, often involves the
redirection of membrane from intracellular reservoirs to the
plasma membrane. These are only a few examples of how
membrane trafficking can undergo profound changes during
development. The regulation of membrane trafficking in
oligodendrocytes during development makes these cells an
interesting model system to study the influence of cell-to-cell
signaling on membrane trafficking.

Little is yet known about the trafficking machinery
in oligodendrocytes. The upregulation of specific Rab
proteins (Rab-3, Rab-5, Rab-8 and Rab-40) and SNARE
proteins (VAMP-2 and syntaxin-4) during oligodendrocyte
development gives some clue as to the players that might be
involved (Rodriguez-Gabin et al., 2004). A recent genetic
screen in zebrafish showed that N-ethylmaleimide-sensitive
factor (NSF), a protein involved in membrane fusion, is
required for the expression of MBP and the proper formation
of the myelin membrane (Woods et al., 2006). This finding
points to an interesting link between intracellular transport and
myelin biogenesis. NSF may have a previously unidentified

role in the targeting of essential signaling molecules. In
addition, the exocyst, a multimeric protein complex involved
in the recruitment of transport vesicles during the formation of
polarized cells, has recently been implicated in vesicle
transport in oligodendrocytes (Anitei et al., 2006). The
challenge will now be to integrate the signaling and trafficking
pathways to attain a comprehensive view of how myelination
is regulated. The cellular trafficking and signaling machinery
are interconnected more then previously thought (Dudu et al.,
2004; Polo and Di Fiore, 2006). This connection is likely to be
particularly pronounced in oligodendrocytes, which must
produce and sort membrane upon neuronal request.

Neuron and glia interaction in domain organization
of myelinated axons
Myelinated axons are organized into several distinct
longitudinal domains centered around the nodes of Ranvier.
These are gaps between each myelin segment and are required
for efficient and rapid propagation of action potentials. The
nodes are flanked on either side by lateral loops formed by the
myelinating glia. These paranodal loops form septate-like
junctions with the axonal membrane. The juxtaparanodal
domain lies just under the compact myelin sheath next to the
paranodes. Each of these domains consists of distinct
multiprotein complexes, containing different cell-adhesion
molecules, cytoplasmic adaptor proteins and ion channels (Fig.
3). Below we discuss briefly how these domains are generated,
focusing on the intercellular interactions that direct their
assembly. For a more comprehensive coverage, we refer
readers to previous reviews of this topic (Pedraza et al., 2001;
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Fig. 3. Molecular composition of domains at the node of Ranvier. Components of the nodes include neurofascin-186, NrCAM and voltage-
gated Na+ channels, which are tethered to a complex containing ankyrin G and �IV-spectrin. The paranodes contain a complex of Caspr,
contactin and 4.1B at the axonal membrane, which binds to neurofascin-155 on the paranodal loop. The multiprotein complex in the
juxtaparanode contains a cis complex of Caspr2 and TAG-1, which interact with 4.1B and a PDZ-domain-containing protein associated with the
two shaker-type K+ channels, Kv1.1 and 1.2. This complex is linked through a trans interaction with TAG-1 to the glial membrane.
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Scherer and Arroyo, 2002; Poliak and Peles, 2003; Salzer,
2003).

Nodes
The domains are formed sequentially by reciprocal interactions
between glia and neurons. This assembly starts at the nodes
and progresses to the paranodes and the juxtaparanodes. Before
glial cells have approached the axons, voltage-gated Na+

channels are diffusely distributed over the axonal membrane.
In the PNS, the clustering of the channels does not occur before
the Schwann cells have extended longitudinally and
established close contact with the axon. Clustering starts at
sites adjacent to glial processes that contain dynamic
protrusions enriched in the ezrin-radixin-moesin (ERM) family
of actin-binding proteins (Melendez-Vasquez et al., 2001;
Gatto et al., 2003). The glial molecule required for axonal Na+-
channel clustering has long been elusive. A recent paper,
however, identified gliomedin, a novel ligand for the neuronal
adhesion molecules neurofascin and NrCAM, as the mediator
responsible at the nodes of Ranvier (Eshed et al., 2005). This
finding fills an important gap in our understanding of the
molecular assembly at the node of Ranvier and supports a
model in which sequential protein interactions initiate Na+-
channel clustering. Gliomedin accumulates in processes at the
edges of Schwann cells, where it is presented to axons. There
the interaction with neurofascin and NrCAM occurs and this
complex in turn recruits ankyrin G, a cytoskeletal/scaffolding
protein, which contains binding sites for Na+ channels (Zhou
et al., 1998; Jenkins and Bennett, 2002; Garrido et al., 2003).
Recruitment of stabilizing components such as �IV spectrin
further enhances the clustering by anchoring the complex more
firmly to the axonal cytoskeleton (Berghs et al., 2000; Komada
and Soriano, 2002; Lacas-Gervais et al., 2004). This
specialized cytoskeleton not only confers the specific
localization and retention of nodal proteins but also functions
as a matrix by creating sites for Na+ channel clustering.

