
Introduction
The Rho family of small GTPases includes the products of 22
human genes, the best-known members being RhoA, Rac1 and
Cdc42 (Wennerberg and Der, 2004). Rho proteins are
important regulators of multiple cellular activities. These
include control of cell morphology, polarity, migration,
adhesion to extracellular matrix proteins or other cells,
proliferation, apoptosis, tumorigenesis, phagocytosis, vesicular
transport and transcription (Aznar et al., 2004; Erickson and
Cerione, 2004; Etienne-Manneville and Hall, 2002). Rho
proteins are key regulators of cytoskeleton reorganization,
controlling actin polymerization and microtubule dynamics.
For example, Rac activation induces actin polymerization and
integrin focal complex assembly at the cell periphery, leading
to formation of lamellipodia. Rac is preferentially activated at
the leading edge of migrating cells and its activity is crucial
for cell migration (Etienne-Manneville and Hall, 2002). Rac
also regulates phagocytosis, probably by mediating changes in
the cytoskeleton (Chimini and Chavrier, 2000).

Rho proteins are active when bound to GTP and inactive
when bound to GDP. Conversion of the GDP-bound proteins
to the active state is catalyzed by guanine nucleotide exchange
factors (GEFs). The classical GEFs for Rho GTPases share a
common motif, the Dbl-homology (DH) domain, which
mediates nucleotide exchange (Cerione and Zheng, 1996). In
mammals, 69 DH-domain-containing proteins have been
identified, illustrating the need for selective activation of Rho
proteins by different signaling pathways under diverse
conditions (Rossman et al., 2005; Schmidt and Hall, 2002).
Until recently, DH-domain-containing proteins were
considered to be the universal Rho-GEFs in eukaryotes. We

review here a non-conventional Rho-GEF protein family
whose members lack the DH domain and instead possess a
novel form of GEF domain.

Identification of a new family of GEFs for Rho
proteins
New Rho-GEFs
GEFs are distinguished from other GTPase-interacting proteins
by their preferential binding to nucleotide-free (nf) GTPases
compared with the GDP- or GTP-bound forms (Cherfils and
Chardin, 1999; Hart et al., 1996). Dock180 was cloned in 1996
as a binding partner for the adaptor protein Crk (Hasegawa et
al., 1996). The Caenorhabditis elegans ortholog of Dock180,
Ced-5, was identified as a protein required for cell migration
and phagocytosis (Wu and Horvitz, 1998), whereas the
Drosophila ortholog, Myoblast city, was identified as a protein
essential for myoblast fusion and dorsal closure (Erickson et
al., 1997). The Ced-5, Dock180 and Myoblast city (CDM)
proteins lack DH domains but indirect observations have
indicated that they activate Rac and associate preferentially
with its nf form (Grimsley et al., 2004; Hasegawa et al., 1996;
Kiyokawa et al., 1998a; Kiyokawa et al., 1998b; Namekata et
al., 2004; Nishihara et al., 1999; Reddien and Horvitz, 2000).
This finding has implicated them as either adaptors that recruit
Dbl proteins or novel Rac GEFs. More recent work has shown
that CDM proteins directly interact with Rac through a newly
identified GEF domain (Brugnera et al., 2002; Cote and Vuori,
2002). Parallel studies have revealed that zizimin1, cloned in
a search for Cdc42 GEFs in fibroblasts, also lacks a DH domain
but activates Cdc42 and selectively binds nf Cdc42 (Meller et
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The Rho family of small GTPases are important regulators
of multiple cellular activities and, most notably,
reorganization of the actin cytoskeleton. Dbl-homology
(DH)-domain-containing proteins are the classical guanine
nucleotide exchange factors (GEFs) responsible for
activation of Rho GTPases. However, members of a newly
discovered family can also act as Rho-GEFs. These CZH
proteins include: CDM (Ced-5, Dock180 and Myoblast
city) proteins, which activate Rac; and zizimin proteins,
which activate Cdc42. The family contains 11 mammalian
proteins and has members in many other eukaryotes. The

GEF activity is carried out by a novel, DH-unrelated
domain named the DOCKER, CZH2 or DHR2 domain.
CZH proteins have been implicated in cell migration,
phagocytosis of apoptotic cells, T-cell activation and neurite
outgrowth, and probably arose relatively early in
eukaryotic evolution.
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al., 2002). Zizimin1 shares sequence similarity with CDM
proteins in two specific regions: CZH1 and CZH2 (Fig. 1). The
CZH2 domain (also called the DOCKER or DHR2 domain) is
the new GEF domain.

