
Introduction
Dynamic polymers known as microtubules (MTs) provide lines
of transport, communication and control in the cell and
organize cell movements, in part by serving as tracks for
molecular motors (Bray, 2001). The most prominent motor
families are the cytoplasmic dyneins, which glide toward MT
minus ends (Holzbaur and Vallee, 1994), and kinesin motors,
which are mostly plus-end-directed (Goldstein and Philip,
1999). MTs are commonly organized into polar asters with
minus ends gathered at the center and plus ends extending
outward (Kellogg et al., 1994). The free plus ends are dynamic,
switching between periods of growth and shortening. This
behavior, called dynamic instability (Mitchison and Kirschner,
1984), plays an important role in the exploration of
intracellular space (Holy and Leibler, 1994). During
interphase, most cells use MT astral structures to establish the
spatial organization of organelles as well as to organize
transport (Lane and Allan, 1998). In mitosis, focal points of
two MT asters serve as poles for the bi-polar mitotic spindle,
which plays a crucial role in the separation of the chromosomes

(Sharp et al., 2000). Asymmetric MT asters interact with the
actin cytoskeleton in a complex and poorly understood way to
guide cell migration (Waterman-Storer and Salmon, 1999).

MT aster formation is normally attributed to the capacity of
centrosomes to nucleate and stabilize the MT minus ends
(Schiebel, 2000). Molecular motors also play an important yet
poorly understood role in the organization of MT arrays (Sharp
et al., 2000). Remarkably, polar MT arrays can self-organize
in the absence of centrosomes (McNiven and Porter, 1988;
Maniotis and Schliwa, 1991; Verde et al., 1991). For example,
in mitotic extracts, aggregation of MT minus ends is
accomplished by large complexes consisting of multiple
cytoplasmic dynein motors, the dynein-activator dynactin and
the large protein NuMa (Verde et al., 1991). The model of aster
formation suggested previously (Verde et al., 1991) is based on
the ability of the multivalent minus-end-directed motor
complexes to associate with a few MTs and to stay attached to
MT minus ends. The model asserts that MT minus-end
focusing is achieved by the simultaneous motor driven
transport of each MT to the minus ends of the other MTs
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Polar arrays of microtubules play many important roles in
the cell. Normally, such arrays are organized by a
centrosome anchoring the minus ends of the microtubules,
while the plus ends extend to the cell periphery. However,
ensembles of molecular motors and microtubules also
demonstrate the ability to self-organize into polar arrays.
We use quantitative modeling to analyze the self-
organization of microtubule asters and the aggregation of
motor-driven pigment granules in fragments of fish
melanophore cells. The model is based on the observation
that microtubules are immobile and treadmilling, and on
the experimental evidence that cytoplasmic dynein motors
associated with granules have the ability to nucleate MTs
and attenuate their minus-end dynamics. The model
explains the observed sequence of events as follows.
Initially, pigment granules driven by cytoplasmic dynein
motors aggregate to local clusters of microtubule minus
ends. The pigment aggregates then nucleate microtubules
with plus ends growing toward the fragment boundary,
while the minus ends stay transiently in the aggregates.
Microtubules emerging from one aggregate compete with
any aggregates they encounter leading to the gradual

formation of a single aggregate. Simultaneously, a positive
feedback mechanism drives the formation of a single MT
aster – a single loose aggregate leads to focused MT
nucleation and hence a tighter aggregate which stabilizes
MT minus ends more effectively leading to aster formation.
We translate the model assumptions based on experimental
measurements into mathematical equations. The model
analysis and computer simulations successfully reproduce
the observed pathways of pigment aggregation and
microtubule aster self-organization. We test the model
predictions by observing the self-organization in fragments
of various sizes and in bi-lobed fragments. The model
provides stringent constraints on rates and concentrations
describing microtubule and motor dynamics, and sheds
light on the role of polymer dynamics and polymer-motor
interactions in cytoskeletal organization.
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attached to the same motor complex. Indeed, in mitotic cell
extracts, short MT seeds were observed to be transported by
cytoplasmic dynein toward spindle poles (Heald et al., 1996).
Multivalent motor complexes also form radial MT arrays in
purified in vitro systems (Nedelec et al., 1997). These studies
emphasized the role of the physical movement of MTs as
opposed to the view of MTs as immobile tracks.

