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Summary

Polar arrays of microtubules play many important roles in ~ formation of a single aggregate. Simultaneously, a positive
the cell. Normally, such arrays are organized by a feedback mechanism drives the formation of a single MT
centrosome anchoring the minus ends of the microtubules, aster — a single loose aggregate leads to focused MT
while the plus ends extend to the cell periphery. However, nucleation and hence a tighter aggregate which stabilizes
ensembles of molecular motors and microtubules also MT minus ends more effectively leading to aster formation.
demonstrate the ability to self-organize into polar arrays. We translate the model assumptions based on experimental
We use quantitative modeling to analyze the self- measurements into mathematical equations. The model
organization of microtubule asters and the aggregation of analysis and computer simulations successfully reproduce
motor-driven pigment granules in fragments of fish the observed pathways of pigment aggregation and
melanophore cells. The model is based on the observation microtubule aster self-organization. We test the model
that microtubules are immobile and treadmilling, and on  predictions by observing the self-organization in fragments
the experimental evidence that cytoplasmic dynein motors of various sizes and in bi-lobed fragments. The model
associated with granules have the ability to nucleate MTs provides stringent constraints on rates and concentrations
and attenuate their minus-end dynamics. The model describing microtubule and motor dynamics, and sheds
explains the observed sequence of events as follows.light on the role of polymer dynamics and polymer-motor
Initially, pigment granules driven by cytoplasmic dynein interactions in cytoskeletal organization.

motors aggregate to local clusters of microtubule minus

ends. The pigment aggregates then nucleate microtubules

with plus ends growing toward the fragment boundary, Movies available online

while the minus ends stay transiently in the aggregates.

Microtubules emerging from one aggregate compete with Key words: Cytoskeleton, Self-organization, Mathematical model,
any aggregates they encounter leading to the gradual Molecular motors, Microtubules, Mitosis

Introduction (Sharp et al., 2000). Asymmetric MT asters interact with the

Dynamic polymers known as microtubules (MTs) provide linegictin cytoskeleton in a complex and poorly understood way to
of transport, communication and control in the cell anduide cell migration (Waterman-Storer and Salmon, 1999).
organize cell movements, in part by serving as tracks for MT aster formation is normally attributed to the capacity of
molecular motors (Bray, 2001). The most prominent motogentrosomes to nucleate and stabilize the MT minus ends
families are the cytoplasmic dyneins, which glide toward MT(Schiebel, 2000). Molecular motors also play an important yet
minus ends (Holzbaur and Vallee, 1994), and kinesin motor$oorly understood role in the organization of MT arrays (Sharp
which are mostly plus-end-directed (Goldstein and Philipgt al., 2000). Remarkably, polar MT arrays can self-organize
1999). MTs are commonly organized into polar asters within the absence of centrosomes (McNiven and Porter, 1988;
minus ends gathered at the center and plus ends extendidgniotis and Schliwa, 1991; Verde et al., 1991). For example,
outward (Kellogg et al., 1994). The free plus ends are dynami#) mitotic extracts, aggregation of MT minus ends is
switching between periods of growth and shortening. Thigccomplished by large complexes consisting of multiple
behavior, called dynamic instability (Mitchison and Kirschner,cytoplasmic dynein motors, the dynein-activator dynactin and
1984), plays an important role in the exploration ofthe large protein NuMa (Verde et al., 1991). The model of aster
intracellular space (Holy and Leibler, 1994). Duringformation suggested previously (Verde et al., 1991) is based on
interphase, most cells use MT astral structures to establish ttiee ability of the multivalent minus-end-directed motor
spatial organization of organelles as well as to organizeomplexes to associate with a few MTs and to stay attached to
transport (Lane and Allan, 1998). In mitosis, focal points oMT minus ends. The model asserts that MT minus-end
two MT asters serve as poles for the bi-polar mitotic spindlefpcusing is achieved by the simultaneous motor driven
which plays a crucial role in the separation of the chromosoméagansport of each MT to the minus ends of the other MTs
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Fig. 1. Self-organization in the melanophore cell fragment.
Live fluorescent images of MTs are shown. Pigment granules
can be seen as black speckles. (Left) A random MT network
and uniformly dispersed pigment granules before adrenalin
treatment (dynein stimulation). (Right) After dynein is
stimulated, pigment granules aggregate and MTs re-organize
into a polar aster.

1997a; Rodionov and Borisy, 1997b; Vorobjev et al.,
2001). These studies generated data that call for
computational modeling. By simulating the self-
organization process on a computer and comparing the
results with the experiments, the modeling provides
valuable insight. Recent modeling of MT/motor systems
(Cytrynbaum et al., 2003; Joglekar and Hunt, 2002;
Maly and Borisy, 2002; Nedelec, 2002; Tran et al.,
2001) proved to be an indispensable tool complementary
attached to the same motor complex. Indeed, in mitotic cetb experimental studies.
extracts, short MT seeds were observed to be transported by
cytoplasmic dynein toward spindle poles (Heald et al., 1996). o o
Multivalent motor complexes also form radial MT arrays inDescription of data and qualitative model
purified in vitro systems (Nedelec et al., 1997). These studida fragments excised from melanophore cells, MTs lose their
emphasized the role of the physical movement of MTs asrganization in space and orient randomly (Fig. 1A), and
opposed to the view of MTs as immobile tracks. pigment granules disperse uniformly throughout the fragment.

Other studies of self-organization in MT/motor systems aré&Jpon treatment with adrenalin (Appendix 1), dynein motors
based on in vivo observation of MT aster formation inassociated with the granules are stimulated leading to pigment
cytoplasmic fragments of melanophores (Rodionov and Borisgggregation and MT re-organization into a radial array (Fig.
1997a; Rodionov and Borisy, 1997b; Vorobjev et al., 2001). IiB) such that MT minus ends are embedded in the granule
melanophore cells, thousands of pigment granules ai@ygregate and plus ends extend toward the fragment boundary.
associated with minus-end-directed cytoplasmic dynein motofSormation of the MT aster and pigment aggregation always
and plus-end-directed kinesin-related motors (Tuma andccur simultaneously. Both MT dynamics and motor activity
Gelfand, 1999). The granules thus have a motor-mediateate crucial for this process: taxol treatment stabilizing MTs or
ability to aggregate quickly to the centrosome-organized cellepletion of granules from the fragment prevent self-
center, or to disperse uniformly throughout the cell. Inorganization (Rodionov and Borisy, 1997a).
centrosome-free fragments of black tetra melanophores,
dynein motors are activated upon exposure to adrenalin and, as
a consequence, random MT networks with uniformlyPathways of self-organization and characteristic scales
distributed pigment granules rapidly rearrange into a radiaCell fragments used in the experiments (Rodionov and Borisy,
array with pigment granules and MT minus ends focused at tH©997a; Rodionov and Borisy, 1997b; Vorobjev et al., 2001) (this
center and plus ends at the fragment boundary (Rodionov apdper) have a characteristic siz& BO-50um (Fig. 2). Within
Borisy, 1997a). The experiments with melanophore fragment few minutes of adrenalin treatment, multiple local pigment
suggest a different model of MT aster formation than theggregates emerge throughout the fragment. During the next
multivalent motor transport model because recent studigew minutes, the local aggregates merge into a single focus. At
showed that MTs are not transported through the cytoplasthe same time, pre-existent MTs turn over, and newly nucleated
(Vorobjev et al., 2001). Therefore, melanophore fragmentand assembled MTs emerge organized into a polar aster. The
provide a simple and specialized experimental system fatiameter of the pigment aggregate is in the order qfrh0
studying a form of MT/motor self-organization that relies on
the traditional view of MTs as immobile tracks. -

Although the centrosome normally dominates MTMT treadmilling
organization, the self-organization phenomenon is importarifter reorganization is complete, the total quantity of MT
because it elucidates the intrinsic properties of MT/motopolymer increases roughly two-fold (Vorobjev et al., 2001).
systems, and because there exist polarized MT structures tihbst MTs (B0%) have their minus ends embedded in the
are not associated with centrosomes (notably, in meiosisdggregate, and plus ends at the periphery of the fragment
Also, the MT/motor self-organization phenomenon is likely to(Rodionov and Borisy, 1997b) (Fig. 3A). About 10% of the
contribute to the centrosome-governed organization. In thisITs have their minus ends embedded in the aggregate with
paper, we develop and analyze a computational model of thieir plus ends growing toward the fragment boundary at a rate
dynein-mediated phenomenon of pigment aggregation and Maf a few microns per minute. The plus ends of another 10% of
aster self-organization in melanophore fragments, based dTs are stalled at the fragment boundary while their minus
earlier observations and measurements (Rodionov and Borignds disassemble at a rate similar to the rate of assembly of the
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1997b). Minus ends stay in the aggregate at the center for an

average of 40 minutes (hence, the ratio 8/1 = 40/5 minutes).