Structure and subfamilies
Database homology searches using zizimin1 and Dock180
reveal that they are members of a novel family present in a
wide variety of eukaryotes that we refer to as the CZH proteins
(Fig. 1, Table 1, Table 2). CZH proteins are large polypeptides
that have 1800 to >3100 residues. Most members identified
have both CZH1 and CZH2 domains, the CZH1 domain always
preceding the CZH2 domain (Fig. 1). The exceptions are CZH
proteins in budding yeasts and the Dictyostelium protein
DdDocC, which have just the CZH2 domain (Fig. 1). The two
domains might therefore be functionally linked and, indeed,
our data indicate that the zizimin1 CZH1 domain binds to the
CZH2 domain and inhibits the interaction with Cdc42 (N.M.
et al., unpublished). Note that the phylogenetic trees
constructed by comparison of CZH1 and CZH2 sequences are

similar (Fig. 2). This argues that the CZH1 and CZH2 domains
have generally not moved laterally between proteins during
evolution but have changed gradually in the context of full-
length proteins. The Dock180 CZH1 domain was recently
shown to bind phosphatidylinositol (3,4,5)-trisphosphate
[PtdIns(3,4,5)P3] and mediate targeting of Dock180 to the
leading edge (Cote et al., 2005). Dock180 might therefore
utilize its CZH2 and CZH1 domains to mediate Rac activation
downstream of phosphoinositide 3-kinase (PI3K) in directed
cell migration.

On the basis of domain structure, sequence similarity and
phylogenetic analysis, the CZH family of proteins can be
divided into four subfamilies. Almost all CZH proteins can be
broadly categorized as either zizimin-related or Dock180-
related proteins, because most of their sequences outside the
CZH1 and CZH2 domains have similarity to one of these two
proteins (Fig. 1). The zizimin- and Dock180-related proteins
can each be further divided, resulting in four subfamilies: the
zizimin, zir (for ‘zizimin-related’), Dock180 and Dock4
proteins (Figs 1 and 2, Table 1). Proteins within these
subfamilies exhibit 50-65% identity in amino acid sequence.

Journal of Cell Science 118 (21)
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Fig. 1. Schematic structure of CZH proteins. The CZH1 (CDM-zizimin homology 1), CZH2 (CDM-zizimin homology 2), SH3 (Src homology
3) and PH (pleckstrin homology) domains are displayed. Areas outside the CZH1 or CZH2 domains with similarity to zizimin1 or Dock180 are
hatched or crossed, respectively. Sequences obtained by computational translation are marked by asterisks. The tree represents the hypothetical
evolution of the proteins based on sequence similarity. Ce, Caenorhabditis elegans; Dd, Dictyostelium discoideum; Dm, Drosophila
melanogaster; Hs, Homo sapiens; Neurospora c., Neurospora crassa; S. cerevisiae, Saccharomyces cerevisiae; Trypanosoma b., Trypanosoma
brucei.
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Table 2. Additional CZH proteins
Name Species GenBank GI no. Length Comments

Early eukaryotes Giardia lamblia 29250065 3123 A Rac protein in Giardia lamblia (GI: 29249145)* 
Giardia lamblia 29250082+ ?

29250083 
Tb-292 Trypanosoma brucei 1078707 2550 Transmembranal protein (Lee et al., 1994). A Rho protein 

(TcRho1) in Trypanosoma cruzi
Leishmania major 70799546 2955 *

Plants SPIKE1 Arabidopsis thaliana 18496703 1830
Oryza sativa (rice) 34902156 1852 *

Amoeba Dd ZizA Dictyostelium discoideum 66820478 2284 * 
Dd ZizB Dictyostelium discoideum 66800771 2082 *
Dd ZizC Dictyostelium discoideum 19569943 2621 * 
Dd ZizD Dictyostelium discoideum 66827367 2162 * 
Dd DocA Dictyostelium discoideum 66801748 2221 * 
Dd DocB Dictyostelium discoideum 60474615 2176 * 
Dd DocC Dictyostelium discoideum 66801673 1728 * 
Dd DocD Dictyostelium discoideum 66809471 1924 * 

