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Summary

The Kkinesin-13 class of motors catalyses microtubule
depolymerisation by bending tubulins at microtubule ends.
Depolymerisation activity is intrinsic to the Kinesin-13
motor core but the activity of the core alone is very low
compared with that of constructs that also contain a
conserved neck sequence. The full-length dimeric motor is
an efficient depolymeriser and also diffuses along the
microtubule lattice, which helps it to find microtubule ends.
Current evidence supports the idea of a generic mechanism
for kinesin-13-catalysed depolymerisation. However, the
activity of kinesin-13 motors is precisely localised and
regulated in vivo to enable a wide range of cellular roles.
The proteins are involved in global control of microtubule

dynamics. They also localise to mitotic and meiotic

spindles, where they contribute to formation and
maintenance of spindle bipolarity, chromosomal
congression, attachment correction and chromatid

separation. In interphase cells, intricate and subtle
mechanisms appear to allow kinesin-13 motors to act on
specific populations of microtubules. Such carefully
controlled localisation and regulation makes these Kkinesins
efficient, multi-tasking molecular motors.

Key words: Kinesin-13, Microtubule, Depolymerisation, MCAK,
Cell division

Introduction

Microtubules (MTs) are polar polymers built from a3-tubulin
heterodimers that polymerise in a head-to-tail fashion to form
protofilaments; these associate laterally to form the wall of the
hollow MT polymer (Desai and Mitchison, 1997) (Fig. 1).
Although MTs may be viewed as static structures around
which cell biology moves, their dynamics are important for
cellular function. MTs exhibit dynamic instability and
undergo cycles of random growth and shrinkage. The
transition from growth to shrinkage is called catastrophe and
that from shrinkage to growth is called rescue. af3-tubulin
binds GTP and hydrolyses it to GDP. Whether GTP or GDP
is bound controls MT dynamics and it is convenient to think
of this in terms of heterodimer structure. GTP-tubulin favours
MT growth because it has a straight conformation that
enables incorporation into the lattice (Wang and Nogales,
2005), whereas GDP-tubulin favours catastrophe and
depolymerisation because of its curved conformation (Ravelli
et al., 2004). However, tubulin dimers are held within the MT
lattice even when GDP is bound. Consequently, MTs only
exhibit dynamics from their ends and it is here that cellular
regulators exert their control.

Members of the kinesin superfamily of ATP- and MT-
dependent motor proteins not only move cargo along MTs but
also regulate MT dynamics and their best-described function
in this capacity is MT depolymerisation. Kinesin-8, kinesin-14
and kinesin-13 all have depolymerisation activity, but kinesin-
13 motors are the best characterised. Kinesin-13 class members
were initially identified in screens for motors involved in
spindle function (Wordeman and Mitchison, 1995; Walczak et

al., 1996) and in neurons (Aizawa et al., 1992). Depletion/
overexpression experiments revealed the importance of these
motors as catastrophe factors (Walczak et al., 1996; Maney et
al., 1998) and a seminal paper in 1999 characterised their MT-
depolymerising function (Desai et al., 1999). Kinesin-13
activity can be required either simply to deconstruct MTs at
specific cellular sites or to enable coupling of MT
depolymerisation to movement of the cellular cargo to which
the motor is attached (e.g. a chromosome). Here, we discuss
recent work that has shed light on the depolymerisation
mechanism and the roles of kinesin-13 motors in various
cellular processes.

Kinesin-13 domain structure

Kinesin-13 proteins are homodimeric catastrophe factors in
which the kinesin motor domain, which contains the MT- and
ATP- binding sites, lies in the middle of the amino acid
sequence (Fig. 2A). Consequently, this class was originally
termed Kin I (I for internal) or M-type (M for middle) kinesins
(Vale and Fletterick, 1997; Miki et al., 2001; Lawrence et al.,
2004). Sequence analysis of the kinesin-13 motor core shows
it has high sequence similarity to all kinesins, and elements
such as the nucleotide-binding motifs are well conserved (Fig.
2B). High-resolution structure determination confirms that this
sequence conservation is reflected in the 3D structure of the
motor core (Sablin et al., 1996; Ogawa et al., 2004; Shipley et
al., 2004) (Fig. 3A) and electron microscopy (EM) studies
demonstrate that there is a conserved interaction between the
MT lattice and kinesin motors (Moores et al., 2003). N-
terminal to the motor core is a kinesin-13 class-specific stretch
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Fig. 1. MT dynamic instability. (Left to right) GTP-tubulin (dark green) adopts a straight conformation that favours MT polymerisation. MT
polymers are polar with B-tubulin at the plus end and a-tubulin at the minus end. Dynamic instability occurs at both ends but only the plus end
is illustrated for clarity. GTP is hydrolysed within the MT lattice to GDP (light green) but GDP-tubulin is held in place by the lattice until
hydrolysis occurs at the MT end, catastrophe occurs and MTs depolymerise.