Other studies of self-organization in MT/motor systems are
based on in vivo observation of MT aster formation in
cytoplasmic fragments of melanophores (Rodionov and Borisy,
1997a; Rodionov and Borisy, 1997b; Vorobjev et al., 2001). In
melanophore cells, thousands of pigment granules are
associated with minus-end-directed cytoplasmic dynein motors
and plus-end-directed kinesin-related motors (Tuma and
Gelfand, 1999). The granules thus have a motor-mediated
ability to aggregate quickly to the centrosome-organized cell
center, or to disperse uniformly throughout the cell. In
centrosome-free fragments of black tetra melanophores,
dynein motors are activated upon exposure to adrenalin and, as
a consequence, random MT networks with uniformly
distributed pigment granules rapidly rearrange into a radial
array with pigment granules and MT minus ends focused at the
center and plus ends at the fragment boundary (Rodionov and
Borisy, 1997a). The experiments with melanophore fragments
suggest a different model of MT aster formation than the
multivalent motor transport model because recent studies
showed that MTs are not transported through the cytoplasm
(Vorobjev et al., 2001). Therefore, melanophore fragments
provide a simple and specialized experimental system for
studying a form of MT/motor self-organization that relies on
the traditional view of MTs as immobile tracks.

Although the centrosome normally dominates MT
organization, the self-organization phenomenon is important
because it elucidates the intrinsic properties of MT/motor
systems, and because there exist polarized MT structures that
are not associated with centrosomes (notably, in meiosis).
Also, the MT/motor self-organization phenomenon is likely to
contribute to the centrosome-governed organization. In this
paper, we develop and analyze a computational model of the
dynein-mediated phenomenon of pigment aggregation and MT
aster self-organization in melanophore fragments, based on
earlier observations and measurements (Rodionov and Borisy,

1997a; Rodionov and Borisy, 1997b; Vorobjev et al.,
2001). These studies generated data that call for
computational modeling. By simulating the self-
organization process on a computer and comparing the
results with the experiments, the modeling provides
valuable insight. Recent modeling of MT/motor systems
(Cytrynbaum et al., 2003; Joglekar and Hunt, 2002;
Maly and Borisy, 2002; Nedelec, 2002; Tran et al.,
2001) proved to be an indispensable tool complementary

to experimental studies.

Description of data and qualitative model
In fragments excised from melanophore cells, MTs lose their
organization in space and orient randomly (Fig. 1A), and
pigment granules disperse uniformly throughout the fragment.
Upon treatment with adrenalin (Appendix 1), dynein motors
associated with the granules are stimulated leading to pigment
aggregation and MT re-organization into a radial array (Fig.
1B) such that MT minus ends are embedded in the granule
aggregate and plus ends extend toward the fragment boundary.
Formation of the MT aster and pigment aggregation always
occur simultaneously. Both MT dynamics and motor activity
are crucial for this process: taxol treatment stabilizing MTs or
depletion of granules from the fragment prevent self-
organization (Rodionov and Borisy, 1997a).

Pathways of self-organization and characteristic scales
Cell fragments used in the experiments (Rodionov and Borisy,
1997a; Rodionov and Borisy, 1997b; Vorobjev et al., 2001) (this
paper) have a characteristic size of ∼ 30-50 µm (Fig. 2). Within
a few minutes of adrenalin treatment, multiple local pigment
aggregates emerge throughout the fragment. During the next
few minutes, the local aggregates merge into a single focus. At
the same time, pre-existent MTs turn over, and newly nucleated
and assembled MTs emerge organized into a polar aster. The
diameter of the pigment aggregate is in the order of 10 µm.