Released minus ends reach the boundaryBnminutes,

because shortening occurs at a rate close to the growth rate of

plus ends. In rare cases, a minus end is released from the

aggregate before the corresponding plus end reaches the
20-50 pm boundary explaining thetl% treadmilling MTs.

Movements of pigment granules

Pigment granules glide toward the MT minus ends at a rate of
a few microns per second. The rate of movement is consistent
with measurements of movements generated by dynein motors
(Ashkin et al., 1990; Yamada et al., 1998). The granules detach
from the MTs or pause frequently (with a ratelifsecond),

and then associate with a MT fiber and glide again (Gross et
al., 2002) (V. Rodionov, unpublished). Observations show that
Brownian motion of granules is very slow, probably because
their diameter is comparable with the mesh size of the
T ~S min cytoskeleton. When the granules are depleted partially,
individual granules dislocate by a few microns over a few
minutes (Rodionov et al.,, 1998). This indicates that the
effective granule diffusion coefficient [§0.01 pm?%seconds.

On the time-scale of seconds, a granule can move [@uér

pm by thermal diffusion, which is important (see below). On
the time-scale of minutes, however, this movement (microns)
is negligible in comparison with MT/motor-mediated
movements (tens of microns).

+ ~0 min

+ =10 min

® Qualitative hypothesis

Previous studies (Rodionov and Borisy, 1997a; Rodionov and

Borisy, 1997b; Vorobjev et al., 2001) suggest that some
Fig. 2. Pathway of the self-organization phenomenon. Phase contradfCtors associated with the pigment granules have the ability
images at the left show pigment distribution in two fragments of ~ both to nucleate MTs and to stabilize (decrease the net
different size and shape. A schematic model of MT/pigmentre- ~ disassembly rate) their minus ends. The following scenario
organization is on the right. (A) Initially, the pigment granules are  can explain the observed sequence of events after dynein
distributed homogeneously across the fragments and MTs are stimulation (Fig. 2). First, the granules glide toward pre-
positioned and oriented randomly. (B) Within a few minutes (for  existing MT minus ends, or local clusters of minus ends,
fragments with a characteristic dimensiorLB0-50um), multiple thereby creating multiple local pigment aggregates. The local
local pigment aggregates emerge, presumably near the minus ends g 5 regates enhance nucleation of MTs, some of which grow
pre-existing MTs. (C) In the next few minutes, local aggregates through other local aggregates and establish immobile tracks

nucleate new MTs, some of which pass through other aggregates. f f les f he | h
(D) Dynein-mediated granule transport along these latter MTs or transport of granules from the latter aggregates to the

eventually lead to a merging of local aggregates into a single focus former ones. This causes merging of the aggregates
and ultimately, to nucleation of a single polar MT aster. Bargmi0  feinforced by more MT nucleation at the larger aggregates
until eventually all pigment granules merge into a single

aggregate. Simultaneously, all pre-existing MTs turn over and
growing plus ends. Rare MT§1(%) treadmill. There is no are replaced by MTs nucleated at the aggregate. Thus, the
physical transport of the MTs (Vorobjev et al., 2001): laterapositive feedback loop based on dynein-mediated minus-end-
and longitudinal displacements of all MTs (in thosedirected transport and the ability of granules to nucleate and
treadmilling, or with plus, minus, or both ends stabilized) arestabilize MTs seems to be sufficient for self-organization.
orders of magnitude less than the displacements of the plus aNdte that motor transport, MT kinetics and fragment
minus ends. Most likely, the absence of MT transport is due tgeometry, but not MT/motor force generation, play a role in
MTs being cross-linked into the actin cytoskeleton. Theself-organization.
phenomenon of dynamic instability is not observed in this
assay (Rodionov and Borisy, 1997b). .

Consistent with the 80-10-10-1% partitioning of the MT Modeling goals

population states as described earlier is the observation thEhe described hypothetical MT/motor dynamics and
after nucleation, a growing MT plus end reaches the fragmeintteractions are simple, but they lead to complex behavior. In
boundary inCb minutes (a fragment radius [@20 um divided  this study, we derive, analyze and simulate the mathematical
by a growth rate of 4 um/minute) (Rodionov and Borisy, model of the self-organization phenomena. Using this model,
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A Fig. 3.(A) MT treadmilling: Most MTs [80%) in the discoid
fragment (radiu§20 um) with a pigment aggregate at the center
have their minus ends in the aggregate, and plus ends at the
periphery. MTs are in this state fo40 minutes. About 10% of the
MTs have their minus ends in the aggregate with their plus ends
growing toward the fragment boundary. The plus ends of another
10% of MTs are stalled at the boundary, while the corresponding
minus ends shorten. MTs are in each of these statés foinutes.
Rare MTs [11%) treadmill. (B) The evolution of MTs throughout
aggregation and aster formation (stimulus at 4 time units). (Top)
Computed total length of MT polymer before and after stimulation of
dynein motors. The total length of MT polymer increases by a factor
of 3 during aggregation and MT aster formation (from before
B stimulus until steady state). (Bottom) Percentages of MTs, with
minus ends anchored in the pigment aggregate and plus ends at the
periphery (solid), with minus ends anchored
_________ and plus ends growing (dashed), with minus
150} == ———- ends shortening and plus ends at the
== periphery (dot-dashed), and treadmilling
- (dotted), agree well with the corresponding
observed percentages.

~10% (5 min)

0,0
— et
~10% (5 min )’:o:.:.

~80% (40 min)

200

100} 74
/d

Avg. tot. MT length

# Quantitative model

o5 In this section we describe a
computational model based directly on
the qualitative hypothesis described
above, the precise mathematical details
of which are given in the Appendices.
The following model assumptions stem
from observations, some of which are
described above.

(1) The MTs are straight and do not
move. (As seen in Fig. 1, the MTs do

100
- — Fixed
— — Growing
-— Shrinking
 Treadmilling

60F - 7

MT state percentages

20

bend but not significantly.)
(2) The MT plus ends grow at a
constant ratep.

(3) Any plus end reaching the
fragment boundary stops there. When
the corresponding minus end reaches
we address several issues, quantitative in nature, in an effortttee boundary, the MT disappears.
validate the qualitative hypothesis. The model allows us to (4) The minus ends shorten at a rafg) which is a
answer, within a precise quantitative framework, the followingdecreasing function of the local granule density,In the
questions: absence of the granules, the MTs treadm{j=0)=vp.

(1) What is the minimal system that has the observed (5) The MT nucleation ratey(g), is an increasing function
behavior? More specifically, is it possible that the nucleatingf the local granule density. The MTs are nucleated
activity of granule associated factors alone is sufficient for selfisotropically, at random angles.
organization? Or is it possible that minus-end stabilization (6) Each granule is either not associated with the MTs and
alone without additional nucleation can be responsible foimmobile, or is associated with a single MT and glides toward
pattern formation? If both nucleation and minus-endthe corresponding minus ends with constant spgeliding
stabilization are necessary, are they equally important (in songganules detach frequently at a constant daje, Immobile
gquantitative sense)? granules attach to a MT with a rate proportional to the local

(2) What is the nature of the breaking of symmetry? Howconcentration of MTs of a given orientation. The
does aggregation start from the homogeneous MT/granufgroportionality coefficient ikon.
distribution? Note that the MTs are very likely to be crosslinked into the

(3) What determines the time-scale (minutes) of selfactin meshwork. Therefore, the force generated by motors
organization? Is there a dependence of pattern formation tinmoves granules, while the reactive force applies to the whole
on fragment size? actin/MT ensemble, the movement of which can be neglected.