of ~60 highly charged residues known as the neck. N-terminal
to the neck region is a 25-30 kD domain involved in subcellular
localisation (Maney et al., 1998; Wordeman et al., 1999;
Walczak et al., 2002; Kline-Smith et al., 2004). Constructs
comprising this domain alone appropriately localise to the site
of kinesin-13 function in vivo, independently of MTs. The C-
terminus contains a predicted coiled-coil region but data
indicate that both N- and C-termini are required for
dimerisation (Maney et al., 2001).

The depolymerisation mechanism

The basis of kinesin-13 motor depolymerisation activity is the
production of the bent, catastrophe-favouring conformation of
tubulin at MT ends (Desai et al., 1999). Theoretically, this
could occur either by selectively stabilising a bent tubulin
conformation or by actively catalysing a straight-to-bent
tubulin transition. MTs stabilised by paclitaxel or the non-
hydrolysable GTP analogue GMPCPP have been used in many
kinesin-13 studies because unstabilised (and therefore
dynamic) MTs are difficult to work with (e.g. Desai et al.,
1999; Maney et al., 2001; Moores et al., 2002; Hunter et al.,
2003; Hertzer et al., 2006). That kinesin-13 motors can readily
depolymerise these stabilised substrates supports the argument
that kinesin-13 motors actively deconstruct their MT substrate
rather than passively relying on inherent conformational
fluctuations in the dimers found at MT ends (the ‘terminal
tubulins’). However, whether this mechanistic conclusion can
be applied to the dynamic MTs that are the in vivo substrates
for these motors remains an open question.

The key step in the kinesin-13 MT-depolymerisation
mechanism occurs as ATP binds, demonstrated by the
unpeeling of stabilised MTs in the presence (and only in the
presence) of the non-hydrolysable ATP analogue, AMPPNP
(Desai et al., 1999; Moores et al., 2002; Shipley et al., 2004;
Moores et al., 2006a). These bent tubulin structures form
because the kinesin-13 motor is trapped in a pre-hydrolysis
state that actively bends the underlying terminal tubulin. This
supports the idea of direct coupling between ATP binding and
terminal tubulin bending (Desai et al., 1999; Moores et al.,
2002; Moores et al., 2006a). ATP hydrolysis is not required for
tubulin release (Desai et al., 1999; Moores et al., 2002; Hunter
et al., 2003) but catalytic depolymerisation requires that the
ATPase cycle be completed for the motor to be released.

Because of the high degree of sequence conservation in the

motor core, the location of the kinesin-13 motor within the
middle of the protein sequence was initially thought to be
responsible for depolymerisation activity. However, more
recent experiments have shown that this property is intrinsic to
the kinesin-13 motor core (Maney et al., 2001; Moores et al.,
2002; Ovechkina et al., 2002). The kinesin-13 motor core, like
all kinesin core structures, is shaped like an arrowhead (Sack
et al., 1999; Shipley et al., 2004) (Fig. 3A). The motor core is
built around a central eight-stranded (-sheet with three o-
helices on each face. As the kinesin motor sits on the MT
surface, the arrowhead tip points towards the MT plus end
while the nucleotide-binding pocket near the base of the
arrowhead faces towards the MT minus end (Fig. 3B).

Examination of the structure of the kinesin-13-MT interface
suggests that the a4 helix of the motor — its principal energy-
transducing element — is directly involved in depolymerisation
because it sits directly over the tubulin intra-dimer interface
and could deform it (Niederstrasser et al., 2002; Moores et al.,
2003; Ogawa et al., 2004) (Fig. 3A,C). Mutation of kinesin-
13-specific residues on or near the a4 helix simply weakens
the motor-MT interaction. Mutation of conserved residues in
loop 2 of the motor, by contrast, does not diminish MT binding,
but these mutants are unable to perform the ATP-dependent
tubulin straight-to-bent step of the depolymerisation cycle
(Ogawa et al., 2004; Shipley et al., 2004) (Fig. 3C). It is
probably the cooperation of kinesin-13-specific residues
throughout the motor core that leads to depolymerisation
activity.

