
Introduction
The importance of cell migration is evident from both the
physiological processes that depend on the regulated
movement of cells, including embryonic development, immune
responses and tissue maintenance and repair, and from the
disease states driven by aberrant cell motility, such as chronic
inflammation, vascular disease and tumor metastasis. Not
surprisingly, immense effort has been directed towards
furthering our understanding of this complex process. These
efforts have provided us with the current concept of cell
migration, which comprises a cycle of several highly
coordinated and regulated steps (Lauffenburger and Horwitz,
1996; Ridley et al., 2003). In response to various migratory
cues, directional movement is initiated by polarization of the
cell, as defined by the spatial segregation of molecular
machineries that control the different stages of the migratory
cycle. At the front of the cell, actin polymerization drives
membrane protrusion to form the leading edge. Subsequently,
the leading edge is stabilized by attachment to the extracellular
matrix (ECM) through integrin-mediated adhesion complexes,
which not only link the ECM to the actin cytoskeleton but also
function as signal transduction centers that modulate cell
migration. Once coupled to adhesion complexes, the actin
cytoskeleton can generate the forces necessary to translocate
the cell body forward. Finally, adhesive contacts at the rear of
the cell must be disassembled to allow detachment of the rear
and to complete the migratory cycle.

Because of their involvement in cell motility, integrin-
containing adhesion complexes are necessarily dynamic
structures that undergo repeated cycles of formation and
disassembly (Webb et al., 2002). Likewise, the activities of the
actin-based protrusion and contraction machineries must also

be continually regulated to ensure proper timing and
localization (Rafelski and Theriot, 2004). The calpain family
of proteases has been shown to contribute to the control of cell
migration through their ability to regulate the dynamics of both
integrin-mediated adhesion and actin-based membrane
protrusion (Perrin and Huttenlocher, 2002). Although our
current understanding of the mechanisms underlying this
regulation remains limited, recent studies have begun to shed
light on this subject. Here, we discuss recent advances that
have provided insight into where calpains fit into the cell
migration cycle, how the activities of calpains are modulated,
the roles of individual calpain isoforms in motility, and the
molecular basis of their effects during directional cell
movement.

Calpain family of proteases
The mammalian calpain gene superfamily contains 16 known
genes: 14 of these genes encode proteins that contain cysteine
protease domains; the other two genes encode smaller
regulatory proteins that associate with some of the catalytic
subunits to form heterodimeric proteases (Goll et al., 2003;
Suzuki et al., 2004). Several calpain isoforms are ubiquitously
expressed, whereas many demonstrate tissue-specific
expression patterns (Table 1). They are typically thought of as
intracellular proteases, although there is some evidence that
active calpains are also found in the extracellular space
(Nishihara et al., 2001; Xu and Deng, 2004). However, the
physiological significance of extracellular calpains is not yet
known. Within the cell, the localization patterns of calpains are
complex and somewhat variable (Table 2), which means that
their subcellular localization might be dynamically regulated
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The calpain family of proteases has been implicated in
cellular processes such as apoptosis, proliferation and cell
migration. Calpains are involved in several key aspects of
migration, including: adhesion and spreading; detachment
of the rear; integrin- and growth-factor-mediated
signaling; and membrane protrusion. Our understanding
of how calpains are activated and regulated during cell
migration has increased as studies have identified roles for
calcium and phospholipid binding, autolysis,
phosphorylation and inhibition by calpastatin in the
modulation of calpain activity. Knockout and knockdown
approaches have also contributed significantly to our
knowledge of calpain biology, particularly with respect to

the specific functions of different calpain isoforms. The
mechanisms by which calpain-mediated proteolysis of
individual substrates contributes to cell motility have
begun to be addressed, and these efforts have revealed roles
for proteolysis of specific substrates in integrin activation,
adhesion complex turnover and membrane protrusion
dynamics. Understanding these mechanisms should
provide avenues for novel therapeutic strategies to treat
pathological processes such as tumor metastasis and
chronic inflammatory disease.
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and constitutes an important factor in the modulation of their
functions.