Fungi Neurospora crassa 32418746 2182 *
Cryptococcus neoformans 57229287 2117 *
Aspergillus nidulans 40747406 2132 *
Magnaporthe grisea 38105229 946 *
Gibberella zeae 42551283 2030 *
Ustilago maydis 46096729 2284 *
Candida albicans 46442962 1914 *
Candida albicans 46442963 1768 *
Eremothecium gossypii 45190708 1902 *

YLR422wp Saccharomyces cerevisiae 6323454 1932 Similar genes in Saccharomyces paradoxus, Saccharomyces 
bayanus and Saccharomyces mikatae*

*The sequence was obtained by computational translation.
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Fig. 2. Phylogenetic analysis of the CZH1 (a) and CZH2 (b) domains. Multiple alignments were built using the CLUSTALW program and the
distances between all pairs of sequences in the multiple alignment were determined (Thompson et al., 1994). Phylogenetic trees were generated
using the neighbor-joining method (Saitou and Nei, 1987) and trees were drawn using the TREEVIEW program (Page, 1996). Bar, 0.1
nucleotide substitutions per site. At, Arabidopsis thaliana; Ce, Caenorhabditis elegans; Dd, Dictyostelium discoideum; Dm, Drosophila
melanogaster; Hs, Homo sapiens; Sc, Saccharomyces cerevisiae. 
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Proteins from the zizimin subfamily have a pleckstrin-
homology (PH) domain close to the N-terminus. PH domains
have been implicated in targeting of proteins to membranes and
in protein-protein interactions (Lemmon and Ferguson, 2000).
Preliminary results indicate that the PH domain also targets
zizimin 1 to membranes (N.M., M. R. Westbrook and M. A.
Schwartz, unpublished). Zizimin proteins exist predominantly
as dimers and the Dock180 proteins are likely to dimerize as
well (Meller et al., 2004; Yin et al., 2004). Although the zir
proteins lack a PH domain, they show ~30% identity to zizimin
proteins along most of their sequence.

Dock180 and Dock4 proteins have an N-terminal Src
homology 3 (SH3) domain and divergent C-termini containing
proline-rich motifs that bind SH3 domains to mediate intra- or
inter-molecular protein interactions (Mayer, 2001). The
Dock180/Dock4 subfamilies are more closely related to each
other compared with the zizimin/zir proteins, sharing a similar
domain structure and 40% sequence identity.

The CZH2 domain: a novel GEF domain
GEF activity and selectivity for Rho protein subfamilies
Three distinct observations link the CZH2 domain to activation
of Rho proteins. First, deletion or mutation of this domain
abolishes GTPase activation by CZH proteins in cells
(Brugnera et al., 2002; Meller et al., 2002; Namekata et al.,
2004). Second, bacterially expressed CZH2 domains from
zizimin1 or Dock180 proteins bind to bacterially expressed nf
Rho-family GTPases, which indicates that the interaction is
direct (Brugnera et al., 2002; Cote and Vuori, 2002; Meller et
al., 2002). Third, CZH2 domains can catalyze nucleotide
release from Rho GTPases in vitro (Cote and Vuori, 2002).

The selectivities of different CZH proteins for Rho-family
GTPases, in cells and in vitro, have been tested in binding and
GTPase-activation assays. The substrates for the Dock180 and
Dock4 subfamilies are Rac proteins; zizimin 1 and zizimin 2
interact selectively with Cdc42; and the substrates for zizimin
3 and zir proteins remain to be identified (Table 1).

Structure of the CZH2 domain
Although the exact boundaries of the CZH2 domain remain to
be determined, it is clearly very large, containing 450-550
residues (DH domains contain only ~180 residues). The
sequence conservation shared by CZH2 domains is low: there
is 16-17% identity in amino acid sequence between the
zizimin1 and Dock180/Dock4 proteins (see supplementary
material Fig. S1). This is comparable with DH domains, which
share 19-29% sequence identity. Despite this, the three-
dimensional structures of different DH domains are very
similar (Schmidt and Hall, 2002) and this could also be the
case for CZH2 domains. The Salmonella typhimurium SopE
protein is another example of a GEF for Rho proteins that bears
no DH domain (Buchwald et al., 2002; Hardt et al., 1998;
Rudolph et al., 1999; Schlumberger et al., 2003). Note that
there is no sequence homology between CZH2 domains and
the SopE GEF domain.