MT treadmilling
After reorganization is complete, the total quantity of MT
polymer increases roughly two-fold (Vorobjev et al., 2001).
Most MTs (∼ 80%) have their minus ends embedded in the
aggregate, and plus ends at the periphery of the fragment
(Rodionov and Borisy, 1997b) (Fig. 3A). About 10% of the
MTs have their minus ends embedded in the aggregate with
their plus ends growing toward the fragment boundary at a rate
of a few microns per minute. The plus ends of another 10% of
MTs are stalled at the fragment boundary while their minus
ends disassemble at a rate similar to the rate of assembly of the
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Fig. 1.Self-organization in the melanophore cell fragment.
Live fluorescent images of MTs are shown. Pigment granules
can be seen as black speckles. (Left) A random MT network
and uniformly dispersed pigment granules before adrenalin
treatment (dynein stimulation). (Right) After dynein is
stimulated, pigment granules aggregate and MTs re-organize
into a polar aster.
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growing plus ends. Rare MTs (∼ 1%) treadmill. There is no
physical transport of the MTs (Vorobjev et al., 2001): lateral
and longitudinal displacements of all MTs (in those
treadmilling, or with plus, minus, or both ends stabilized) are
orders of magnitude less than the displacements of the plus and
minus ends. Most likely, the absence of MT transport is due to
MTs being cross-linked into the actin cytoskeleton. The
phenomenon of dynamic instability is not observed in this
assay (Rodionov and Borisy, 1997b).

Consistent with the 80-10-10-1% partitioning of the MT
population states as described earlier is the observation that
after nucleation, a growing MT plus end reaches the fragment
boundary in ∼ 5 minutes (a fragment radius of ∼ 20 µm divided
by a growth rate of ∼ 4 µm/minute) (Rodionov and Borisy,

1997b). Minus ends stay in the aggregate at the center for an
average of 40 minutes (hence, the ratio 8/1 = 40/5 minutes).
Released minus ends reach the boundary in ∼ 5 minutes,
because shortening occurs at a rate close to the growth rate of
plus ends. In rare cases, a minus end is released from the
aggregate before the corresponding plus end reaches the
boundary explaining the ∼ 1% treadmilling MTs.

Movements of pigment granules
Pigment granules glide toward the MT minus ends at a rate of
a few microns per second. The rate of movement is consistent
with measurements of movements generated by dynein motors
(Ashkin et al., 1990; Yamada et al., 1998). The granules detach
from the MTs or pause frequently (with a rate of ∼ 1/second),
and then associate with a MT fiber and glide again (Gross et
al., 2002) (V. Rodionov, unpublished). Observations show that
Brownian motion of granules is very slow, probably because
their diameter is comparable with the mesh size of the
cytoskeleton. When the granules are depleted partially,
individual granules dislocate by a few microns over a few
minutes (Rodionov et al., 1998). This indicates that the
effective granule diffusion coefficient is ∼ 0.01 µm2/seconds.
On the time-scale of seconds, a granule can move over ∼ 0.1
µm by thermal diffusion, which is important (see below). On
the time-scale of minutes, however, this movement (microns)
is negligible in comparison with MT/motor-mediated
movements (tens of microns).

Qualitative hypothesis
Previous studies (Rodionov and Borisy, 1997a; Rodionov and
Borisy, 1997b; Vorobjev et al., 2001) suggest that some
factors associated with the pigment granules have the ability
both to nucleate MTs and to stabilize (decrease the net
disassembly rate) their minus ends. The following scenario
can explain the observed sequence of events after dynein
stimulation (Fig. 2). First, the granules glide toward pre-
existing MT minus ends, or local clusters of minus ends,
thereby creating multiple local pigment aggregates. The local
aggregates enhance nucleation of MTs, some of which grow
through other local aggregates and establish immobile tracks
for transport of granules from the latter aggregates to the
former ones. This causes merging of the aggregates
reinforced by more MT nucleation at the larger aggregates
until eventually all pigment granules merge into a single
aggregate. Simultaneously, all pre-existing MTs turn over and
are replaced by MTs nucleated at the aggregate. Thus, the
positive feedback loop based on dynein-mediated minus-end-
directed transport and the ability of granules to nucleate and
stabilize MTs seems to be sufficient for self-organization.
Note that motor transport, MT kinetics and fragment
geometry, but not MT/motor force generation, play a role in
self-organization.