Although the motor core defines the depolymerisation
ability of the kinesin-13 class, it is a poor depolymeriser in
comparison with larger constructs and does not appear to work
at all in vivo (Ovechkina et al., 2002; Ogawa et al., 2004;
Hertzer et al., 2006). By contrast, a monomeric neck+motor
construct has depolymerisation activity similar to that of the
full-length dimeric motor both in vitro and in vivo (Maney et
al., 2001; Ovechkina et al., 2002; Hertzer et al., 2006). The
neck region has a high positive charge, and point mutations that
maintain this retain depolymerisation function (Ovechkina et
al., 2002). The motor-proximal third of the neck sequence has
been visualised at atomic resolution and forms an a-helix along
the side of the motor domain, pointing towards the MT surface
(Ogawa et al., 2004) (Fig. 3C). Recent work has demonstrated
that the neck is likely to be important during the tubulin
deformation step. We observed that neck+motor constructs do
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not release tubulin from MT ends on ATP binding — as is seen
for the motor core (Moores et al., 2002) — but that tubulin
protofilaments, nevertheless, form bent curls around the motor
(Moores et al., 2006a). Our current hypothesis is that the neck
acts as an additional tether to the MT wall but its exact
contribution to depolymerisation efficiency in the context of
the full-length dimer remains to be determined.

Recognising MT ends

All kinesin-13 constructs from every species examined
depolymerise MTs at both plus and minus ends, which implies
an inherent apolarity in their mechanism. Given their
depolymerisation activity, these motors must discriminate
against binding sites on the MT lattice and preferentially
associate with MT ends, their true substrates (Desai et al.,
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1999; Hunter et al., 2003). The mechanism of end recognition
is unknown but, presumably, terminal tubulins have increased
flexibility and distinct binding surfaces that facilitate binding
(Fig. 4). In vitro experiments have shown that the full-length
motor quickly finds MT ends (see below) but the kinesin-13
motor core is not efficient at this and readily decorates the MT
lattice (Moores et al., 2003). The experiments that characterise
lattice binding by the core are instructive, however, since they
demonstrate that (at least for the core) the ATPase activity of
the kinesin-13 motor is largely inhibited when the motor is
bound to the lattice. Indeed, ADP release is induced on binding
of the motor core to the lattice (Moores et al., 2003) but ATP
cannot then bind to the motor. Inhibition of ATP binding has
been observed kinetically (Hekmat-Nejad and Sakowicz, 2004)
and is consistent with the absence of conformational change in
the motor-MT complex on binding to AMPPNP
(Moores et al., 2003). This supports the idea
that ATP binding is coupled to bending of the
terminal tubulin. End-specific ATPase activity
might be attributable to the class-specific
tertiary structure of the motor core, in which the
convex kinesin-13 MT-binding surface seems
to complement the presumed flexibility of
terminal tubulins (Ogawa et al., 2004; Shipley
et al., 2004) (Fig. 3C). Neck+motor constructs
target MT ends but they do so less efficiently
than the full-length motor (Hertzer et al., 2006),
which again suggests that additional elements
in either the N- or C-terminal domains enhance
end recognition.
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HeRinl B I =t ATPase cycle of the motors. In fact, the kinesin-
ok r . I 13 motor core does not discriminate at all
Daniplia M < AR LY R between MT ends and dimeric tubulin and its
ATPase activity is stimulated equally by both
(Moores et al., 2003). By contrast, the ATPase
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Fig. 2. Kinesin-13 molecular architecture.
(A) Kinesin-13 domain organisation. The same
HeKind M colour scheme of the neck+motor region is used
g;g{g:ﬁc SMETO M ggﬂi H.Bf throughout the figures. (B) Sequer}ce a}lignment of
DMK1ploa DIGKOQ 1JKE§.EL£R£’ v gg\ﬂ-ﬁ 1o neck+motor constructs of select kinesin-13 motors
with the motor core from human kinesin-1. The
nucleotide-binding motifs, N1-N4, are as described
HeKinl . by Sablin et al. (Sablin et al., 1996). The alignment
HeMCAK 4 SEADROTRM was perform_ed u§ing T—_Coffee (Notredame etal.,
DMK1p59c 1) S[SADRQTRLEGSE 2000) and visualised using ESPript
DHKiploa i Bahons et TE oy (http://espript.ibcp.fr/ESPript/ESPript/index.php).
Sequences used: Homo sapiens Kinesin-1, X65873;
i Homo sapiens MCAK, Q99661; Homo sapiens
HsKinl KIF2A, 000139; Drosophila melanogaster
i Rpvi - M KLP59C, AE003459; Drosophila melanogaster
gﬁigig: b= sl KLP10A, AE003485; Plasmodium falciparum
P£fkinl3 AN slcc RY S SEIVKN PFL2165W, AEQ014851.
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times more effectively by MT ends than by tubulin
heterodimers (Hunter et al., 2003; Hertzer et al., 2006). This
once again reinforces the idea that components that contribute
to depolymerisation efficiency lie outside the motor core,
residues at the extreme C-terminus of the full-length motor
being strongly implicated in end discrimination (Moore and
Wordeman, 2004a).