Zizimin1 dimerizes through its CZH2 domain. Each dimer
has two individual Cdc42-binding sites, and kinetic
measurements have demonstrated increased binding affinity
for Cdc42 at higher Cdc42 concentrations (Meller et al., 2004).

This suggests positive cooperativity in which binding of Cdc42
to one site increases the affinity of the second site. It may
represent a mechanism for regulation of GEF activity by the
local GTPase concentration.

Multiple alignment of CZH2 domain sequences (see
supplementary material Fig. S1) reveals stretches of similarity
between the Dock180- and zizimin-related proteins along most
of the domain, and the predicted secondary structures are
mostly similar. Yet, there is also large variability, and the
conserved areas are separated by non-conserved stretches that
vary substantially in length between the two groups. Therefore,
although the general functions of the CZH2 domains in the
Dock180- and zizimin-related proteins are similar, some
aspects of the mechanism may differ significantly.

ELMO: a Dock180 cofactor
Genetic studies in C. elegans have identified the CED-
12/ELMO protein as an important component upstream of Rac
in signaling pathways in which Rac is activated by Dock180
(Gumienny et al., 2001; Wu and Horvitz, 1998; Zhou et al.,
2001). ELMO is a ~700 residues protein characterized by
Armadillo repeats in its N-terminal half and PH domain, and
a proline-rich motif toward the C-terminus (Debakker et al.,
2004; Gumienny et al., 2001; Wu and Horvitz, 1998; Zhou et
al., 2001). Although ELMO itself cannot interact with Rac, it
substantially enhances Rac activation by Dock180. Indeed,
ELMO and Dock180 proteins associate directly in mammals,
worms and flies (Brugnera et al., 2002; Gumienny et al., 2001;
Ishimaru et al., 2004; Zhou et al., 2001). The C-terminal part
of ELMO is sufficient to support Rac activation by Dock180
(Grimsley et al., 2004), and engages in at least three different
interactions with Dock180: (1) the ELMO proline-rich motif
interacts with the Dock180 SH3 domain; (2) the ELMO PH
domain interacts with the nf-Rac–Dock180–CZH2 domain
complex; and (3) elements within the last 100 residues of
ELMO (distinct from the proline-rich motif) interact with
elements within the first 357 residues of Dock180 (distinct
from the SH3 domain) (Lu et al., 2004; Lu et al., 2005; Sanui
et al., 2003b). The N-terminal part of ELMO mediates its
targeting to the cell membrane (Debakker et al., 2004;
Grimsley et al., 2004). The ELMO-Dock180 interaction is
required for Dock180-mediated Rac activation, cell migration
and phagocytosis (Brugnera et al., 2002; Debakker et al., 2004;
Grimsley et al., 2004; Gumienny et al., 2001; Katoh and
Negishi, 2003; Lu et al., 2004; Sanui et al., 2003b; Wu et al.,
2001; Zhou et al., 2001).

Three of the five mammalian Dock180-related proteins
tested so far interact with ELMO. This suggests that regulation
by ELMO is a general feature of the Dock180-related proteins
(Grimsley et al., 2004; Janardhan et al., 2004; Sanui et al.,
2003b). Zizimin-related proteins have no similarity to the N-
terminal part of Dock180, which mediates ELMO binding, and
therefore may not interact with ELMO.

Mammals have three ELMO proteins (ELMO1, ELMO2,
ELMO3), of which two have so far been shown to interact with
Dock180 proteins (Grimsley et al., 2004; Gumienny et al.,
2001; Katoh and Negishi, 2003; Sanui et al., 2003b). ELMO
regulates Dock180 function by several means. By binding to
active RhoG, which resides at the cell membrane, ELMO can
target Dock180 to the cell membrane, leading to Rac activation
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(Debakker et al., 2004; Katoh and Negishi, 2003).
Alternatively, the ELMO PH domain can bind to and stabilize
the nf-Rac–CZH2 complex (Lu et al., 2004). Another
mechanism involves the ELMO proline-rich motif. This
relieves a steric inhibition within Dock180, in which the SH3
domain interacts with the CZH2 domain to block binding of
Rac (Lu et al., 2005). Binding of ELMO to the SH3 domain
disrupts the interaction, allowing Rac access. Experiments with
Dock2 and Dock4 indicate that this mechanism might be
common to the SH3-bearing Dock180-related proteins (Lu et
al., 2005).