Modeling goals
The described hypothetical MT/motor dynamics and
interactions are simple, but they lead to complex behavior. In
this study, we derive, analyze and simulate the mathematical
model of the self-organization phenomena. Using this model,

Fig. 2.Pathway of the self-organization phenomenon. Phase contrast
images at the left show pigment distribution in two fragments of
different size and shape. A schematic model of MT/pigment re-
organization is on the right. (A) Initially, the pigment granules are
distributed homogeneously across the fragments and MTs are
positioned and oriented randomly. (B) Within a few minutes (for
fragments with a characteristic dimension of ∼ 20-50 µm), multiple
local pigment aggregates emerge, presumably near the minus ends of
pre-existing MTs. (C) In the next few minutes, local aggregates
nucleate new MTs, some of which pass through other aggregates.
(D) Dynein-mediated granule transport along these latter MTs
eventually lead to a merging of local aggregates into a single focus
and ultimately, to nucleation of a single polar MT aster. Bars, 10 µm
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we address several issues, quantitative in nature, in an effort to
validate the qualitative hypothesis. The model allows us to
answer, within a precise quantitative framework, the following
questions: 

(1) What is the minimal system that has the observed
behavior? More specifically, is it possible that the nucleating
activity of granule associated factors alone is sufficient for self-
organization? Or is it possible that minus-end stabilization
alone without additional nucleation can be responsible for
pattern formation? If both nucleation and minus-end
stabilization are necessary, are they equally important (in some
quantitative sense)? 

(2) What is the nature of the breaking of symmetry? How
does aggregation start from the homogeneous MT/granule
distribution? 

(3) What determines the time-scale (minutes) of self-
organization? Is there a dependence of pattern formation time
on fragment size? 

(4) How does fragment shape affect pattern formation? 
(5) How do MT nucleation and stabilization rates depend on

granule concentration? What determines the number and
length distribution of stable and treadmilling MTs? 

Quantitative model
In this section we describe a
computational model based directly on
the qualitative hypothesis described
above, the precise mathematical details
of which are given in the Appendices.
The following model assumptions stem
from observations, some of which are
described above.

(1) The MTs are straight and do not
move. (As seen in Fig. 1, the MTs do
bend but not significantly.) 

(2) The MT plus ends grow at a
constant rate vp.

(3) Any plus end reaching the
fragment boundary stops there. When
the corresponding minus end reaches

the boundary, the MT disappears. 
(4) The minus ends shorten at a rate v(g) which is a

decreasing function of the local granule density, g. In the
absence of the granules, the MTs treadmill: v(g=0)=vp.

(5) The MT nucleation rate, n(g), is an increasing function
of the local granule density. The MTs are nucleated
isotropically, at random angles. 

(6) Each granule is either not associated with the MTs and
immobile, or is associated with a single MT and glides toward
the corresponding minus ends with constant speed, vg. Gliding
granules detach frequently at a constant rate, koff. Immobile
granules attach to a MT with a rate proportional to the local
concentration of MTs of a given orientation. The
proportionality coefficient is kon.

Note that the MTs are very likely to be crosslinked into the
actin meshwork. Therefore, the force generated by motors
moves granules, while the reactive force applies to the whole
actin/MT ensemble, the movement of which can be neglected.

Fig. 4 illustrates possible granule density dependencies of
the net minus-end disassembly rate v(g) and of the nucleation
rate n(g). For modeling disassembly, we assume that minus
ends are in one of two states: capped and disassembling. If the

Journal of Cell Science 117 (8)