Kinesin-13 dimers move rapidly along the MT lattice by 1D
diffusion (Hunter et al., 2003; Helenius et al., 2006) (Fig. 4).
This movement occurs in the post-hydrolysis, ADP.Pi state of
the motor. It does not require additional rounds of ATP binding
and hydrolysis and is, of course, more efficient than 3D
diffusion in allowing the motor to get to MT ends. Importantly,
this 1D diffusion is not directional and therefore does not
favour one end of the polar MT. However, because of this non-
directionality and because the motor can change direction
during a single diffusive interaction, the motor will not
necessarily ever find the end of longer MTs. The kinesin-13 N-
terminal domain targets the protein to specific sites in the
absence of MTs in vivo, so localisation to MT ends could occur
independently of such lattice-based diffusion (Maney et al.,
1998; Walczak et al., 2002). However, kinesin-13 molecules
have been observed along MTs in cells and cell extracts
(Walczak et al., 1996; Wordeman et al., 1999; Moore and
Wordeman, 2004a), which suggests that transient interaction
with the lattice is important in vivo.

Convex

MT-binding

surface of motor
' complements

flexible surface
I of MT end

Fig. 3. Kinesin-13 motor domain structure.

(A) 3D ribbon structure of the Plasmodium
falciparum kinesin-13 motor core (Shipley et
al., 2004). Orthogonal views are shown in
which the ‘front’ view is as if the MT surface
were behind the motor domain; the top of the
motor domain would point towards the MT plus
end. The a-helices are shown in dark blue and
are individually labelled and the B-sheets are
shown in light blue. The pdb code for this
structure is 1RY6. (B) Schematic of the
interaction between the MT lattice and a kinesin
motor domain. (C) 3D ribbon structure of the
Homo sapiens MCAK neck+motor construct
(Ogawa et al., 2004). The visible portion of the
neck region is shown in orange but only
represents about a third of the total neck
sequence (see alignment in Fig. 2B). The left-
hand view shows the front of the motor and the
right-hand view shows a 90° rotation, as if
viewing the motor-MT interaction from the side.
The green line indicates where the MT surface
would be and shows that the curvature of the
motor domain would match the more curved
surface of flexible tubulin dimers at MT ends.
The pdb code for this structure is 1V8K. Atomic
structures were displayed using PyMOL
(http://www.pymol.org).