(4) How does fragment shape affect pattern formation? Fig. 4 illustrates possible granule density dependencies of

(5) How do MT nucleation and stabilization rates depend othe net minus-end disassembly refg) and of the nucleation
granule concentration? What determines the number andte n(g). For modeling disassembly, we assume that minus
length distribution of stable and treadmilling MTs? ends are in one of two states: capped and disassembling. If the

Time in nondimensional units
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6 — increases and which depends on three parameters. A derivation

Nucleation rate, n/d

of this functional form is given in the Apppendix but here, for
simplicity, we present the range of possibilities in qualitative
terms. We investigate two possibilities: (1) a linear or non-
cooperative dependence; and (2) a threshold or cooperative
behavior where minus-end shortening is not density dependent
at low densities. The nucleation rate includes both a
spontaneous (granule independent) rate and a density
dependent rate. We consider three possible types of density
dependence for the nucleation rate: (i) quasi-linear increase
with growing density; (ii) quasi-linear increase at small density
and saturation at greater density; and (iii) threshold behavior
at small density and saturation at greater density. Simulations

- Granule density, n/d of the model help to choose which of the described possibilities
% 1 2z s 4 5 6 7 8 9 1 are more likely.
1 p— We consider two mathematical implementations of the
0o \‘ Minus end disassembly rate, n/d B . model. First, we consider a 1D model. Biologically, this is

\ equivalent to carrying out the experiments in a narrow

1 elongated fragment in which the average MT length is much
greater than the fragment width (see Experimental verification
of the model predictions). This case is much simpler to treat
mathematically than the realistic 2D situation and it gives
insight useful in understanding more complex cases. To
address the issue of the role of the shape and area of the
fragment in pattern formation, we explore a realistic 2D model.
The models are explained below and described in detail in
Appendices 2 and 5, respectively. The model parameters and
] variables are listed in Tables 1 and 2; some of them are known
from experimental measurements, others can be derived
O s % indirectly from the observations, and the remaining few are
determined from comparisons between the theoretical and
experimental results (Appendix 3).

1
038 \
1
1
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\
\
06} \
\
05} \
1
04t
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Granule density, n/d
0.1

Fig. 4.(Top) The possible density dependencies of the MT
nucleation rate are an increasing function with (1) neither saturation
nor threshold behavior (solid curve), (2) without threshold but with
saturation (dashed curve), and (3). with both threshold anq saturatioliD del | ted f t
(dotted curve). (Bottom) The possible density dependencies of the model (narrow elongated fragment)
MT minus-end disassembly rate are a decreasing function without Fig. 5 illustrates the 1D implementation of the model. In this
threshold behavior (solid curve) and with threshold behavior (dasheg¢ase, the boundary of the fragment consists of two ends of the
curve). The granule density, nucleation rate and disassembly rate afeagment ak= +L. The MTs can be separated into two dynamic
plotted in the non-dimensional units described in the g [nthe  sub-populations characterized by opposite orientations. Each
untreated fragmeni(1)=1,v(0)=1]. population is described by the dynamic densities of the plus
ends pri(X)] and minus endsn (X)]. The indexr (I) stands
for the right- (left)-oriented MTs, which have their minus ends
capping dynamics are sufficiently rapid, the nature ofo the right (left) of their plus ends. This notation is chosen
disassembly can be summarized by functigg), which  because the pigment granules slide to the right (left) on right-
monotonically decreases to zero as the granule densifleft)-oriented MTs. Another important characteristic of the

Table 1. Model parameters

Symbol Value Meaning Reference
Vg 4 um/sec Rate of granule gliding on MTs Gross et al., 2002, our observations
Vp 4-8um/min Rate of MT treadmilling Rodionov and Borisy, 1997b, Vorobjev et al., 2002
2L 40 um Characteristic size of the fragment Rodionov and Borisy, 1997a, our observations
Koff /sec Granule dissociation rate Gross et al., 2002, our observations
kon /sec Granule association rate Estimated in this paper
7 [0.001/(um? sec) Rate of MT nucleation in the untreated fragment Estimated in this paper
nol7z 0.1 Relative rate of spontaneous MT nucleation Estimated in this paper
nm/z 0.9 Relative rate of granule dependent MT nucleation Estimated in this paper
g #lum?2 Average granule density in the fragment Absolute value does not matter in the model
o/g 10 Granule density at which nucleation rate is half maximum Estimated in this paper
ov/g 0.5 Granule density at which MT minus-end depolymerization rate is Estimated in this paper
half maximum
q 1 Hill coefficient of nucleation rate Estimated in this paper

S 1 Hill coefficient of MT minus-end depolymerization rate Estimated in this paper
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Table 2. Model variables and functions

Symbol Dimension Meaning
pri(xt) um-1(1D), um-2(2D) Density of MT plus ends (right-, left-oriented)
M, (X,t) um-1(1D), um=2 (2D) Density of MT minus ends (right-, left-oriented)
or,1(x,t) um-1(1D), um-2(2D) Density of gliding granules (to the right, left)
gs(xt) um-1(1D), um=2 (2D) Density of static, detached granules
a(x,t) um-1(1D), um—2(2D) Total granule density
Nri(X,t) um/um (1D) MT polymer density
N(x,6,t) um/(um? rad) (2-D) MT polymer density
n(g) 1/(um sec) (1D), 1{fm? sec) (2D) Nucleation rate as a function of the total granule density
v(Q) pm/sec Minus-end speed as a function of the total granule density
vy N to a Poisson distribution and, in space, according to the local
pr ] m nucleation raten(g), determined by the pigment distribution.
Plus ends grow at a constant regeand are stabilized when
‘T T Rk /koﬁ they encounter the cell membrane. Minus ends shorten at a rate
’ :‘@. ) dependent on the local pigment concentratidg).
H e P In Appendix 4, we demonstrate that the rapid movements
m = and attachment/detachment kinetics of the pigment granules
v N can be successfully approximated with a combination of

‘ ! diffusion and advection of the granule density. The diffusion
-+ L arises from the random walk undertaken by pigment granules
Fig. 5.1D implementation of the model in a long narrow fragment ofas they attach to and detach from MTs pointing in various
length 2. Two dynamic sub-populations of MTs with opposite directions and has nothing to do with Brownian motion, which
orientations are characterized by the densities of the pl)sapd is several orders of magnitude smaller and hence irrelevant.
minus (1) ends and the polymer densithég. Three pigment sub-  The |ocal rate of advection depends on the presence of
populations are described by the densities of the granules gliding toanisotropy in the local MT distribution — an isotropic MT
:jhigsré%r;tgg fa;g%lfgteg&_\lf\gth speedrg, and static granulegd) distribution generates no advection whereas any bias causes
' movement in the direction of the bias.
We use the following scheme to calculate the velocity field
associated with a MT. Each MT generates an effective velocity
MTs is the polymer densiti (x) defined as the number of field in a rectangular domain of influence (Fig. 6). The
MTs (expressed as a density) passing through the cross-sectimresponding velocities are minus-end-directed and decrease
of the fragment at coordinate(Fig. 5). The granules can be away from the MT according to the formula in Appendix 5. To
described by three densities — those gliding to the righaQd  compute the influence of MTs on the local granule advection,
left (g)) with speedvg on the right- and left-oriented MTs, we derive an expression best described as scaled linear
respectively, and the density of static granutggdissociated superposition (see Appendix 5 for details). This scaled linear
from the MTs (Fig. 5). The static granules associate with theuperposition describes a sampling of the local MT network by
right- (left-) oriented MTs with rates proportional to the localpigment granules rapidly attaching to and detaching from the
polymer densities of the respective fibeksaNri(x). This  network allowing for each granule to be influenced by all MTs
model is deterministic and does not consider stochastic effecisresent.
The model equations are introduced in Appendix 2. This spreading of the velocity field generated by each MT to
a neighborhood surrounding it can be interpreted in physical
) terms. Because the model takes advantage of the rapid pigment
2D computational model on and off rates, the velocity field must be interpreted in
The computational structure of the 2D model is a combinatioprobabilistic terms: in a small interval of time (the computational
of a discrete stochastic simulation of individual MT fibers andime step), each pigment granule samples the local MT
numerical solution of continuous deterministic equations foenvironment and is transported according to a local average of
granule density. MT orientations. However, the probability of interaction
A deterministic continuous description of the MTs on a 2Dbetween granules and MTs is not restricted to pairs that occupy
domain is not reasonable. First, mathematically, such the exact same region of space. Owing to the thermal movements
description presents a multi-dimensional problem that i®f granules and lateral thermal fluctuations of MT positions, the
difficult to formulate and time consuming to simulate. Secondprobability of interaction between any such pair depends on the
the total number of MTs in a fragment (100-200) is large, buglistance between them. On the time-scale of attachment and
the number of MTs passing through any local region in the@etachment[{l second), a free granule diffuses oMBrl pm.
fragment is not so large. Thus, a discrete, stochasti®isplacement is given by the following equation:
representation of MTs is both more convenient and more
appropriate. Therefore, we implement a discrete stochast ‘“\/D/kon:\/0.01|J.m2/SGC-1SEC=0.[1ITI )
model: individual MTs are nucleated with random orientation
and position, and their dynamics are tracked in a manndre lateral MT fluctuations are of the same order of magnitude
consistent with the 1D model. They appear, in time, accordinf/orobjev et al., 2001). In addition, the granule size is
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Results

We simulated the 1D and 2D models numerically. The dynamic
behavior of the models can best be appreciated by viewing
Movies 1-7 (http://jcs.biologists.org/supplemental/). Figs 7-9

and 12 show frames from these movies. The model simulates
a broad range of features of the self-organizing MT/motor

system. In addition, theoretical analysis of the 1D model is

given in Appendix 4.