Calpain structure
The enzymatically active (large) calpains each comprise up
to four domains (Fig. 1) (Hosfield et al., 1999; Pal et al.,
2003; Sorimachi and Suzuki, 2001; Strobl et al., 2000).
Domain I is a single �-helix present at the N-terminus of
some calpains; it can interact with domain VI of the non-
catalytic (small) subunits and may be important for stability.
Domain II comprises the protease domain, which contains the
active site catalytic triad Cys105, His262 and Asn286.
Interestingly, the alignment and spacing of these residues in
the inactive molecule is such that catalytic activity is not
permitted, indicating that a structural change must take place
to activate calpains. Domain III consists of eight �-strands
arranged in a �-sandwich configuration similar to that of C2
domains. The C2 domain was first discovered in protein
kinase C as a stretch of approximately 130 amino acids that
binds phospholipids in a calcium-dependent manner (Newton
and Johnson, 1998). Since then, C2-like domains have been
identified in nearly 100 proteins, and they are usually
involved in binding calcium and phospholipids (Rizo and
Sudhof, 1998). Domain III can bind phospholipids in a
calcium-dependent fashion (Tompa et al., 2001), which
further suggests that it is a C2-like domain. Domains IV and

VI in the large and small subunits, respectively, each contain
five EF-hand motifs, the fifth EF hand from each subunit
interacting with the other to assemble heterodimers
(Blanchard et al., 1997; Hosfield et al., 1999; Lin et al., 1997).
Domain V of the small subunits appears to have a very
flexible structure as a consequence of being glycine rich,
which is probably why, unlike the other domains, it remains
unresolved by crystallography.

Calpain regulation
Calpain activity is highly regulated in vivo by multiple
mechanisms (Fig. 2A), although the details are only now
beginning to be defined. The best-studied mechanism is
activation by calcium – hence the name calpain (Guroff, 1964).
In fact, calpain 1 and calpain 2 are commonly referred to by
their in vitro requirements for calcium: calpain 1 (�-calpain)
is activated by micromolar calcium concentrations and calpain
2 (m-calpain) requires millimolar concentrations (Suzuki et al.,
1981b). Because calpains contain calcium-binding EF-hand
motifs in domains IV and VI and, because domain IV of
calpain 1 and domain IV of calpain 2 are different, these were
originally presumed to be responsible for the calcium-
dependent activation of calpains. However, structural data
suggest that conformational changes caused by calcium
occupancy of the EF hands alone are insufficient to align the
active site catalytic residues properly. Furthermore, functional
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Table 1. Expression patterns of calpains
Isoform Pattern Highest Lowest References

Capn1 Ubiquitous Ac, Dc, Es, Pl, Th, Tr Te Farkas et al., 2003
Capn2 Ubiquitous Ki, Lu, St, Tc, Tr Bm, Li, Ov Farkas et al., 2003
Capn3 Ubiquitous Sm Ov Farkas et al., 2003
Capn5 Ubiquitous Br, Ki, Li, Lu, Te, Tr He, Sm Dear et al., 1997; Dear and Boehm, 1999
Capn6 Tissue specific Pl, Sm – Dear et al., 1997; Dear and Boehm, 1999
Capn7 Ubiquitous – Franz et al., 1999
Capn8 Tissue specific Br, Dt, St, Te He, Ki Braun et al., 1999; Sorimachi et al., 1993
Capn9 Tissue specific Dt, He, St – Markmann et al., 2005; Sorimachi et al., 1993
Capn10 Ubiquitous He – Horikawa et al., 2000
Capn11 Tissue specific St, Te He, Ki Dear et al., 1999
Capn12 Tissue specific Hf – Dear et al., 2000
Capn13 Tissue specific Lu, Te – Dear and Boehm, 2001
Capn14 Unknown – – Dear and Boehm, 2001
Capn15 Ubiquitous Br – Kamei et al., 1998
CSS1 Ubiquitous He, Is, Ki, Pa, Pr, Sm, Te – Farkas et al., 2003
CSS2 Tissue specific Bl, Es, Pr, Tr, – Farkas et al., 2003; Ma et al., 2004
Calpastatin Ubiquitous Is Ov Farkas et al., 2003

Abbreviations: Ac, ascending colon; Bl, bladder; Bm, bone marrow; Br, brain; Dc, descending colon; Dt, digestive tract; Es, esophagus; He, heart; Hf, hair
follicle; Is, interventricular septum; Ki, kidney; Li, liver; Lu, lung; Ov, ovary; Pa, pancreas; Pl, placenta; Pr, prostate; Sm, skeletal muscle; St, stomach; Tc,
transverse colon; Te, testis; Th, thyroid; Tr, trachea.