The dimeric motor

Why are these motors dimeric? Dimer formation allows motile
kinesin-1 motors to step processively along MT tracks, enabling
long-range cargo transport (Vale and Milligan, 2000). By
contrast, why kinesin-13 needs to be dimeric is unclear. A recent
study showed that the affinity for tubulin heterodimers of a
monomeric neck+motor construct is higher than that of the
dimeric full-length motor (Hertzer et al., 2006). Dimeric kinesin-
13 motors might therefore be optimally efficient depolymerisers
because they can more readily detach from the products
of depolymerisation (tubulin dimers). However, it is also
plausible that the availability of two heads enables processive
kinesin-13-catalysed depolymerisation — i.e. removal of
successive tubulin dimers by a single kinesin-13 molecule
(Hunter et al., 2003; Helenius et al., 2006). Processive dimeric
kinesin-13-catalysed depolymerisation of GMPCPP- and
paclitaxel-stabilised MTs has been observed, although the
number of ATP molecules required per terminal tubulin depends
on the means of stabilisation (Hunter et al., 2003). These
observations again speak to the question of whether artificially
stabilised MTs reflect these enzymes’ true, dynamic substrate —
for example, in a dynamic MT there might be a stabilising cap
of only one to two GTP-tubulins per protofilament and so only
these would need to be removed by kinesin-13 to initiate
catastrophe. Processivity may also vary between different
kinesin-13 motors. However, processivity would certainly have
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Fig. 4. The kinesin-13 ATPase cycle. Kinesin-13 motors use ATP to
depolymerise MTs and their ATPase cycle is controlled by whether
depolymerisation can (at MT ends) or cannot (on the MT lattice)
occur. The MT end is thought to have distinct structural and/or
conformational properties that allow it to be recognised by kinesin-
13 motors and +TIPs. (It is these distinct properties that are believed
to be shared, to some extent, by individual tubulin heterodimers and
explains why the ATPase activity of kinesin-13 motors can be
stimulated by them.) In the diagram, terminal tubulins are depicted
with dotted outlines. On the left side, the behaviour of a kinesin-13
motor core is illustrated. The nucleotide state of this motor core in
solution is not known but when it binds the MT lattice, ADP is
released; a conformational change that presumably corresponds to
this release step is observed in cryo-EM maps (Moores et al., 2003).
However, the ATPase activity of the motor is inhibited by the lattice
and no further conformational changes are seen, which supports the
idea that the ATPase cycle of the motor is blocked on the lattice prior
to ATP binding (Moores et al., 2003). At the MT end, however, the

ATP A motor ATPase activity is stimulated, which suggests that ATP can
& H bind. The ATP binding step (mimicked by AMPPNP)
: is the only point at which bent tubulin intermediates,
. 1D representing the active deformation of the terminal
A : diffusion tubulins by the kinesin motor, are observed (Moores
v : ATP t et al., 2002). By contrast, dimeric kinesin-13 (on the
ADP : ( . no right) in solution contains ADP.Pi and undergoes 1D
: required) diffusion along the lattice in this nucleotide state;
. ATP is not required for this process (Helenius et al.,
v 2006). Once at the MT end, because ATP is required

No change
of nucleotide
state

the mechanistic advantage that the motor remains attached to its
substrate and presumably allows any cellular cargo (e.g.
chromosomes) to maintain contact with the MT too.

The tubulin tail

Aspects of the MT substrate have also been examined. The
acidic tubulin C-terminal tails (CTT) are important for
processivity of motile kinesins and for dynein (Wang and
Sheetz, 2000) and they are also important for various aspects
of kinesin-13-catalysed depolymerisation. The 3-tubulin CTT
is required for tubulin bending by the motor core but removal
of these residues does not affect lattice binding (Moores et al.,
2002). CTTs are also involved in the depolymerisation
mechanism of full-length kinesin-13 but their importance
for the full-length motor is less clear. 1D diffusion and,
consequently, depolymerisation is slowed when the CTTs
(a and/or ) are removed (Helenius et al., 2006), whereas
other work has shown that the CTTS are essential for
depolymerisation by the dimeric motor (Niederstrasser et al.,
2002). Whether the requirements for the CTTs by different
constructs reflect related aspects of kinesin-13 function is
uncertain.

The effects of other MT-associated proteins
In many cases, the reported effects of overexpression and/or

for depolymerisation, presumably ADP and Pi must
be lost from at least one motor domain before ATP
can bind and depolymerisation can occur.
Presumably, there is a similar coupling between ATP
binding by the dimer and bending of the terminal
tubulin (Desai et al., 1999).

depletion of a kinesin-13 on other MT regulators (and vice versa)
are indirect and occur because the finely balanced forces present
in vivo are disrupted (see below). However, several direct
effectors/antagonists of kinesin-13 function have been
characterised in simpler in vitro systems. The MCAK activator
ICIS (inner centromere Kin I stimulator) localises to the
centromere in a kinesin-13-dependent fashion (Ohi et al., 2003).
ICIS itself binds to MTs and stimulates the already potent
depolymerising activity of kinesin-13 in vitro through an
unknown mechanism. In vivo, its function may be linked to the
specific localisation and regulation of depolymerising activity
(see below). By contrast, the proposed MT-stabilising activity of
XMAP215, a well-conserved MT-associated protein (MAP), has
been shown to counter kinesin-13 depolymerisation, and the
combined activities of XMAP215 and kinesin-13 alone can
generate MT dynamics similar to those seen in vivo (Tournebize
et al., 2000; Kinoshita et al., 2001; Holmfeldt et al., 2004;
Noetzel et al., 2005). The nature of the XMAP215-MT
interaction is complex and this may be reflected in its ability to
balance rather than completely block kinesin-13 activity.