The nature of symmetry breaking and the initial stage of
aggregation
Our explanation of the nature of the symmetry break at the
onset of pattern formation is similar to the detailed analysis of
the same 2D system in a disk-shaped fragment (Maly and
Borisy, 2002). As shown below, in the fragment, where MTs
are nucleated uniformly and isotropically, most microtubules
Fig. 6. lllustration of the numerical implementation of the 2D are directed with their minus ends toward the interior of the
computational model. Each MT generates an effective velocity field fragment. The effective granule velocity field generated by the
(arrows) in the rectangular domain of influence (see isolated MTs atsimulated MT ensemble is almost radially symmetric, directed
the periphery). The corresponding velocities are minus-end-directedoward the center and increasing away from the center, in
and decrease away from the MT. The velocity fields of individual ~ complete agreement with the earlier analysis (Maly and Borisy,
MTs add locally and geometrically. Note that the velocity field in the 2002).
center is not parallel to any individual MT but results from the vector The 1D model provides additional insight into the
Zum .?f |nd|V|duta| dc?nttnlguttlﬁns.hThe Shf?d'?g sho?/vs.:h?.glcjanule mechanism of symmetry breaking. The left-oriented MTs
enstly generated fast by the shown efiective velocity Tield. nucleate everywhere within the fragment with equal likelihood,
grow in length at a constant rate and treadmill to the right.
Thus, treadmilling shifts longer left-oriented MTs to the right.
0.1 um. Thus, although molecular diffusion does not play arhe same argument applies to the right-oriented MTs. Thus,
significant role in granule movement on the long time-scaleven though MTs are nucleated uniformly throughout the
(the scale of MT turnover), on the short time-scale of granulfagment, the array that forms is not uniform but rather
attachment and detachment, it allows for granules located \generates a bias in pigment movement. Indeed, near the right
to a few hundreds of nanometers away from a given MT tfleft) edge of the fragment, almost all MTs are leading attached
have a finite probability of interacting with it. On the time- granules to the left (right), while at the center of the fragment,
scale of tens of seconds, a granule in the hundreds #fe numbers of oppositely oriented MTs are equal, and there
nanometers wide vicinity of a MT attaches, glides, detaches no bias (Fig. 5).
and diffuses toward and away from the MT a few times. This Fig. 7A shows analytical solutions of the 1D model
justifies the effective spreading of the velocity field generategquations (see Appendix 4) illustrating the MT and granule
by each MT. distributions at the onset of the self-organization. As one goes
The described extrapolation procedure is consistent with tHgom the left (right) to the right (left) edge of the fragment, one
1D model in the sense that a few parallel and anti-parallel MT#nds a linear increase in the number of left- (right)-oriented
placed close together generate the same velocity field asMils. Rigorous calculation (Appendix 4) shows that the
similar arrangement would in the 1D model. Furthermore, ieffective velocity of the granules is an odd function of the
the local MT distribution is isotropic then the correspondingdistance from the center: increasing from the center toward the
average advection is zero, and the granules disperse by @giges, zero at the center, and directed toward the center. Thus,
unbiased random walk, which also conforms to thewithin a few tens of seconds after stimulation of dynein, rapid
microscopic observations. transport of pigment granules leads to the formation of a loose
In Appendix 4, we show that the granule densityaggregate shown in Fig. 7A.
equilibrates rapidly to the current MT distribution. That is, at
any given moment, the MT array is changing sufficiently
slowly that pigment granules achieve a pseudo steady std&®th granule associated nucleation and minus end
distribution based on the current state of the MTs. In th&tabilization are necessary to explain the self-
simulations, the MT distribution generates the velocity fieldorganization; low granule density and/or inhibited MT
at each time step according to the described procedure afignamics impede the pattern formation
we adjust granule density instantly according to the describddsing computer simulations in both 1D and 2D, we
combination of diffusion and local advection at each time stepxperimented with a lower nucleation rate. It was found that
(see Appendix 5 for 2D equations and numerical procedureqggregation and aster formation still took place, at roughly the
We update the MT distribution according to the describedame time-scale, but to a lesser extent: the aggregate was
discrete stochastic algorithm using the current granul®oser, and the minus ends were distributed widely in the
density. These calculations are repeated at eadhagment. A similar effect was observed when the ability of
computational step. pigment granules to stabilize minus ends was attenuated. In the
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Fig. 7.(A) Analytical solutions of the 1D model initial pseudo steady
state equations. In the fragment, the MT minus- and plus-end
densities are linear functions of the spatial coordinate. Upon dynein
stimulation, the granules aggregate loosely to the center of the
fragment within tens of seconds. (B) Numerical solutions of the 1D
model steady state equations. In several minutes, granules aggregate
tightly in the center with most MT minus ends focused in the

pigment aggregate. Note that the plus ends at the fragment boundary
are not shown. The total numbers of the plus and minus ends are
equal.

latter case, the time-scale of pattern formation also increased.
These results conform with the observations reported
previously (Rodionov and Borisy, 1997a).

Time-scale and pathway of the self-organization

Movies 1 and 4 (http://jcs.biologists.org/supplemental/) show
the simulated time course of self-organization in 1D and 2D
fragments, respectively. In 1D, a loose aggregate at the center
nucleates more MTs, the minus ends of which stay in the
aggregate while the plus ends grow outward. This accelerates
granule aggregation, which causes the nucleation of more MTs
that remain anchored in the aggregate. This positive feedback
loop leads to a tight granule aggregate at the center with most
MT minus ends focused in the pigment aggregate (Fig. 7B,
Appendix 4).

In 2D, the granules rapidly aggregate into a few local foci (Fig.
8B) and the local aggregates coalesce into the single group (Fig.
8C). At the same time, the re-organization of the MTs starts: MTs
with minus ends outside the aggregate treadmill toward the
boundary and disappear. Finally, the pigment aggregate tightens
and the MT aster emerges (Fig. 8D). This simulated
pathway reproduces faithfully the experimentally
observed sequence of events (Figs 1, 2; Movie 6,
http://jcs.biologists.org/supplemental/). Moreover,
the simulations illustrate transient distributions of
MTs that are hard to observe in the experiments.
They demonstrate that indeed the initial local
aggregates emerge near local MT minus-end
clusters, and that mini-asters hypothesized in the
qualitative model do not have time to form.

Numerical simulations also give an estimate for
the time-scale of pattern formation that is close to
that observed({LO minutes in both experimental
and theoretical systems) in fragments a few tens
of microns across. In Appendix 3, we demonstrate

Fig. 8. Computer simulations of the 2D model
(compare with Figs 1 and 2). MTs are shown as
segments. The granule density is illustrated by shading
with darker areas corresponding to higher densities.
(A) Initially, the MTs are distributed randomly and the
granule density is uniform. (B) The granules quickly
aggregate into a few local foci before MTs can re-
organize. (C) The local aggregates coalesce into a
single loose aggregate over a few minutes
simultaneously with the re-organization of the MTs.
(D) The pigment aggregate tightens over the next few
minutes and the MT aster is clearly seen.
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that the relevant time-scale is determined by the characteris
time of treadmilling across the fragment, /vy ~20 pm/5
pm/minute = 4 minutes. Simulations show that patterr
formation takes place in roughly three of these time units. Th
observation that self-organization takes roughly three tim
units is indicative of the fact that the MT array must reassemb
roughly three times before aggregation and aster formation a
complete.