Dock180 and ELMO have been proposed to function as a
bipartite GEF, and indeed the ELMO PH domain stabilizes the
nf-Rac–Dock180–CZH2 complex (Brugnera et al., 2002; Lu et
al., 2004). However, it is not clear whether, within the ternary
complex, ELMO contacts Rac directly or acts by stabilizing a
Dock180 conformation favorable for Rac binding. Dock180
mutants that do not bind ELMO possess GEF activity (Cote
and Vuori, 2002; Lu et al., 2005), which suggests that ELMO
in fact merely acts as a Dock180 cofactor and the mechanism
for nucleotide exchange is in Dock180 per se.

Signal transduction by CZH proteins
Dock180 and its orthologs

Cell migration
Studies in mammalian cell lines suggest that Dock180
mediates activation of Rac by integrins during cell spreading
and migration (Fig. 3). Binding of integrins to fibronectin (FN)
leads to activation of the tyrosine kinases Src and FAK and
subsequent phosphorylation of the adaptor protein p130CAS.
In turn, p130CAS binds to the Crk SH2 domain, which plays
an important role in migration in many cellular contexts (Cary
et al., 1998; Gu et al., 2001; Honda et al., 1999; Klemke et
al., 1998; Li et al., 2003; Playford and Schaller, 2004; Takino
et al., 2003). Adhesion to FN also induces binding of the
Dock180 proline-rich motif to the Crk N-terminal SH3
domain, leading to formation of a Dock180–Crk–p130CAS

complex, and this can recruit Dock180 to focal adhesions
(Kiyokawa et al., 1998b). Accordingly, overexpression of
these three proteins augments Rac activation, cell spreading
and migration (Cheresh et al., 1999; Kiyokawa et al., 1998a;
Kiyokawa et al., 1998b), whereas mutations in the Crk SH3
domain that abolish binding of Dock180 inhibit activation of
Rac by integrins and cell migration (Gu et al., 2001; Li et al.,
2003). Additionally, a dominant-negative Dock180 mutant, or
knocking down Dock180 expression, inhibits Rac activation,
migration and cell spreading on FN (Cote et al., 2005; Katoh
and Negishi, 2003). Although early studies described CrkII as
a component of this pathway, a more recent study indicates
that a related protein, CrkL, might also be involved (Li et al.,
2003). Note also that, in other studies, the Dock180 proline-
rich motif needed for binding to the Crk SH3 domain appeared
not to be required for induction of random cell migration
(Grimsley et al., 2004), and interactions between Dock180 and
Crk proteins that are independent of the proline-rich motif
were also documented (Kiyokawa et al., 1998b; Nishihara et
al., 2002a).

Laminin-10/11, vitronectin and possibly collagen also
induce cell migration and Rac activation through the
Dock180–Crk–p130CAS complex, which indicates that multiple

integrins utilize this signaling pathway (Cheresh et al., 1999;
Gu et al., 2001; Wu et al., 2005). Dock180 might also be linked
to integrin signaling through paxillin, which binds to Dock180,
probably through Crk (Valles et al., 2004). Furthermore, in
response to lysophosphatidic acid (LPA), Rac can be activated
by Rho through its effector mDia1. The
Dock180–Crk–p130CAS complex is implicated in this pathway.
Growth factors might therefore also utilize this signaling
complex (Tsuji et al., 2002) (Fig. 3).

Dock180 proteins in Drosophila also regulate migration
processes. The myoblast city (Mbc) mutants display defects in
border cell migration during oogenesis and migration of
epidermal cells that result in incomplete dorsal closure during
embryogenesis and incomplete thorax closure during
metamorphosis (Duchek et al., 2001; Erickson et al., 1997;
Ishimaru et al., 2004; Nolan et al., 1998). The migration of
border cells is guided by the platelet-derived growth factor
(PDGF)/vascular endothelial growth factor (VEGF) receptor
ligand PVF in an Mbc-dependent but PI3K-independent
manner (Duchek et al., 2001). The PDGF/VEGF receptor also
regulates thorax closure, and Crk, ELMO, Mbc, Rac and JNK
are all implicated in this pathway (Ishimaru et al., 2004).