Table 2. Localization of calpains
Localization Isoform References

Adhesion complexes Capn2 Beckerle et al., 1987
Caveolae Capn2 Kifor et al., 2003
Diffuse cytoplasmic Capn1, 2, 5, 7, 10, CSS1  Gafni et al., 2004; Gil-Parrado et al., 2003; Lane et al., 1992; Raynaud et al., 2004
Endoplasmic reticulum  Capn1, 2, CSS1 Hood et al., 2004; Hood et al., 2003; Sakai et al., 1989
Extracellular Capn1, 2 Nishihara et al., 2001; Raynaud et al., 2004; Xu and Deng, 2004
Golgi Capn1, 2, CSS1 Hood et al., 2004; Hood et al., 2003
Lipid rafts Capn2 Morford et al., 2002; P. Nuzzi and A.H., unpublished data
Nuclear Capn1, 2, 5, 7, 10, CSS1  Gafni et al., 2004; Gil-Parrado et al., 2003; Mellgren and Lu, 1994; Raynaud et al., 

2004; Tremper-Wells and Vallano, 2005
Plasma membrane Capn1, CSS1 Gil-Parrado et al., 2003; Lane et al., 1992; Sakai et al., 1989
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3831Calpain and cell motility

studies have demonstrated that domain II alone exhibits
calcium-dependent protease activity (Hata et al., 2001) and that
non-EF-hand calcium-binding sites within the protease domain
act as a calcium switch to align the catalytic triad (Hata et al.,
2001; Moldoveanu et al., 2002; Moldoveanu et al., 2004).

Except under pathological conditions associated with cell
death, such as axonal transection, neurodegeneration and tissue
ischemia, the levels of calcium required to activate calpains
maximally in vitro do not exist within living cells. This
apparent paradox has led researchers towards the idea that
other regulatory mechanisms can lower this requirement in
vivo. Several different modes of regulation have been
identified, although their contributions in vivo have not yet
been determined. The large subunits of some calpains are
autolyzed on activation, which removes domain I and abolishes
the N-terminal link between the large and small subunits,
thereby allowing movement of domain II (Baki et al., 1996;
Cong et al., 1989; Elce et al., 1997; Guttmann et al., 1997;
Imajoh et al., 1986; Molinari et al., 1994; Suzuki and
Sorimachi, 1998; Suzuki et al., 1981a). The truncated large
subunit is catalytically active and has a lower requirement for
calcium (Baki et al., 1996; Imajoh et al., 1986; Suzuki and
Sorimachi, 1998; Suzuki et al., 1981b). However, this event is
clearly not required for catalytic activity (Cong et al., 1989;
Elce et al., 1997; Guttmann et al., 1997; Molinari et al., 1994),
which suggests that it functions more in the progression of
activation than in its initiation.

The binding of phospholipids also decreases the calcium
requirement for calpains in vitro (Arthur and Crawford, 1996;
Melloni et al., 1996; Saido et al., 1992; Suzuki et al., 1992;
Tompa et al., 2001), but the in vivo relevance of this is unknown.
Similarly, regulation of protein-protein interactions changes the
calcium requirements of calpains (Melloni et al., 2000a; Melloni
et al., 2000b; Melloni et al., 1998; Melloni et al., 2000c; Michetti
et al., 1991; Salamino et al., 1993), but their roles in activation
are not clear. Finally, calpains are regulated by their best-known
interacting partner, the endogenous calpain inhibitor calpastatin
(Wendt et al., 2004). Although overexpression of calpastatin in
cells can decrease calpain activity, escape from calpastatin is not

Fig. 1. Schematic representation of the domain architecture of the classical calpains. The 80 kDa large subunits can be divided into four
domains, plus a short linker that might be important for transducing conformational changes throughout the molecule upon calcium binding
(T). The N-terminal �-helix makes up domain I, which interacts with the small subunits before undergoing intermolecular autolysis on
activation. Protease activity is contained within domain II, which is further divided into subdomains (IIa and IIb) that make up the two
halves of the active site. Domain III comprises a C2-like domain that harbors sites for phosphorylation and phospholipid binding. Five
consecutive EF-hand motifs make up domain IV and contribute to the calcium binding of the large subunits and to dimerization with the
small subunits. Domain VI of the small subunits has a similar arrangement; the first four EF hands participate in calcium binding and the
last motif interacts with the large subunit. The small subunits also contain a highly flexible, glycine-rich region called domain V. Calpain 1
and calpain 2 large subunits are phosphorylated at several sites in domains I-III; some of these residues are conserved and some are isoform
specific.