Specific targeting and sorting mechanisms may also
contribute to the segregation of nodal components. For
example, the trapping of individual components at the nodal
multiprotein complex may prevent their elimination by
endocytosis and thereby reinforce their accumulation at the
node (Fache et al., 2004). The specific targeting of proteins by
vesicular carriers to the node is another potential mechanism
that remains to be investigated. Moreover, the attachment of
the lateral edges of the glial cells to the axonal membrane
creates a diffusion barrier that might help to concentrate the
nodal protein complex by restricting its lateral diffusion
(Pedraza et al., 2001). The interaction of the glial ligand with
the axonal adhesion molecule thus appears to initiate domain
formation by generating a seed for the growth of a multiprotein
complex, which is expanded by recruitment of further
components, tethered to both the axonal cytoskeleton and the
glial membrane and has limited capacity for diffusion. In the
CNS, there seems to be at least one exception to this model.
Initiation of complex formation does not depend on direct
contact between oligodendrocytes and axons, but rather on an
unknown soluble factor (Kaplan et al., 1997; Kaplan et al.,
2001).

Paranodes
Both in the PNS and the CNS, the formation of the paranodes

is dependent on axon-glia interactions. The interaction of glial
loops with the axonal membrane is mediated by neurofascin-
155 and contactin (Tait et al., 2000; Boyle et al., 2001; Charles
et al., 2002; Sherman et al., 2005). The interaction of
neurofascin-155 in glia to a complex of contactin and
contactin-associated protein (Caspr) in axons initiates the
assembly of the paranodal complex, which is then stabilized
by interactions with a specialized axonal cytoskeleton
consisting of proteins such as the membrane skeleton
component protein 4.1B, ankyrin B and �/�II spectrin
(Denisenko-Nehrbass et al., 2003; Ogawa et al., 2006). The
binding of neurofascin-155 to the Caspr-contactin complex
may not be direct and other components are probably required
to bridge these proteins (Gollan et al., 2003).

The paranodes seem to be particularly vulnerable to
disruptions of the myelin membrane – for example, in multiple
sclerosis (Wolswijk and Balesar, 2003; Coman et al., 2006). In
addition, a surprisingly high number of mouse myelin mutants
display specific abnormalities in the paranodes and not in
compact myelin. These include mice lacking the myelin
glycolipids, galactosylceramide and sulfatide (Coetzee et al.,
1996; Dupree et al., 1999; Honke et al., 2002), the myelin and
lymphocyte protein (MAL) (Schaeren-Wiemers et al., 2004)
or 2�,3�-cyclic nucleotide 3�-phosphodiesterase (CNPase)
(Rasband et al., 2005). Interestingly, all these molecules play
a role in the transport of vesicular membrane carriers by
regulating sorting (Cheong et al., 1999; Puertollano et al.,
1999; Degroote et al., 2004) or cytoskeleton dynamics (Lee et
al., 2005). This suggests that they might be required for
appropriate trafficking of glial molecules to the paranode
(Schafer et al., 2004).

On the axonal side, the localization of contactin to the
paranodes not only depends on the interaction with glial
neurofascin but also on the association with Caspr (Faivre-
Sarrailh et al., 2000; Bhat et al., 2001; Gollan et al., 2002;
Gollan et al., 2003). Caspr associates with contactin in the ER
and this interaction is required for the transport to the cell
surface (Faivre-Sarrailh et al., 2000). In addition, the
interaction modulates the intracellular processing of sugar
moieties and this affects its ability to interact with neurofascin
(Gollan et al., 2003).

Juxtaparanodes
The process of domain assembly next progresses to the
juxtaparanodes. Caspr2 and K+ channels, the juxtaparanodal
components, first transiently appear in the nodes and paranodes
and are later gradually displaced into the juxtaparanodes. Like
the assembly of nodes and paranodes, the formation of the
juxtaparanodes critically depends on axon-glia contacts. The
GPI-anchored cell adhesion molecule TAG-1 plays a crucial
role in this process (Poliak et al., 2003; Traka et al., 2003). It
is expressed in both glia and neurons and associates in cis with
Caspr2 and in trans with itself. Caspr2, in turn, associates with
the K+ channels Kv1.1 and 1.2 (Poliak et al., 1999) through an
unidentified PDZ-containing protein (Rasband et al., 2002) and
through protein 4.1B with the cytoskeleton (Denisenko-
Nehrbass et al., 2003). Again, axon-glia interactions,
attachment of the complex to the axonal cytoskeleton and
lateral diffusion barriers within the axonal membrane are all
mechanisms that contribute to the segregation of the plasma
membrane.
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Concluding remarks
The reciprocal communication between neurons and
oligodendrocytes plays an essential role during the
development of the nervous system. These signals not only
control the development of oligodendrocytes but also regulate
the generation of the myelin membrane sheath. Many aspects
of myelin biogenesis are, however, still unresolved. For
example, the machinery required to drive the membrane around
the axon and to remove the cytoplasm between the different
layers to achieve compaction is completely unknown. Since
axons define the thickness of the myelin sheath, it is likely that
neuronal signals also regulate the myelin membrane-wrapping
machinery in oligodendrocytes. Furthermore, there is
mounting evidence that neuron-glia communication has a
role in the pathogenesis of many neurological diseases.
Oligodendrocyte dysfunction, for example, leads to massive
axonal degeneration (Griffiths et al., 1998; Lappe-Siefke et al.,
2003; Yin et al., 2006). Moreover, axonal outgrowth in the
CNS is limited by growth inhibitors provided by
oligodendrocytes (Sandvig et al., 2004; Schwab, 2004; Huang
et al., 2005). Therefore, more research into neuron and glia
communication will not only provide new exciting insights into
the development of the nervous system but also help us to find
new treatment strategies for various neurological diseases.
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