The classical neuronal MAP tau inhibits kinesin-13 (Noetzel
et al., 2005). Tau is thought to stabilise MTs by binding along
protofilament crests (Al-Bassam et al., 2003; Santarella et al.,
2005) and therefore tau and its relatives probably competitively
block the kinesin-13-binding site. Whether this occurs at MT
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Fig. 5. Roles of kinesin-13 motors during mitosis. (A) Schematic of the stages of mitosis when kinesin-13 motors are known to be active.
Chromosomes are shown in blue with a black kinetochore, spindle MTs are in green, centriole pairs are in dark green and the location of active
kinesin-13 motors is indicated by red asterisks. (B) Localisation of KLP10A (mainly at the spindle poles) and KLP59C (mainly at the
kinetochore) during cell division in Drosophila S2 tissue culture cells. Bar, 5 mm. Reprinted from Rogers et al. (Rogers et al., 2004) with

permission from Macmillan Publishers Ltd.

ends, where the effect on kinesin-13 depolymerisation will
presumably be direct, or tau just inhibits the motor’s diffusive
search for MT ends along the lattice is not yet known. Tau
requires tubulin CTTs for a strong interaction with MTs
(Santarella et al., 2004), which further reinforces the overlap
of binding requirements with kinesin-13. By contrast, the
neuronal MT-stabilising protein doublecortin does not block
kinesin-13 activity, probably because it binds in between the
MT protofilaments and so does not impede the MT—kinesin-13
interaction (Moores et al., 2004; Moores et al., 2006b).

Cellular roles of kinesin-13 motors

The generic depolymerisation mechanism discussed above is
thought to be broadly applicable to all kinesin-13 motors, but
more detailed comparisons will probably reveal mechanistic
refinements for individual class members (Ogawa et al., 2004;
Mennella et al., 2005; Moore et al., 2005). Indeed, when one
considers the cellular roles of these kinesins, the picture
becomes very complicated. Roughly equivalent class members
can be identified in different organisms (Table 1) but the
functional parallels frequently break down because the
experimental systems and the roles of the individual kinesin-
13 motors, even among vertebrates, are not identical.
Nevertheless, the evidence for the involvement of kinesin-13

motors in both global and local control of MT dynamics is
clear, and we outline this, in general terms, below.

Kinesin-13 in cell division

The MT cytoskeleton undergoes a dramatic transformation
when cell division begins. The characteristic interphase radial
MT array completely disappears and the highly dynamic
bipolar mitotic/meiotic spindle forms (Fig. 5). Kinesin-13
motors are found, in part, as a soluble pool in cells.
Perturbation of this pool disrupts the spindle, which is
consistent with a role for kinesin-13 in global regulation of MT
dynamics (Walczak et al., 1996; Maney et al., 1998; Kline-
Smith and Walczak, 2002; Rogers et al., 2004). The spindle is
maintained by the balance of many forces. Its complexity
makes functional dissection difficult, because many
compensating mechanisms prevent failure of this important
cellular structure. Nevertheless, key and, in some cases,
conserved functions have been assigned to kinesin-13 class
members.

Probably the most clear-cut role is at spindle poles and
reflects the importance of these in initiation of spindle
bipolarity. Depletion of kinesin-13 motors in multiple
organisms results in formation of monopolar spindles or
unusually long, MT-dense bipolar spindles (Walczak et al.,
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Table 1. Kinesin-13 nomenclature

Principal cellular location

Cell division

Organism Pole Kinetochore Other Unknown Selected references
Mammals (H. sapiens, KIF2A (formerly KIF2C/MCAK (mitotic KIF2B Aizawa et al., 1992; Wordeman and
C. griseus, KIF2) centromere associated Mitchison, 1995; Maney et al.,

M. musculus, protein) 1998
R. norvegicus)
X. laevis XKFI2 XKCM1 (Xenopus Walczak et al., 1996; Desai et al.,
kinesin central motor 1999
1), now XMCAK —
also strongly localises
at poles
D. melanogaster KLPI0A KLP59C KLP59D Goshima and Vale, 2003; Rogers et
al., 2004
C. elegans CeMCAK CeMCAK Oegema et al., 2001
P. falciparum PFL2165w Moores et al., 2002
(motor
core=pKinl)
A. thaliana At3g16630
At3g16060

C. fusiformis (diatom)

DSK1 (diatom
spindle kinesin 1)

Wein et al., 1996

Classification by location during cell division is arbitrary and, at best, approximate because of the multiple locations at which these motors are found, but
is helpful for functional differentiation. For more detailed phylogenetic analysis, please consult the Kinesin home page (http://www.proweb.org/kinesin/).