Fig. 2. (A) Some of the mechanisms involved in regulating calpain
activity. (B) Possible pathway for growth-factor-induced, calpain-
mediated cell migration. Binding of epidermal growth factor (EGF)
to its receptor (EGFR) activates a MAP kinase cascade that
eventually activates ERK. The scaffolding function of FAK brings
ERK and calpain 2 into a complex, resulting in phosphorylation of
calpain 2. This ERK-mediated phosphorylation leads to activation of
calpain 2, which can be counteracted by phosphorylation of calpain 2
by PKA. Active calpain 2 can then cleave talin 1, leading to adhesion
complex turnover and cell migration.
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sufficient to activate calpains. Furthermore, structural and
biochemical data indicate that calpastatin might bind
preferentially to calcium-activated calpains (Barnoy et al., 1999;
Tullio et al., 1999), suggesting that this is an attenuation
mechanism rather than a preventive one.

Friedrich has recently provided an explanation for this
apparent paradox (Friedrich, 2004). He proposes that the
calpain system developed this high requirement for calcium
during evolution as a safety device to prevent potentially
destructive hyperactivity of calpains, and that it is preferable
for calpains to work at much less than half-maximal activity.
Several pieces of evidence support this idea, including
structural considerations, the need for spatial and temporal
regulation of calpains and the benefits of a large separation
between normal and pathological function.

In addition, phosphorylation at several sites controls the
activities of calpains. Calpain 2 is activated by phosphorylation
of Ser50 by the ERK mitogen-activated protein (MAP) kinase
(Glading et al., 2004) during migration of fibroblasts and in
keratinocytes stimulated with epidermal growth factor (EGF;
Glading et al., 2000; Satish et al., 2005). Phosphorylation of
calpain 2 at this site is particularly interesting since calpain 1,
which does not contain a phosphorylatable site in this region,
does not seem to play a major role in EGF-mediated motility
(Glading et al., 2000; Satish et al., 2005). Instead, calpain 1 is
important for IP-9-induced motility, which requires
intracellular calcium flux (Satish et al., 2005). By contrast,
EGF-mediated activation of calpain 2 by phosphorylation
occurs in the absence of increased calcium levels. Furthermore,
calpain 3 has a glutamic acid residue at this position that could
act as an activating phosphomimetic, which might explain why
calpain 3 lacks a requirement for increased calcium levels.
Together, these data suggest that calcium and growth-factor-
mediated phosphorylation can independently activate calpains
in an isoform-specific fashion. Interestingly, only membrane-
proximal calpain 2 is activated by ERK-mediated
phosphorylation (Glading et al., 2001), which suggests that
there are alternative modes of activation for certain calpain 2
subpopulations.

Unsurprisingly, the MAP kinase kinase MEKK1 is required
for normal calpain 2 activity (Cuevas et al., 2003). MEKK1
associates with focal adhesion kinase (FAK) in adhesion
complexes and appears to act upstream of ERK in the regulation
of calpain 2 activation and subsequent detachment of the rear
of the cell during migration. Note that the adaptor function of
FAK mediates the assembly of an ERK-calpain 2 complex at
peripheral adhesion sites (Carragher et al., 2003). The formation
of this complex and the activity of ERK are both required for
normal calpain 2 activity and for processes dependent on
calpain 2 such as adhesion complex turnover, transformation
and cell migration. There is thus a novel signaling pathway by
which growth factors regulate cell migration via
phosphorylation-dependent activation of calpains (Fig. 2B).

Calpain activity can also be inhibited by phosphorylation.
Cyclic-AMP-mediated activation of protein kinase A (PKA)
can block EGF-induced activation of calpain 2 and fibroblast
migration (Shiraha et al., 2002). This appears to occur through
phosphorylation of calpain 2 by PKA, which probably restricts
calpain 2 to an inactive conformation (Shiraha et al., 2002;
Smith et al., 2003). The residues in calpain 2 (Ser369 and
Thr370) that appear to be the PKA targets are conserved in

other calpains, which suggests that phosphorylation of domain
III represents yet another mechanism for regulating calpain
activity.

Calpain substrates
Among the >100 proteins identified as calpain substrates are
transcription factors, transmembrane receptors, signaling
enzymes and cytoskeletal proteins. Although calpains can lead
to extensive degradation of some of these substrates, most are
cleaved in a limited fashion, resulting in stable protein
fragments that can have functions different from those of their
intact forms. Such limited proteolysis might be correlated with
a highly specific recognition sequence. However, no single
consensus sequence has been found to have significant value
for predicting whether a protein can be proteolyzed by calpains
or even where calpains cleave a known substrate. Instead,
recognition and proteolysis seem to be controlled by multiple
determinants, including but not limited to secondary structure
and PEST score† (Tompa et al., 2004). This suggests that
calpains cleave their substrates in disordered regions between
structured domains. Nevertheless, despite this complex set of
determinants, there is a significant preference for particular
sequences immediately surrounding the site of proteolysis, and
studies that have elucidated these preferences have provided
valuable tools with which the calpain systems may be
specifically and efficiently manipulated (Tompa et al., 2004).