Engulfment
Integrins also mediate engulfment of apoptotic cells or
bacteria, and Dock180 is likely to play a role in this process
(Fig. 3). Engulfment of apoptotic cells driven by �v�5
integrins depends on FAK, which associates with the
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Fig. 3. Signal transduction by Dock180. Signalling pathways where
Dock180 mediates Rac activation are displayed. GPCRs, G-protein-
coupled receptors; ECM, extracellular matrix.
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cytoplasmic tail of �5 and induces Rac activation through
Dock180–Crk–p130CAS (Akakura et al., 2004; Albert et al.,
2000; Wu et al., 2005). An additional receptor for apoptotic
cells, the tyrosine kinase Mer, is involved in the process
probably through activation of a Src-family kinase, which
activates FAK (Wu et al., 2005). Engulfment of bacteria by
mammalian cells expressing �1 integrins, which bind to the
bacterial protein invasin, is likely to involve Dock180 as well
(Gustavsson et al., 2004; Wong and Isberg, 2005).

Genetic studies have demonstrated that regulation of cell
engulfment (and migration) processes by Dock180, Crk and
ELMO proteins is conserved in C. elegans (reviewed by
Blelloch et al., 1999; Grimsley and Ravichandran, 2003;
Lehmann, 2001; Reddien and Horvitz, 2004).

The RhoG connection
Dock180 can also mediate Rac activation downstream of the
small GTPase RhoG (see above). This pathway may mediate
integrin-induced Rac activation, cell migration, phagocytosis
and nerve growth factor (NGF)-induced neurite outgrowth
(Debakker et al., 2004; Grimsley et al., 2004; Katoh and
Negishi, 2003). The RhoG and Crk pathways might be
connected, since Crk, Dock180 and ELMO can form a ternary
complex (Gumienny et al., 2001; Wu et al., 2001), and CRK
might regulate interactions between Dock180, ELMO, Rac and
RhoG (Akakura et al., 2005).

Dock2
Dock2 is expressed selectively in hematopoietic cells
including lymphocytes, dendritic cells and possibly others. By
contrast, Dock180 is absent from lymphocytes (Fukui et al.,
2001; Hasegawa et al., 1996, Akakura, 2004; Nishihara et al.,
1999). Studies in knockout mice have demonstrated important
roles for Dock2 in lymphocyte development, homing,
activation, adhesion, polarization and migration processes
(Fukui et al., 2001; Nombela-Arrieta et al., 2004; Sanui et al.,
2003a) (reviewed by Reif and Cyster, 2002). Translocation of
the T-cell receptor (TCR) and lipid rafts to the immunological
synapse is impaired in Dock2-deficient cells (Nishihara et al.,
2002b; Sanui et al., 2003a). Dock2 associates with the TCR
and is required for Rac activation by the receptor. Dock2 also
associates with Vav, a DH-type GEF for Rac that plays a
critical role in formation of the immunological synapse and
Rac activation (Nishihara et al., 2002a). Interestingly, the HIV-
1 protein Nef associates with the Dock2-ELMO1 complex.
This leads to Rac activation and inhibition of T-cell
chemotaxis (Janardhan et al., 2004). Migration requires
localized Rac activation and cell polarization; Nef could
therefore potentially disturb chemotaxis by inducing global
Rac activation.

Dock3 and Dock4
Dock3 (also known as MOCA) is expressed predominantly in
neurons and resides in growth cones and membrane ruffles
(Chen et al., 2005; De Silva et al., 2003; Namekata et al., 2004).
Dock3 overexpression increases morphological complexity and
the number of neurites in differentiating PC12 cells, whereas
downregulation of the protein has an inhibitory effect (Chen et

al., 2005). This suggests that Dock3 promotes neurite outgrowth.
Dock3 expression also increases the level of N-cadherin, leading
to cell-cell adhesion (Chen et al., 2005). Interestingly, mutations
in Dock3 may be associated with attention-deficit hyperactivity
disorder (ADHD) in humans (De Silva et al., 2003).