1996; Goshima and Vale, 2003; Gaetz and Kapoor, 2004;
Ganem and Compton, 2004; Rogers et al., 2004; Goshima et
al., 2005; Zhu et al., 2005; Laycock et al., 2006). These
phenotypes are consistent with the need for regulated MT
growth at spindle poles. Pole-based kinesin-13 motors may
also act in anaphase to depolymerise the minus ends of
kinetochore MTs, contributing to poleward flux and chromatid
separation (Rogers et al., 2004; Rogers et al., 2005). However,
the role of poleward flux in anaphase is very system-dependent
and, consequently, the generality of this aspect of kinesin-13
function is unclear (Ganem et al., 2005).

At the other end of spindle MTs, kinesin-13 motors are also
found at the kinetochore and several roles are ascribed to them
at this location. The kinetochore consists of distinct domains —
the centromeric, DNA-proximal region, the inner kinetochore
and the outer kinetochore plate, where spindle MTs attach
(reviewed in Maiato et al., 2004; Moore and Wordeman,
2004b; Chan et al., 2005; Parra et al., 2006). Kinesin-13 motors
are believed to be active at all these sites. Depletion of
centromeric kinesin-13 (by overexpression of a construct
containing only the N-terminal localisation domain) results in
several distinct phenotypes. In mammalian cells (hamster),
MCAK depletion causes a trailing-chromatid defect in
anaphase, which supports a model in which MCAK
progressively depolymerises spindle MTs from their plus ends
and drags the chromatid to which they are attached towards the
spindle poles during anaphase (the ‘Pac-Man’ model) (Maney
et al,, 1998; Sharp and Rogers, 2004). Rogers et al. have
proposed a similar function for KLP59¢ on the basis of the
effects of its depletion in Drosophila (Rogers et al., 2004), in
which the rate of chromatid separation during anaphase is
reduced.

A role in correction of inappropriately attached pre-
metaphase chromosomes has also been assigned to centromeric
kinesin-13 motors (Kline-Smith et al., 2004). Depletion of
kinesin-13 from centromeres generates lagging chromatids,
despite normal rates of chromatid movement (rat kangaroo

MCAK in PtK2 cells). In these depleted cells, correlated light
and EM studies showed that incorrectly attached MTs ran
laterally along the surface of kinetochores on unaligned
chromatids. This suggests that kinesin-13 at the centromere
prunes away inappropriately attached MTs (merotelic and
syntelic) and allows correct chromosome congression and
subsequent accurate anaphase. Some aberrant MT attachments
do not significantly perturb the tension across the sister
chromatids and, therefore, are not detected by the spindle
checkpoint. Anaphase proceeds even when such incorrect
attachments are present so this error correction by kinesin-13
is particularly important.

Regulation of kinesin-13 motors (specifically MCAK) at the
kinetochore by the aurora B kinase is also a focus of attention
(Andrews et al., 2004; Lan et al., 2004; Ohi et al., 2004; Parra
et al., 2006). Aurora B has a general role promoting chromatid
biorientation and it phosphorylates MCAK on several
serine/threonine residues, including within the neck, thereby
inactivating it. Aurora B activity is required for localisation of
MCAK to the kinetochore and controls its movement between
kinetochore subdomains through prophase and metaphase.
Unaligned chromatids that are not under tension have a
rapidly exchanging population of phosphorylated and
dephosphorylated MCAK at their centromeres, whereas
dephosphorylated MCAK is located towards the outer
kinetochore in aligned chromatid pairs under tension. Thus,
MCAK activity is dynamically controlled and localised.
These MCAK sub-populations presumably perform specific
activities, such as MT attachment error correction at the
centromere during prometaphase and force generation during
anaphase at the kinetochore. Such subtleties of regulation may
also be controlled by ICIS (Ohi et al., 2003). All that is certain
is that the known regulatory mechanisms controlling kinesin-
13 location and activity represent the tip of the iceberg.