One obvious clue as to how calpains might affect cell
motility comes from the fact that numerous adhesion complex
components and migration-related proteins are substrates for
calpains (Table 3) (Glading et al., 2002; Goll et al., 2003).
Although proteolysis of most of these adhesion-related
substrates has been demonstrated in vitro as well as in cell
culture, several issues have made it difficult to determine which
are relevant to calpain-mediated pathways in vivo. The
specificity and extent of proteolysis of adhesion complex
components can vary between cell types (S.J.F. and A.H.,
unpublished). Further complicating the issue is the fact that
most of these substrates can be proteolyzed in vitro equally
well by either calpain 1 or calpain 2, which can have widely
differing subcellular localizations and cell-type-specific
expression patterns even in culture.

Recent studies have begun to identify the motility-related
substrates that are most readily and consistently cleaved by
calpains, as well as the isoforms responsible in living cells.
Knockout of calpain small subunit 1 (CSS1 or Capn4) in mice
(Arthur et al., 2000) leads to reduced expression and activities
of both calpain 1 and calpain 2 (Dourdin et al., 2001).
Embryonic fibroblasts isolated from these mice exhibit
decreased proteolysis of several reported substrates, including
FAK, paxillin, spectrin, cortactin and talin 1. However, others
do not appear to be consistently cleaved in mouse embryonic
fibroblasts, including vinculin, RhoA, �-actinin and Src
(Dourdin et al., 2001) (S.J.F. and A.H., unpublished). The
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†PEST score is a calculation of the quality of potential PEST motifs [characterized by
high local concentrations of the amino acids proline (P), glutamic acid (E), serine (S),
threonine (T) and, to a lesser extent, aspartic acid (D)], which can reduce the half-lives
of proteins by serving as signals for proteolysis. PEST score=0.55 � DPEST – 0.5 � (10
� Kyte-Doolittle hydropathy index + 45); where DPEST represents the corresponding
amino acids expressed in mass % (w/w) and corrected for one equivalent of D or E, one
of P and one of S or T.
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3833Calpain and cell motility

relevance of these findings remains to be determined, but,
together with other reports, they indicate that some calpain
substrates are more readily cleaved than others in certain cell
types. However, this cell line cannot reveal which calpain
isoform is responsible in each case, since the activities of both
calpain 1 and calpain 2 are reduced in these cells.

Studies of cells isolated from calpain-1-knockout mice
reveal that, despite the absence of calpain 1, these cells can
proteolyze many substrates normally, including FAK, paxillin,
spectrin and talin 1 (Azam et al., 2001). However, other calpain
isoforms could be compensating for calpain 1 deficiency in
these cells. More recently, RNA interference (RNAi)
technology has been employed to knockdown expression of
individual calpain isoforms (Franco et al., 2004a).
Interestingly, knockdown of calpain 2 results in decreased
proteolysis of FAK, paxillin, spectrin, cortactin and talin 1,
while knockdown of calpain 1 has no effect on proteolysis of
these proteins (Franco et al., 2004a) (B. Perrin and A.H.,
unpublished). Therefore, it seems that many motility-related
proteins require calpain 2 for proteolysis and are either not
cleaved by calpain 1 in living cells or are cleaved by
compensatory mechanisms in the absence of calpain 1.

Calpains and cell motility
Calpains were first implicated in cell migration by studies
showing that pharmacological inhibition of calpains results in
reduced integrin-mediated cell migration (Huttenlocher et al.,
1997; Palecek et al., 1998). This inhibition leads to
stabilization of adhesion complexes and therefore an increase
in adhesiveness, thus reducing the rate of detachment of the
rear of the cell and decreasing cell migration. Knockout studies
support these findings: embryonic fibroblasts from CSS1-
deficient mice display a similar reduction in integrin-mediated
motility (Dourdin et al., 2001). Since inhibition of calpains by
several means results in formation of large peripheral adhesion
complexes, calpains were initially thought to regulate cell
motility primarily by destabilizing adhesion to the ECM and
promoting rear detachment. However, subsequent studies have
demonstrated roles for calpains in many aspects of migration,

such as cell spreading, membrane protrusion, chemotaxis, and
adhesion complex formation and turnover (Fig. 3).