The gene encoding Dock4 was cloned in a screen for genes
deleted during tumor progression, and in vitro and in vivo
experiments have demonstrated that Dock4 possesses tumor
suppressor properties (Yajnik et al., 2003). Expression of
Dock4 also leads to activation of the small GTPase Rap1 and
enhanced formation of adherens junctions (Yajnik et al., 2003).
Rap1 activation is required for Dock4-mediated adherens
junction formation, which indicates that Rap1 may mediate
Dock4 tumor suppressor activity. However, expression of
Dock4 in cells also leads to activation of Rac (Lu et al., 2005).
Whether the Dock4 interaction with Rap1 and Rac is direct has
not been tested. Given that Dock4 possesses a CZH2 domain
(but not a Rap-GEF domain), and given the high sequence
homology to Dock3 (54% identity), which acts on Rac, Rac
activation by Dock4 is likely to be direct whereas Rap1
activation is probably indirect.

CZH proteins in Saccharomyces cerevisiae,
Dictyostelium and plants
The S. cerevisiae YLR422W gene encodes a CZH protein, and
mutations in YLR422W may affect filamentous growth.
Importantly, the CZH2 domain of YLR422wp can bind to
human Rac (Brugnera et al., 2002), which suggests that the
function of the domain as a GEF for Rho proteins is conserved
in yeast.

Dictyostelium possesses at least eight CZH proteins. Several
of these, like Dictyostelium Rho proteins, are noticeably
divergent from one another (Rivero et al., 2001; Rivero and
Somesh, 2002) (Table 2, Figs 1 and 2). The different
Dictyostelium CZH proteins might therefore correspond to
distinct subgroups of Rho proteins. Dd zizA and Dd zizB
appear to be involved in Dictyostelium development processes
but not in chemotaxis towards cAMP (S.M. and R. Firtel,
unpublished).

Green plants have Rho proteins distinct from those of other
kingdoms (termed ROPs or Aracs), and these constitute a
separate phylogenetic group (reviewed by Valster et al., 2000;
Vernoud et al., 2003; Yang, 2002). Interestingly, there are no
DH proteins in Arabidopsis, and the question of whether ROPs
utilize GEFs, and if so which, has remained open (Valster et
al., 2000). Arabidopsis encodes a single CZH protein, SPIKE1,
that was reported recently to act as ROPs-GEF (Basu et al.,
2005). Interestingly, SPIKE1 was cloned in a screen for genes
controlling cytoskeletal organization, and mutations in SPIKE1
impair localized lateral microtubule clustering and polarized
growth (Qiu et al., 2002). Furthermore, yet another group of
ROP-GEFs has been discovered (Berken et al., 2005) – it is
present exclusively in plants and uses a novel GEF domain that
is unrelated to DH, CZH2 or the SopE GEF domains.

Concluding remarks
Studies conducted in recent years have established CZH
proteins as non-conventional Rho-GEFs. The mechanism for
nucleotide exchange by CZH proteins, and the differences
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between the Dock180-related and zizimin-related proteins are
not known. We hope that structural studies will shed some light
on this issue. Whether ELMO is required for GEF activity in
all cellular situations is another open question. Although a few
biological roles of some of these GEFs have been revealed,
much more is missing. Four of the eleven mammalian CZH
proteins are not fully cloned, and the roles of most of the cloned
members are not known. Data from CZH protein knockouts
and knockdown experiments will probably address this issue
in the coming years. The direct and indirect upstream
regulators of CZH proteins and the downstream mediators of
their GTPases are also mostly elusive. The CZH proteins
studied so far activate Rac or Cdc42, and regulate actin
polymerization. Could they also participate in non-actin-
dependent roles of these GTPases? And do any CZH proteins
act on Rho itself or other Rho-family GTPases?

DH-domain-containing proteins outnumber CZH proteins by
3–6-fold (Rossman et al., 2005). It is unclear why there are two
classes of GEF and why the DH protein family expanded more
over evolutionary time than did the CZH protein family. The
information gathered so far suggests that principles of
regulation of Dbl proteins, such as autoinhibition of GEF
activity, formation of complexes with signaling proteins, and
translocation within cellular compartments to induce activation,
also apply to CZH proteins. Detailed kinetic studies with full-
length proteins might reveal significant differences in the
exchange mechanisms of DH and CZH proteins. Note also that
DH-domain-containing proteins are much more versatile in
their domain compositions (Schmidt and Hall, 2002). This may
have provided an advantage that hooked them into different
signaling pathways and contributed to their expansion.

We thank Kodi Ravichandran and Dan Szymanski for sharing data
prior to publication and for helpful discussions and comments. We
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