Local pigment aggregates appear transiently near local
minus end clusters

Movie 1 (http://jcs.biologists.org/supplemental/) and Fig. 7
demonstrate that, in 1D, aggregation proceeds directly to
single granule aggregate at the center without the appearar
of transient local aggregates. However, Movie 2
(http://jcs.biologists.org/supplemental/)  starts  with  an
inhomogeneous initial MT array. This is intended to represer
the random variation in MT densities in the fragment withou
explicitly introducing stochasticity to the model. Initially, the : %
pigment forms three aggregates near the respective initi B . .
minus-end clusters. Subsequently, the three aggregates me s AW e % Z z
into two and finally into a single aggregate. Ve S (s e N
To explore the role of stochasticity in a more realistic setting YR b o WP Sl
we simulated the aggregation pathways in the 2D domain . - : =
various nucleation rates. Fig. 9 illustrates that at a modera o=
nucleation rate (reflected in the low number of MTs), a few
transient aggregates emerge near local clusters of minus en
At nucleation rates an order of magnitude higher, much great
numbers of MTs are associated with a very regular distributio
of minus ends. This leads to a smooth and solitary aggrege
(Fig. 9B). These results suggest that local inhomogeneities
initial minus-end distribution in the fragment are responsible : ;
for local transient aggregates. These inhomogeneities are d S ? PAVE S SRS
to stochasticity of MT nucleation when the nucleation rate i ' = AL b D RS
such that 100-200 MTs are present in a fragment a few tens oA A A S AR NCREYS
microns in size. Varying the nucleation rate through a full orde / i & ' 5
of magnitude had almost no influence on the time course ¢ i = AT
aggregation. This last fact is a theoretically predictable featureig. 9. MTs and granule density are illustrated as in Fig. 8. Level-
of the model. curves of granule density are added for emphasis. Both images show
the state of a fragment soon after dynein stimulation. (A) At low and
moderate nucleation rates, a few local aggregates evolve initially.
Density dependencies of the rates of nucleation and (B) At high nucleation rates, the granules initially coalesce into a
minus end disassembly single loose aggregate.

Using computer experiments, we established that there should
be no threshold in the density dependence of the minus-end
disassembly rate (dashed curve in Fig. 4). The reason is thal L;
the minus-end disassembly does not slow down when t
granule density increases, then the positive feedback quH
leading to self-organization is not triggered. The self
organization pathway is not sensitive to the presence
absence of either a threshold or saturation in the densig
dependence of the nucleation rate.

Our computational model is not appropriate to specify th
guantitative dependencies of the rates of MT nucleation an
minus-end disassembly on granule density. The reason is tha

-

rameters, we carried out simulations with a modified version
the model in which the granule density was prescribed to be
a realistic aggregated form. Granule density, estimated using
“conservation of the total number of the granules, was constant
ithin a disk of radiusr=0.15 (in non-dimensional units)
cated in the center of the fragment, and zero outside the disk.
Simulating the MT dynamics in this system, we found that the
llowing density dependencies provide a good fit to the
perimental data (see Appendices 6 and 7):

the model neglects the effect of the steric repulsion of granule g

in the aggregate: in reality, there is a maximal granule densit n(g):0.1+m, v(g)= 20+1)’

in the aggregate due to crowding, while in the model, the '

density is not limited from above. where the granule density, the granule-free minus-end

To more accurately estimate nucleation and stabilizatiodepolymerization rat&0) and the pre-stimulus nucleation rate
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n(1) are normalized so that they are equal to one in thdetermined by the ratio'vp. Therefore, the model predicts that
fragment. These functions are shown as solid lines in Fig. 4the pattern formation time-scale is linearly proportional to the
This result means that 10% of MTs in the fragment arsize of the fragment.
nucleated spontaneously, and another 90% are formed by
granule-dependent nucleation. In the aggregated state, the o )
percentages are similar; however, owing to minus-end Self-organization in a bi-lobed fragment
stabilization, virtually all MTs in the aster are granuleTo elucidate the role of fragment shape in self-organization,
nucleated. The density dependence of the nucleation ratevie performed computer simulations in 2D domains with a
sub-linear and mildly saturating. Before stimulation withcharacteristic bi-lobed shape (Fig. 10; Movie 7,
adrenalin, the net rate of minus-end disassembly is roughhyttp://jcs.biologists.org/supplemental/). The  simulations
three times less than the rate of plus-end growth. Aftesuggest the following sequence of events. Initially, very few
aggregation, the net rate of disassembly of the minus endli4Ts pass through the corridor, so there is little
embedded in the aggregate is approximately 30 times less theammmunication between the lobes. Thus, self-organization
the rate of plus-end growth. These quantitative predictions gfroceeds in the lobes almost independently, according to the
the model can be tested. scenario described above for regularly shaped fragments.
We computed the total length of MT polymer and theHowever, after two polar asters are organized in the adjacent
partitioning of the MTs in the presence of a tight aggregatdobes, there is an increased number of MTs transiently
The results are shown in Fig. 3A. The increase in total lengtAnchored by their minus ends in one of the granule aggregates
of MTs is due to both greater number and greater length @xtending through the corridor and passing through the other
individual MTs. The total length of MT polymer increases byaggregate. These MTs establish tracks for granule transport,
a factor of three, compared with roughly a two-fold increasso that granule density in the corridor increases. This
observed experimentally (Vorobjev et al., 2002). However, thaugments the nucleation of MTs with their minus ends in the
experimental number probably underestimates the totalorridor extending outward and thus passing through both
because portions of MTs embedded in the aggregate are rpnule aggregates. This accelerates directional granule traffic
visible. The computations predict the 80-10-10-1%into the corridor further enhancing the formation of a polar
partitioning of the stable — minus-end disassembling, plus-endT aster in the corridor and depleting granules from the initial
assembling — treadmilling MTs, in close agreement with th@ggregates. This positive feedback loop leads to the final
observations reported previously (Rodionov and Borisycentered aggregation.
1997h). Thus there are three possible aggregate/aster formations, one
stable and the other two only transiently stable. The two
aggregates that form in the lobes are stable only as long as there

Model predictions: role of geometry in the self- is no communication (i.e. MTs) between the lobes. The time-

organization o scale of their ‘stability’ depends on the expected time before a
Dependence of pattern formation time-scale on MT grows through the neck, predicting an inverse relationship
fragment size between the thickness of the neck and the time required for the

As noted above, the time-scale of self-organization iswo aggregates to fuse in the middle of the neck. Furthermore,
a neck which is sufficiently curved to
prevent growth of MTs from one lobe
into the other should indefinitely
sustain two stable aggregates in the
lobes. Note that our results
complement previous findings
(Nedelec, 2002), who demonstrated
theoretically that MTs and minus-end-
directed motors cannot support stable
multi-aster structures.

Experimental verification of the

model predictions

It is difficult to obtain two fragments
of different size and similar shape,

Fig. 10.Self-organization in the bi-lobed
fragment. (Left) Phase contrast images
show pigment distribution. (Right) Results
of a computer simulation in the bi-lobed
fragment. The experimental images are
obtained before the adrenalin treatment,
and 5 and 10 minutes after it, respectively.
Bars, 10um.
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500 roughly 95% of all pigment granules so that four times this
value is roughly the diameter of the fragment. To find the
associated time constant of aggregation for each fragment, a
decreasing exponential function was fit to the temporal
sequence of second moments. After a slower initial stage of
aggregation, decreasing exponential functions provided
excellent fits for the linear granule dispersals as functions of
time. Fig. 11 shows the observed relationship between space
and time constants for the 20 fragments. A straight-line fit to
the data (least squares sense) is superimposed with dashed
lines representing one standard deviation above and below.
Note that we do not assume that the line goes through the
origin, a feature that is required to satisfy the scaling
prediction. Rather, this feature, which is evident in the figure,
simply emerges in the least squares fit. The slope and
~100 s s s s . s ) intercept of the fit were found to be 26.1+7.1 secomdand
° ? ’ Length scale ?um) 10 v 14 10.554.8 seconds, respectively. o
Note that the scaling lawr€L/vp) offers a prediction fovp,
Fig. 11.The observed relationship between space (fragment size) afid particular, v,=0.038 pm/second=2.3um/minute, which is
time (aggregation time) constants for the 20 fragments, as explainedeasonably close to the directly observed experimental value
in the text. A straight-line fit to the data (least squares sense) is (4-8 um/minute) (Rodionov and Borisy, 1997b; Vorobjev et al.,
superimposed with dashed lines representing one standard deviatiogooz). These observations and the image analysis confirm that
above and below. the pattern formation time-scale is proportional to fragment
size.