Cell spreading
Cell spreading on ECM components is a complex process
involving dynamic reorganization of the actin cytoskeleton in
response to integrin-mediated signaling through various
pathways. Roles for calpains during cell spreading have been
demonstrated in several different systems, but these studies do
not reveal one clear function for calpains during this process.
Inhibition of the primary calpain in platelets, calpain 1, reduces
the ability of these cells to spread, possibly by decreasing
proteolysis of adhesion complex proteins (Croce et al., 1999).
Inhibition of calpains also reduces spreading in T cells,
vascular smooth muscle cells and pancreatic � cells (Parnaud
et al., 2005; Paulhe et al., 2001; Rock et al., 2000).

In fibroblasts, overexpression of calpastatin leads to
decreased levels of calpain 2 and a decrease in cell spreading
and spreading-related actin rearrangements (Potter et al.,
1998). This might be caused by an increase in the steady-state
levels of the ERM protein ezrin; calpains can proteolyze ezrin
and regulate its mRNA levels by an unknown mechanism
(Potter et al., 1998). By contrast, spreading of bovine aortic
endothelial (BAE) cells is reported to depend specifically on
calpain 1, since overexpression of calpain 1 leads to increased
cell spreading and a dominant-negative calpain 1 reduces
spreading (Kulkarni et al., 1999). However, in the same cell
type, calpain 1 can proteolyze RhoA, thereby generating a
dominant-negative fragment that inhibits cell spreading
(Kulkarni et al., 2002). Studies showing that calpain 1 is
important for the formation of early clusters of adhesion
molecules that might be sites of Rac1 activation in the early
stages of spreading in BAE cells support the idea that calpain
1 positively regulates spreading (Bialkowska et al., 2000). By
contrast, knockdown of calpain 1 in several fibroblast cell lines
does not affect the ability of these cells to spread (Franco et
al., 2004a). Further complicating the issue is the fact that
inhibition of calpains in neutrophils might increase spreading
of these cells (Lokuta et al., 2003).

Table 3. Motility-related calpain substrates
Cell In vitro Cell culture 

Calpain substrate In vitro culture isoforms* isoforms References

�-actinin No Yes – ND Goll et al., 1991; Selliah et al., 1996
� integrins Yes Yes Capn2 ND Du et al., 1995; Pfaff et al., 1999
�-catenin Yes Yes Capn1 Capn2 Rios-Doria et al., 2004
Cadherins Yes Yes Capn1, 2 ND Covault et al., 1991; Rios-Doria et al., 2003
Cortactin Yes Yes Capn1, 2 Capn2 Huang et al., 1997
EGFR Yes Yes ND ND Gates and King, 1983; King and Gates, 1985; Stoscheck et al., 1988
FAK Yes Yes Capn1, 2 Capn2 Carragher et al., 1999; Cooray et al., 1996; Franco et al., 2004a
Filamin Yes Yes Capn1, 2, 3 Capn2, 3 Huff-Lonergan et al., 1996; Kwak et al., 1993; Verhallen et al., 1987
MARCKS Yes Yes Capn2 Capn1, 2 Dedieu et al., 2003; Dulong et al., 2004a
MLCK Yes Yes ND ND Kambayashi et al., 1986; Kosaki et al., 1983
Paxillin Yes Yes Capn1, 2 Capn2 Carragher et al., 1999; Franco et al., 2004a
PTP-1B Yes Yes Capn1 ND Frangioni et al., 1993; Schoenwaelder et al., 1997
RhoA Yes Yes Capn1 ND Kulkarni et al., 2002
Spectrin Yes Yes Capn1, 2 Capn2 Croall et al., 1986; Fox et al., 1987; Franco et al., 2004a
Src ND Yes ND ND Oda et al., 1993
Talin 1 Yes Yes Capn1, 2 Capn2 Carragher et al., 1999; Franco et al., 2004a
Vinculin ND Yes ND ND Serrano and Devine, 2004

*Proteolysis by unlisted isoforms has not been determined. ND, not determined.
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CSS1 also appears to play a role in cell spreading through
its interaction with the guanine nucleotide exchange factor
(GEF) �PIX (Rosenberger et al., 2005). �PIX binds to and
colocalizes with calpains in small integrin-containing clusters
during the early stages of cell spreading in CHO-K1 cells.
Treatment of these cells with calpain inhibitors reduces
spreading, which can be overcome by overexpression of �PIX.
Interestingly, an �PIX mutant that cannot bind CSS1 does not
rescue the spreading defect, but a GEF-deficient �PIX mutant
does. �PIX therefore appears to have a GEF-independent role
in cell spreading downstream of calpains.