Within the spindle, the different kinesin-13 activities do not
operate independently; indeed, different compensatory effects
have been observed when DNA- or pole-based kinesin-13
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activities are perturbed. For example, in Drosophila, KLP10A
and KLP59C work co-ordinately at either end of kinetochore
MTs to bring about accurate chromosome segregation during
anaphase (Rogers et al., 2004). If both Kif2a and MCAK are
removed in vertebrate cells, by contrast, poleward flux is
eliminated but mitotic progression is unperturbed. However,
lagging chromatids are observed in anaphase, presumably
because the centromere-based, error correction activity of
MCAK has also been eliminated from these spindles (Ganem
and Compton, 2004; Ganem et al., 2005). Thus although the
individual roles of kinesin-13 motors are gradually being
revealed, when we consider the combination of force-
generators within the spindle, the picture is still very complex
and varies from organism to organism.

Kinesin-13 in interphase cells

Attention has recently turned to the activities of kinesin-13
motors during interphase. Their role in control of global MT
turnover has already been mentioned, but there are also more
subtle regulatory mechanisms at work and this is a fast-
developing area. A recent study, for example, has revealed that
a kinesin-13 (KIF2A) plays an essential role in brain
development in vivo by controlling neurite outgrowth (Homma
et al., 2003). Additionally, recent studies have highlighted the
association of kinesin-13 motors with the plus ends of growing
MTs as they approach and interact with the cell periphery
(Menella et al., 2005; Moore et al., 2005). This apparent
paradox seems to occur through recruitment of kinesin-13 by
MT plus-end tip tracking proteins (+TIPs) (Banks and Heald,
2004; Akhmanova and Hoogenraad, 2005; Menella et al.,
2005; Moore et al., 2005). Presumably, kinesin-13 motors ride
growing MT plus ends in an inactive state until the appropriate
cellular cue activates them. Individual kinesin-13 motors
appear to be regulated in different ways, and it will be
interesting to discover whether their different roles reflect
genuine differences in their enzymatic activity or are the
consequence of modulation by other MT-binding proteins.

Other kinesin depolymerisers

As mentioned above, MT depolymerisation activity has also
been observed in the case of kinesin-8 and kinesin-14
classes (reviewed in Ovechkina and Wordeman, 2003).
Depolymerisation by kinesin-14 motors, traditionally seen as
minus-end-directed motors, has been described from one or
other MT end but is inhibited on stabilised MTs (Endow
et al., 1994; Chu et al.,, 2005; Sproul et al., 2005). The
depolymerisation activity of kinesin-8 (shown to have plus-
end-directed motility) (Pereira et al., 1997) was proposed on
the basis of the effect of knockout and knockdown experiments
on cell division in vivo. Here, the reduction of kinesin-8
activity has a deleterious effect on spindle bipolarity (Goshima
and Vale, 2003; Zhu et al., 2005) and chromosome congression
and separation (West et al., 2001; Garcia et al., 2002; West et
al., 2002). Detailed studies, such as those published recently
(Gupta et al., 2006; Varga et al., 2006), are required if we are
to understand the role of depolymerisation by these motors
and, in particular, how they coordinate directional motility and
depolymerisation. Data concerning kinesin-13 motors provide
a framework for functional and mechanistic comparison. What
is particularly tantalising about depolymerising kinesins is that
yeast genomes (S. cerevisiae and S. pombe) encode both

kinesin-8 and kinesin-14 motors but not kinesin-13. Do
kinesin-8 and kinesin-14 motors perform the functions in
yeasts that kinesin-13 motors do in higher eukaryotes, or are
the MT cytoskeletons of higher eukaryotes sufficiently
different that kinesin-13 motors have evolved specifically to
perform the necessary roles? Future studies will address these
important questions.

Conclusion and perspectives

Ultimately, the key to defining the roles of kinesin-13 in vivo
will hinge on understanding the context in which they operate
and the impact of other MT-associated factors on their activity.
In the meantime, there is plenty still to uncover about their
molecular mechanism, particularly the role of the dimer in the
depolymerisation mechanism. While it is now more than 20
years since the activity of kinesin motors was first defined (Vale
et al., 1985), it is less than 10 years since the depolymerising
kinesin-13 motors were characterised (Desai et al., 1999) and
it is encouraging to see how far we have come.
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