We also made two long narrow fragments, observed the
and so we tested Prediction 1 semi-quantitatively. Weigment aggregation process in them and compared the
observed pigment aggregation in 20 fragments obbservations to the 1D model analysis. Owing to technical
different size excised from nine cells (for a sample celproblems, it is hard to make such fragments, therefore we
with two fragments see Fig. 2; Movie 5, http:// were not able to produce fragments of various length and test
jcs.biologists.org/supplemental/). In the sample cell, the largthe model quantitatively. The results are shown in Fig. 12.
and small fragments were roughly 70 andp40 wide and During the aggregation process, local aggregates form, as
had areas 3800 and 130012, respectively. At each time step, seen in this figure. Finally, a single tight aggregate forms as
we measured the state of aggregation by taking phase contrést system approaches steady state. The comparison with the
images of the fragments and calculating the second momebb model shows qualitative agreement of the experiment and
of the pigment distribution about the centroid in bothxhe theory.
andy- direction and taking the square root of their product. To explore the relationship between pattern formation and
(We imported the images into Matlab™ and used thislomain shape, we prepared a number of fragments with a
software to measure and quantify the distribution of pixels.gharacteristic bi-lobed shape and observed self-organization
This measure of the granule dispersal has the dimension mf such fragments (Fig. 10; Movie 6, http://
length. Before adrenalin treatment, when the granules wejes.biologists.org/supplemental/). In complete agreement with
dispersed homogeneously, the measure of granule dispersiaé theory, we observed that pigment aggregation proceeded
defined in this way could be used to quantify the size of theeparately in each of the lobes during the first few minutes after
fragment. A circle with radius twice this value should contairadrenalin treatment, much like the aggregation process seen in

400f
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Fig. 12.The time course of aggregation in a 1D fragment. (A) Phase contrast images of a 1D fragment (the width is much smaller than the
typical MT length). (B) Line scans of intensity through the midline of the fragment. (C) Simulation results from the 1D ithcalel w
inhomogeneous MT array (see Movie 2, http://jcs.biologists.org/supplemental/). The top row shows the initial state ofrthdigfligougion
(roughly uniform). During the aggregation process, local aggregates form, as seen in the second row. Finally, a sirgylegigatfagns as

the system approaches steady state.
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regularly shaped fragments. A large aggregate developed granule transport toward the MT minus ends continuously,
each lobe, somewhat closer to the corridor between the lobedthout numerous dissociations; (3) underestimating the
than to the centers of the lobes. In the next few minutes, th@obability of a granule associating with the same MT it just
aggregates converged and finally merged into the singldissociated from. More importantly, the model does not
aggregate in the corridor between the lobes. Fluorescenapture the self-centering phenomenon that we describe
images of the MTs (not shown) also confirmed the theoreticddriefly below.
scenario. In a different experimental preparation described elsewhere
(Rodionov and Borisy, 1997b), in which granules are dispersed
) ) but MTs are pre-organized by the centrosome of the mother cell,
Discussion the granules rapidly aggregate to the edge of the fragment where
We have developed a computational model of the MT/dyneithe minus ends are concentrated. The aggregate subsequently
system that demonstrates in silico aggregation of granuleshifts to the center of the fragment (Rodionov and Borisy, 1997b).
coated with dynein motors into a single focus and formatioMovie 3 (http://jcs.biologists.org/supplemental/) demonstrates
of a polar MT aster, thereby reproducing the phenomenthe model-predicted pattern formation corresponding to this
experimentally observed in melanophore fragments. Thassay in which granules are initially distributed uniformly with
model accounts for the self-organization phenomenon bgll MT minus ends at the left and their plus ends at the right. The
assuming that (1) there is no physical MT transport, (2) dyneimitial stage of aggregation is as observed in experiments but the
motors transport granules toward MT minus ends, (3) the M&aggregate stops far from the center, near the left edge of the
nucleation rate is an increasing function of granule density, arftagment. Similarly, the 2D simulations (see Movie 4,
(4) the rate of MT minus-end disassembly is a decreasingitp://jcs.biologists.org/supplemental/; Figs 8, 9) show that the
function of granule density. The model explains self-aggregate is positioned close to but not exactly at the center of
organization as a positive feedback loop based on the mutuallye fragment. Aggregation exactly at the center in some
enhancing processes of motor transport to MT minus endsmulations (Fig. 7) is the consequence of the perfectly symmetric
leading to motor concentration and motor-mediated nucleatioinitial conditions and absence of stochastic effects. Therefore,
and stabilization of the MT minus ends. there are molecular mechanisms responsible for the self-centering
Faithful quantitative reproduction of the observedphenomenon that are not accounted for in our model. We
aggregation and aster formation phenomena requires thwpothesize that force generation and length dependent
existence of granule-associated factors able to both nuclead#ferential buckling of MTs are essential for self-centering (Tran
MTs, and slow down their minus-end disassembly. Thet al., 2001). We will address this problem in detail elsewhere.
model supports the qualitative assumption of Vorobjev et aDespite these limitations, the model elucidates a pathway for
(Vorobjev et al., 2001) that granule-mediated nucleation andster formation in MT/motor systems.
disassembly inhibition are equally important. Although there
are a number of possible corresponding molecular )
mechanisms, we favor the hypothesis that dynein motordppendix 1
themselves are able to enhance the MT nucleation ratExperimental materials and methods

perhaps by binding tubulin dimers and assembling a templatgssue cultures of black tetra melanophores were prepared as
for filament growth, and to transiently cap the MT minusdescribed previously (Rodionov et al., 1994). To prepare
end. fragments, melanophore processes were dissected with
Some of the model parameters are available, either directiicroneedles with a 0.pm tip diameter. Aggregation of
or indirectly, from publlshed data. We estimated the rest of thﬁle|anosomes in the fragments was triggered with 03
parameters by fitting the theoretical results to the quantitativedrenalin. Phase contrast images of fragments were obtained
experimental data. In order to test the model, we madgsing a Nikon TE300 microscope equipped with a Watek high-
theoretical predictions for the dependence of the time ofesolution video camera. Fragments with labeled MTs were
aggregation on fragment size and for pattern formation in thebtained by injection of parental cells with Cy3-labeled tubulin
bi-lobed fragments and compared them with experimentgRodionov et al., 2001) and subsequent dissection of
observations. The semi-quantitative agreement betwegfagments. Images of MTs were captured with a Photometrics

experiment and theory lend additional support to the modetH350 back-illuminated cooled CCD camera.
Detailed quantitative measurements in fragments with altered

MT dynamics and pigment density are necessary to test a few

other model predictions: (1) decreased granule density leadsAgpendix 2

a more diffuse aggregate; (2) increased granule density leal® model equations, scaling and non-dimensionalization

to tighter aggregation into a single focus without transienfye model the MTs and granules deterministically on the 1D
aggregates; (3) specific constraints on the functiongiomain +<x<L. We assume that there are sufficiently many
dependencies of the MT nucleation and minus-enqTs that it is appropriate to keep track of them in terms of
disassembly rates on granule density. local densities. The equations used to track plus-end densities,

constraints of mathematical solvability. These are: (1

inadequate treatment of the effect of steric repulsion of thig ] 0 0

pigment granules and of the observed process of granule, pr,l:in& pri+n(g), amFi&[V(Q)mr.l]’fn(g)- (1)
being squeezed upward into the third, vertical dimension i

tightly packed aggregates; (2) neglecting the possibility oHereg(xt) is the local total concentration of pigment granules.
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The first term on the right-hand side of each equation describesoperativity) and large values of andgn (no saturation at
the advection of plus ends at a constant vatend of minus  realistic concentrations). The dashed curve corresporggslto
ends at a rate(g). The second terms describe nucleation with(no threshold/cooperativity) and moderate valuesi@ndgn
a raten(g). (saturation). The dotted curve corresponds o3
Pigment granules can be in any one of three states: attach@ldreshold/cooperativity behavior) and moderate values; of
to a left-oriented MT and gliding to the left; attached to a rightand gn (saturation). Comparison of the theoretical and
oriented MT and gliding to the right; or unattached and staticexperimental data shows that the first case is the best fit:
The equations describing the temporal evolution of these threg1, n1=10, g,=10. (We normalizeng andny by the value of
states are given by: the nucleation rate in the fragment, ajpdy the value of the
granule density in the fragment.)
g = —Kofir 1 + konNr 1GS 2 In the absence of granules, the net minus-end
ot 9! = KoffGr |+ Konl\r 1Gs+Vg 0 Ol depolymerization rate is equal to the plus-end growth vate,
3 (2) The functionv(g) decreases monotonically with increasing
. granule density. A simple model explains the form given above.
ot 9= kort(91 + r) -Kon(Nr +Ni)Gs. Suppose a MT minus end can be in one of two states, capped
ft- (C) or disassemblingX). The uncapping rate is the product of
the uncapping rate constant and the density of capped MTs,
kuC. However, the reverse reaction depends on the local
igment concentration and the structural nature of capping. If
pigment granules are required to cap a minus end, then the
ht([)ansition probability i&.g®. At equilibrium, ifD is the fraction
of disassembling minus ends, thén(ke/ky)g®D is the fraction