Membrane protrusion
Many studies of calpains and cell spreading also suggest that
calpains regulate actin-based mechanisms involved in
membrane protrusion. Inhibition of calpains by calpastatin or
pharmacological inhibitors leads to formation of abnormal
lamellipodia and filopodia (Potter et al., 1998). Likewise,
embryonic fibroblasts from CSS1-knockout mice exhibit
altered morphologies, displaying thin membrane projections
(Dourdin et al., 2001). These cells also exhibit global increases
in transient membrane protrusiveness and faster and more-
frequent, but less-stable, leading edge protrusions (Franco et
al., 2004a). Calpain 2 appears to be the isoform responsible,
since knocking it down reproduces the protrusion defects of
CSS1-deficient cells. The actin-regulatory protein cortactin is
a calpain substrate and probably an important downstream
target of calpain 2 in the regulation of membrane protrusions
(B. Perrin and A.H., unpublished), because expression of a
calpain-resistant form of cortactin leads to membrane defects
similar to those seen in calpain-2-knockdown cells. Further
support for calpains negatively regulating membrane

protrusion comes from studies showing that calcium transients
in filopodia of neuronal growth cones act through calpains to
reduce lamellipodial protrusion (Robles et al., 2003).

Chemotaxis
Calpains also negatively regulate membrane protrusion in
neutrophils. High levels of calpain activity exist in resting
neutrophils, and inhibition of these enzymes promotes
membrane protrusion and rapid chemokinesis (Lokuta et al.,
2003). This contrasts with most other cell types, in which calpain
inhibition reduces cell migration. In cell types in which calpains
inhibit cell migration, the underlying mechanism might involve
negative regulation of the Rho GTPases Cdc42 and Rac1, since
calpain inhibition promotes activation of Cdc42 and Rac in
neutrophils. The effects are comparable with treatment with
chemoattractants such as N-formyl-methionyl-luecyl-
phenylalanine (fMLP), which increase chemokinesis (Lokuta et
al., 2003). Interestingly, whereas inhibition of calpains promotes
random migration of neutrophils, it reduces the directional
migration of neutrophils up a gradient of chemoattractant
(Lokuta et al., 2003). Spatial regulation of calpain activity might
therefore be required for optimum chemotaxis of neutrophils,
and calpains could play a role in directional sensing or cell
polarization during directed cell migration.

Adhesion complex regulation
Because dynamic regulation of adhesion to the ECM is required
for cell migration, the mechanisms by which adhesion
complexes are formed and subsequently disassembled are key
to cell motility. For some time, inhibition of calpains has been
known to alter the morphology and stability of adhesion

Journal of Cell Science 118 (17)

Fig. 3. Motility-related processes known to be affected by calpains and the substrates or binding partners acting as effectors. Calpain 2 can
cleave adhesion complex proteins such as FAK, paxillin and talin 1, possibly resulting in integrin activation, adhesion complex turnover or
detachment of the cell rear. Proteolysis of the actin-regulating protein cortactin might lead to inhibition of membrane protrusion. Cleavage of
integrin �-tails might be important for the formation of small integrin clusters during the early stages of cell spreading, whereas proteolysis of
the small GTPase RhoA negatively regulates cell spreading. Interaction of �PIX with calpain small subunit 1 (CSS1) can also mediate cell
spreading. Proteolysis of the adaptor protein MARCKS might also regulate cell migration in myoblasts, possibly by promoting adhesion
formation. The isoforms required for proteolysis of integrins, RhoA and MARCKS remain to be determined, as do the processes affected by
proteolysis of nearly 100 other calpain substrates.
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3835Calpain and cell motility

complexes, but only now are we beginning to elucidate the
details of calpain-mediated regulation of adhesion complexes.
Although a role for calpains in the disassembly of adhesion sites
has been well documented, whether calpains are important for
the formation of adhesion complexes remains unclear. As
previously mentioned, calpains appear to be important for
induction of small, integrin-containing protein clusters at the
early stages of spreading (Bialkowska et al., 2000; Bialkowska
et al., 2005). However, these clusters do not seem to be
precursors of typical adhesion complexes; so their significance
is not known. Calpain-mediated proteolysis of talin 1 might be
involved in assembling adhesion complexes, since proteolysis
of talin 1 by calpains promotes its binding to integrin �-tails,
which is known to be crucial for inside-out activation of
integrins (Calderwood, 2004; Calderwood et al., 2002;
Calderwood et al., 1999; Yan et al., 2001). Proteolysis of the
actin-binding protein myristoylated alanine-rich protein kinase
C substrate (MARCKS) might also play a role in the formation
of adhesion complexes, since inhibition of calpains in
myoblasts leads to defects in new adhesion formation and
migration coincident with an accumulation of MARCKS
(Dedieu et al., 2004). However, several lines of evidence
indicate that adhesion complexes can form normally when
calpain activity is reduced; so calpains do not appear to be
required for assembly of adhesion complexes in most cell types.