Here gr1(xt) is the local concentration of the right- and le
moving granules, respectively, angs(x,t) is the local
concentration of the static granulegx,t) = gr(xt) + gi(xt) +

os(x,t). The last term in the first equation describes the indin@
of the granules with speag. The first terms in the equations
are responsible for the dissociation of the granules from t
MTs with the constant rates, while the second terms describe

the attachment of the static granules to the MTs. The rates 8? capped minus ends. Assuming the disassembly rate is

attachment to the right- and left-oriented MTs are proportiona]>" SNt o), the model predicts that the net disassembly rate
to the correspondin% MT polymer densitid;(x,t). brop s Vg)=vpku(ktkeg?). We have renamed and rescaled the

The polymer densities are calculated using the followin ﬁgazqoerfg{;g‘ng}g:;ir’zraet?;on above for reasons of interpretation
integral equations: The parametes is refered to as the Hill coefficient, which
X L is a measure of the cooperativity required of pigment granules
Ni(X) = & [mi(y) - pi(y)]dy, Nr(x):& [me(y) —pr(y)]dy. (3) in stabilizing the minus ends. Large value$cprrespond to
J-L Ix the presence of a threshold density below which granules have
. . . little or no effect on minus-end depolymerization. The
The expression fd is derived from the fact that the polymer parametegy is the value of the threshold density at lasger,
density of left-oriented MTs at is equal to the number of o g1 the value of the half maximum density at which the
fibers passing through the coordinatevhich can be found as et gepolymerization rate is half what it is in the absence
the number of minus ends to the lefboless the number of o granules. Fig. 4B illustrates two qualitatively different
plus ends to the left of Nr is derived similarly. _ cases. The solid curve corresponds t&=1 (no
No boundary conditions are needed for the static granulgyreshold/cooperativity), while the dashed curve corresponds
densities. The natural boundary conditions for the othejg =3 (threshold/cooperativity behavior). Comparison of the
densities are: theoretical and experimental data shows that the first case is
_ _ _ _ the best fits=1, g,=0.5. (We normalizgy by the value of the
pr(L)=0, m(L)=0, p(-L)=0, m(-L)=0, (4)  granule density in the untreated fragment.) At values'f

o(-L)=0, g(L)=0. the model is insensitive to varying parameger However,
The functionsn(g) and v(g) are given by the following increasing the Hill coefficients introduces sensitivity to
general expressions built using Hill functions: changes imgy. This occurs because large values oftroduce

threshold behavior to the stabilization phenomenon and, when

g _ the threshold is too high, the positive feedback mechanism is
R V@)=V E+ ®)  not triggered.

We choose half the size of the fragmdntas the unit of
In the expression for the nucleation rate, the paranmetey  length measurement, and the constant net polymerization rate
the background granule-independent nucleation rate. Thg as the unit velocity so that the unit of timelisp. We
parametern is the maximal amplitude of the density- choose the (uniform) density of pigment in the untreated
dependent nucleation rate. The parameieis the Hill  fragment,g, as the scale for granule density. We define the
coefficient which, biologically, is a measure of the characteristic nucleation rate in the fragmeni(g), where
cooperativity required of pigment granules in nucleating MTsn(g) is given by Eqn 5. The characteristic scales of MT plus-
and mathematically determines the presence (at large valuesasfd minus-end densitieg, and m, are determined by the
g) or absence (ai(1l) of a threshold effect. The parameggr product of the characteristic nucleation rate and the
is the half maximum concentration at which saturatiorcharacteristic time for a MT end to travel across the fragment:
becomes noticeable or, for large valuesjothe value of the p=m=nL/vp.
threshold. Fig. 4A illustrates three qualitatively different cases. Using these scales, we arrive at the following non-
The solid curve corresponds t@=1 (no threshold/ dimensional form of the model equations:

S

n(g) =no+ny
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9 d d 9
—Pri=t—pri+n(@), —Mmi=%_—[v +n(g),
P Pr, = Pr,1 +N(Q) 3 My ax[ (@M ]+n(9), (6)

0 0
€ a Or) =—Kigr, + koNr 10sF & Orl,

@)

d
€ a Os=ka(a1 +gr) —ko(Nr + Ni)gs,

X 1
NI(X)=J& [mi(y) —pi(y)ldy, Nr(X)=J& [me(y) —pr(y)]dy, (8)
-1 X

therefore, parametekc must be much greater than unity.
Simulations show that, providekb is large compared with
unity, the behavior of the model is insensitive to variations in
that parameter. The derivation of the 2D model equations,
which do not depend on the valuekef relies on this fact. In
simulations of the 1D model we uskg-100.

The time-scale of nucleation, 4l (the average time
required for the nucleation of a MT anywhere in the fragment),
can be estimated by noting that the MT array in a fragment is
capable of turning over completely in a period of about 10
minutes. Assuming the MT array consists of 100-300 MTs, we
infer a time-scale for the nucleation of a single MT to be few
seconds. Using these indirect estimates for the non-
dimensional combinations of parameters, we calculated the

gl oy dimensional values of the model parameters and listed them in
n(g) = (no/n) + (N1/n) g v(g) = e 9) -Labllfo 1. I{\/ partiCI(Janr, we predict thaf.001um? second) and
n thatkon ~1/second.

Finally, let us note that although we use the v in
ki=koftL/vg, ka2=konl3a/(VgVp) - (10) 1D, this value turns out to generate very diffuse aggregates in
2D. Good results are achieved at a valuke®500, two orders
To avoid introducing confusing notation, here we use the sanm@ magnitude greater than our original prediction. This
notation for the non-dimensional model varialles tvp/L,x ~ modification is discussed and justified in Appendix 6, below.
- XL,Or)s - Or1dg.pr1 - pri/p,my - my/m, as that used
for the dimensional variables.

e=Vplvg,

Appendix 4
Analysis of 1D model equations

Asymptotic analysis of the 1D model provides insight into the

Model parameters behavior of the system, allows us to find analytical solutions

The model parameters are Iisted_in Table 1. Some of thefy he model equations and, more importantly, suggests a
(Vp, Vg, L, kor) are known from experiments. For others, we rely,

) ; . X . - ; %eneralization of the 1D model to the more realistic 2D case.

on numerical simulations and dimensional analysis combined \ye will use the notationg = gi + gr +gs andh = gi — gr.

with indirect egpenmental ewdence_. The.behawor of.the'mode dding and subtracting equations (Eqn 7), we obtain:

depends crucially on three non-dimensional combinations ¢

parameterse=vp/vg, ki=kofiL/vg, and ko=konL37/(vgvp). The 0 0 0 0

small parametee ~0.067 is the ratio between the fast time- €—9=—h, e_—h=_— (g+0gr)—kih+ka(Ni—Nr)gs.

scale associated with granule transport to the slow time-sca. _ ot™ ox ot ox

associated with MT treadmilling. The fact that this parameteBecauseki, ko > ¢, the equation fogs (Eqn 7) is always in a

is so small means that granule density rapidly equilibrates tofseudo steady state relativegi@r. This means:

slow changing MT distribution. This fact is conceptually an

important feature of the model and simplifies both analytic ant

numerical calculations. The parameker5 is the ratio of the

characteristic time of granule transpartyg ~5 seconds, to the

average time of gliding before detachmenkyi~1 second.

Its value, relatively large compared with unity, corresponds tc P Ni—N

(and legitimizes) the claim that granules attach and detac e—h=—(g-g9-kih+ki r(g_gs)_

frequently, rather than glide to the minus end of MTs directly ot ox Nr+Ni

upon attachment. _ In the realistic limitki< ko, gs is small relative tay and the
The value of parametek can be estimated from the |3t equation reduces to:

following argument. Note thako can be represented as

ko=kon % [(niL/vp) x L] % (L/vg). HerenlL/vp is the scale of the 0 d NI —Nr

MT plus- and minus-end concentrations and the expression | eah=& g-kih+ki N+ N g.

the square brackets is the characteristic MT polymer densit,.

Thereforekonx [(7iL/vp) x L] is the characteristic frequency of Taking time derivatives of the equation fgrand spatial

granule attachment, which meaks is the ratio of the derivatives of this last equation fbr we can eliminate the

characteristic granule transport tinhéyg, to the characteristic variableh leaving the following equation for the varialge

time in detached state/(kowilL?). It was observed in the

experiments with nascent fragments (Rodionov and Borisy

1997b) that granules were rapidly transported across th

fragment, almost at the same rate as the rate of gliding. Th

indicates that the characteristic time in the detached state lis our caseki=5 ande<<1. This means that, on the fast time-

much less than the characteristic granule transport time anstale, the transient combination of advection and diffusion

Appendix 3

_ ki g+or
S e NN
Substituting the last expression into the equatioh,fare find:

52629+ o —1629+6D]L|_Nr E 11
ko ot koe mxowendg @Y
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adjusts the granule density to the slowly changing MT densitghe conservation of the total number of granules. Note that the
In the quasi steady state, the granule density is given by tlierm of this equation guarantees that the solution is symmetric
balance of effective advection and diffusion: about the origin, that is, the steady state aggregate is centered.