As discussed above, calpains can cleave many adhesion
complex proteins and downregulation of calpain activity
results in large adhesion complexes and inhibits cell
detachment. Calpains could therefore be important for
destabilization/disassembly of adhesion complexes. Inhibition
of calpains by calpastatin or pharmacological agents blocks
microtubule-mediated turnover of adhesion complexes after
nocodazole washout. This suggests that calpains act
downstream of microtubules to mediate adhesion complex
disassembly (Bhatt et al., 2002). Knockdown of calpain 2 by
RNAi slows the rate at which adhesion complexes
disassemble, leading to formation of large, elongated adhesion
complexes (Franco et al., 2004b). Furthermore, expression of
a calpain-resistant talin 1 mutant in talin-1-null cells also
decreases adhesion complex disassembly rates. This indicates
that calpain-2-mediated proteolysis of talin 1 regulates
adhesion turnover. How talin 1 proteolysis results in adhesion
disassembly is not known, but it is likely that this affects both
the structural and signaling functions of talin 1 within
adhesion complexes. Since talin 1 is cleaved more readily than
most other calpain 2 substrates (S.J.F. and A.H., unpublished),
its proteolysis might represent the major mode of calpain-2-
mediated adhesion disassembly. Future studies will have to
determine whether proteolysis of other substrates is also
involved.

Calpains in human disease
Calpains have been connected to a variety of pathological
conditions (Zatz and Starling, 2005), including stroke and
ischemia (Vanderklish and Bahr, 2000), susceptibility to non-
insulin diabetes mellitus (Horikawa et al., 2000) and in the
pathogenesis of muscular dystrophies (Ono et al., 1998;
Sorimachi et al., 2000). Calpain activity appears to play a
central role in the movement of immune cells (Lokuta et al.,
2003; Stewart et al., 1998), thereby participating in the

development of inflammation in normal and pathological
conditions such as chronic inflammatory disease (Cuzzocrea
et al., 2000; Shields and Banik, 1998; Shields et al., 1998).
Furthermore, calpain 2 expression is upregulated in some
cancers and has recently been associated with disease
progression in patients with breast cancer (Rios-Doria et al.,
2003; Wang et al., 2005; Carragher et al., 2004; Huber et al.,
2004). The coordinate regulation of adhesion structures by
calpains and Src tyrosine kinases places calpains in a crucial
role at the interface of kinase and protease cascades that
regulate migration of tumor cells and their invasive properties
(Carragher et al., 2001; Carragher and Frame, 2002;
Carragher et al., 2002; Mamoune et al., 2003). Pathways
involving calpains might thus represent an attractive
therapeutic target. Future investigations should delineate
whether information about the roles of calpains in motility
can facilitate development of drugs to treat a variety of human
diseases, including cancer and chronic inflammatory disease.

Conclusions and perspectives
Limited proteolysis by calpains has emerged as a key signal-
transducing mechanism that probably functions at the interface
of integrin- and growth-factor-mediated signaling to regulate cell
migration. The regulation of calpains by calcium,
phosphoinositides, and phosphorylation by MAP kinase and
PKA pathways places calpains at the center of different signaling
pathways controlling many basic cellular processes in addition
to cell motility. Crucial to calpain function is the tight regulation
of its proteolytic activity, which must be both temporally and
spatially controlled during cell migration. Substantial evidence
suggests that calpains are activated in a highly localized manner
and can be targeted to discrete regions within the cell. However,
despite recent progress, our understanding of calpain function
during cell migration remains limited. This might be partly
attributed to the number and diversity of calpain isoforms; of the
16 known calpain isoforms, only calpain 1, calpain 2 and CSS1
have been studied with respect to migration. Furthermore, there
are >100 substrates that can be cleaved by calpains, which makes
it difficult to dissect how calpains orchestrate their effects during
cell migration. Generation of calpain-resistant substrates will
provide important mechanistic clues, but it is important to
consider that calpains, like Src-mediated signaling pathways,
probably operate by targeting multiple substrates to modify
specific stages of the cell motility cycle. Establishing the details
involved will require the combination of sophisticated imaging
and proteomics-based approaches in both in vitro and in vivo
systems.
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