Numerical solution of this equation is depicted in Fig. 7B.
1 02g+ 0 ONi—N; E“'O 12
kioxz Ox[Nr+N gD ' 2 Appendix 5

The effective diffusion is due to the random motion of2D model equations

granules on the MT array. As for the advection term, agqn 12 of the reduced 1D model allows generalization to the
granules come on and off quickly, they essentially sample thep situation. First, the diffusion term in Eqn 12 is generalized
local MT population. Thus, their velocity is given by the to the 2D Laplacian. Second, introducing the polymer density
difference between the probability of attaching to a left movelgf MTs distributed in 2D space and in anfléc,6) we can
Ni/(Nr+Ni), and that of attaching to a right movisf/(Nr+Ni).  generalize the advection term as follows. In 1D, Eqn 12
Eqn 12 can be solved analytically in certain cases. In théuggests that the granule velocity in a given direction is
untreated fragment, where both the nucleation rate and tigoportional to the number of MTs in this direction divided by
minus-end depolymerization rate are consta(d)[=7 = 1, the total number of MTs at this point. In 2D, the same idea
v(g) = v(1)], steady state solutions to Eqns 6 are easily foundeads to the following equation governing the granule

distribution:
X)=———, X)=-(x—-1), 2
mEO== L P9=(cD) 1 N, @nedo
+ 0
m(x) = Lll P=(c+1). DR+ O VOE=0, V(9= N CE)
V(i) 5 N(x,6)d6
These linear distributions of MT ends are illustrated in Fig. 7A. lo
Using these to calculate the MT polymer densiti¢sand N, ng=cos@)i +sin(9)j .
we get the following equation for the granule distribution that _ S
develops within seconds of adrenalin treatment: Because we treat MTs as discrete entities in the 2D
computational model, the integrals over densities in Eqn 13 are
19g oU2x O replaced by sums over individual MTs. The MTs are nucleated
ki o2 + ox D2+ 19820, as described in Section 3. We keep track of each MT plus- and
minus-end coordinateg; andm; for theith MT, respectively,
which integrates up twice to: by numerically solving the equations:
9()=0.5¢+ 1) d d
. o o —Pi=ui, — mi=v[g(X)]ui. (14)
The corresponding granule distribution is plotted in Fig. 7A. dt dt

To calculate the steady state distribution after patteryerey; s the unit vector pointing from the minus end to the
formation is complete, we follow a similar procedure. This cam),s end of thih MT. Plus ends are stabilized when they reach
be done in the limiting case whegie> 1,no < m/gn, =1 and  the poundary of the fragment, and MTs are removed when the
s=1, which essentially meamtg) is linear andv(g) is a first corresponding minus ends reach the boundary.
order saturating Hill function. First, we solve for the MT ends e approximate the velocity(x) in Eqn 13 by the discrete

in terms of the as yet unknown granule distributigiq]: approximation, the meaning of which is described in Section
1_(KX) (KX) 3 and Fig. 6:
me(X) = s Pr)=1-¢x), m)=——, N2
v v io(x,i)e d7ady;
(@) () V()= Yig(x,i)e @7 %y; (15)

x Sic(i)e@fied
P = @), ¢(X)=& g(y)dy. _ . . : :

(= whered; is the distance from the poirtto theith MT (i.e. to
the line segment joiningi and m;), and function{(x,i)=1 if
the pointx belongs to the domain of influence of tfeMT
shown in Fig. 6, and(x,i)=0 otherwise. Rigorously speaking,

These are used to calculdtie and Ny and, after substitution
into Eqn 12 and integration, we obtain:

@ d —1/2 such a rectangle has one side equal to the MT length, another
£+klf(@ io:(), f(g) = ¢ ) side equal too, and the centers of the MT and rectangle
dx2 dx (p-1/22+1/4 coincide. Numerically, we use the smoothing parameter

. . . . . 0=1/30.
Integration of this equation gives the following boundary value To implement the 2D model, at each step we (1) nucleate
problem: new MTs and eliminate any MTs whose minus ends reach the
do ki boundary, as described above; (2) update the positions of the
— =C-—log[(p-1/2P+1/4], @&-1)=0, ¢-1)=1, plus and minus ends of the MTs using equations (Eqn 14); (3)
dx 2 find the velocity field using Eqn 15; and finally, (4) solve the
whereC is the constant of integration that can be found frondiffusion-advection equation (Eqn 13) using the updated
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velocity field and no-flux boundary conditions. The latteraroundr/v(ga) time units to escape the aggregate. Meanwhile, the
equation is solved on a rectangular grid using standard finifgus end takes about 1 time unit to reach the fragment edge.
difference numerical methods (Garcia, 1994). Assuming Kr/v(ga), the typical MT spends 1 time unit growing
with its minus end in the aggregate followed by abaufda)—1]
. time units with its plus ends at the fragment edge and its minus
Appendix 6 end in the aggregate. Once free of the aggregate, the minus end
Diffusion in 2D and the neck of bi-lobed fragments reaches the fragment edge about 1 time unit after escaping the

Recall that the diffusion term in Eqns 12 and 13 arises not fro@dgregate. The proportion of time growing is given by\{fja)
Brownian motion but rather from the movement along the+1]. Both ends are stable for a proportion of time givern/ofgh)
isotropic component of the MT network. However, this term—1] / [(M(ga) +1]. Finally, shortening occurs for a proportion of
appears to be independent of MT polymer density. Théme given by 1#/V(ga) +1]. The experimentally measured
problem arises from the assumption, in Appendix 4,dhi  Proportions are approximately 0.1 (growing), 0.8 (both ends
small relative tay, which is valid only ifNi+N; is large relative ~ Stable) and 0.1 (shortening). This meansth@i(ga). Estimates

to ki/kz ~1/20. In the 2D implementation, the correspondingff the aggregate size from the experimental data give the value of
term, r[0.15, and thereforg(ga)~0.0167. Under the assumption that

P MTs treadmill in the absence of granules, wev@j=1. The
ig(x,i)e@fod) choice of a value fox(1) is determined qualitatively from the
is always sufficiently large provided that the point in questio behavior immediately following adrenalin treatment. Before
r1reatment, a sufficient MT array must develop in order to get a

() is within the domam' (?f influence of at 'Ieast one. Ivrr'loose aggregate but not so much so that stochasticity is lost. A
However, due to stochasticity, there are occasionally regions Pive ofv(1)D.3 fits these criteria

which there are no MTs, thereby violating the assumption. In

a square domain, we correct for this by increakirtg a value The value ofn(0) represents the level of spontaneous

that cenerates a realisticallv tiaht agaregate nucleation in the absence of granules and must be small
| gt]h bi-lobed ISt A y g gtg 9 'tf the fact th ompared with 1. Otherwise, the number of treadmilling MTs
n the bi-lobed geometry, we must account for the Tact thag 4, high (recall that treadmillers represétito of MTs). The

essentially no MTs enter the neck until late in the process. T%Iue ofn(1)=1 is determined by the scaling. The valua(gf)

f:lz)setffi?:?evr:?uik Cc;gez;?[%r:;tif)on g]}’ i téso:io ir:gld\ljgli etri]ne tr?e'ff;':?knhas to be found numerically by matching the observed increase
(k) 9 in total length of MT polymer after aggregation.

(setting it to zero causes severe computational difficulties). After several trials, we found that the following values give
Unfortunately, this approach fails because of the pseudo steagygood fit to the 80-10-10-1% partitioning of the MTs and to

state assumption — in the model, pigment instantly equilibrat : : .
to the stable steady state associated with the current MT arr%%.e twofold increase in total MT length after aggregation:

Through the neck, this instantaneous equilibration requires 010 05

unrealistically high rate of flux. Therefore, we solve ther=0.15n(0)=0.1,n(1)=1,nG—0=

pigment equation independently on each half of the domair or2Q

applying a no flux boundary condition along the midline of the 01 0O

neck. This guarantees that there is no transport of pigmel v(0)=1,v(1)=0.3,vE—0=0.03.
across the neck so that each half has a conserved quantity oren
pigment. This simplification can be justified by the fact that i
the narrow neck the steric repulsion of the granules preven
large fluxes. We allow MTs to nucleate and grow everywhert
in the fragment. n(g)=0.1+

w2’

She following functions provided a good fit to the data:

v(g) =

(0.1g+1)’ (20+1)
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