Fig. 3. (A) MT treadmilling: Most MTs (∼ 80%) in the discoid
fragment (radius ∼ 20 µm) with a pigment aggregate at the center
have their minus ends in the aggregate, and plus ends at the
periphery. MTs are in this state for ∼ 40 minutes. About 10% of the
MTs have their minus ends in the aggregate with their plus ends
growing toward the fragment boundary. The plus ends of another
10% of MTs are stalled at the boundary, while the corresponding
minus ends shorten. MTs are in each of these states for ∼ 5 minutes.
Rare MTs (∼ 1%) treadmill. (B) The evolution of MTs throughout
aggregation and aster formation (stimulus at 4 time units). (Top)
Computed total length of MT polymer before and after stimulation of
dynein motors. The total length of MT polymer increases by a factor
of 3 during aggregation and MT aster formation (from before
stimulus until steady state). (Bottom) Percentages of MTs, with
minus ends anchored in the pigment aggregate and plus ends at the

periphery (solid), with minus ends anchored
and plus ends growing (dashed), with minus
ends shortening and plus ends at the
periphery (dot-dashed), and treadmilling
(dotted), agree well with the corresponding
observed percentages.
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capping dynamics are sufficiently rapid, the nature of
disassembly can be summarized by function v(g), which
monotonically decreases to zero as the granule density

increases and which depends on three parameters. A derivation
of this functional form is given in the Apppendix but here, for
simplicity, we present the range of possibilities in qualitative
terms. We investigate two possibilities: (1) a linear or non-
cooperative dependence; and (2) a threshold or cooperative
behavior where minus-end shortening is not density dependent
at low densities. The nucleation rate includes both a
spontaneous (granule independent) rate and a density
dependent rate. We consider three possible types of density
dependence for the nucleation rate: (i) quasi-linear increase
with growing density; (ii) quasi-linear increase at small density
and saturation at greater density; and (iii) threshold behavior
at small density and saturation at greater density. Simulations
of the model help to choose which of the described possibilities
are more likely.

We consider two mathematical implementations of the
model. First, we consider a 1D model. Biologically, this is
equivalent to carrying out the experiments in a narrow
elongated fragment in which the average MT length is much
greater than the fragment width (see Experimental verification
of the model predictions). This case is much simpler to treat
mathematically than the realistic 2D situation and it gives
insight useful in understanding more complex cases. To
address the issue of the role of the shape and area of the
fragment in pattern formation, we explore a realistic 2D model.
The models are explained below and described in detail in
Appendices 2 and 5, respectively. The model parameters and
variables are listed in Tables 1 and 2; some of them are known
from experimental measurements, others can be derived
indirectly from the observations, and the remaining few are
determined from comparisons between the theoretical and
experimental results (Appendix 3).

1D model (narrow elongated fragment)
Fig. 5 illustrates the 1D implementation of the model. In this
case, the boundary of the fragment consists of two ends of the
fragment at x= ±L. The MTs can be separated into two dynamic
sub-populations characterized by opposite orientations. Each
population is described by the dynamic densities of the plus
ends [pr,l(x)] and minus ends [mr,l(x)]. The index r (l) stands
for the right- (left)-oriented MTs, which have their minus ends
to the right (left) of their plus ends. This notation is chosen
because the pigment granules slide to the right (left) on right-
(left)-oriented MTs. Another important characteristic of the
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Fig. 4. (Top) The possible density dependencies of the MT
nucleation rate are an increasing function with (1) neither saturation
nor threshold behavior (solid curve), (2) without threshold but with
saturation (dashed curve), and (3) with both threshold and saturation
(dotted curve). (Bottom) The possible density dependencies of the
MT minus-end disassembly rate are a decreasing function without
threshold behavior (solid curve) and with threshold behavior (dashed
curve). The granule density, nucleation rate and disassembly rate are
plotted in the non-dimensional units described in the text [g=1 in the
untreated fragment, n(1)=1, v(0)=1].

Table 1. Model parameters
Symbol Value Meaning Reference

vg 4 µm/sec Rate of granule gliding on MTs Gross et al., 2002, our observations
vp 4-8 µm/min Rate of MT treadmilling Rodionov and Borisy, 1997b, Vorobjev et al., 2002
2L 40 µm Characteristic size of the fragment Rodionov and Borisy, 1997a, our observations
koff ∼ 1/sec Granule dissociation rate Gross et al., 2002, our observations
kon ∼ 1/sec Granule association rate Estimated in this paper
n ∼ 0.001/(µm2 sec) Rate of MT nucleation in the untreated fragment Estimated in this paper
n0/n ∼ 0.1 Relative rate of spontaneous MT nucleation Estimated in this paper
n1/n ∼ 0.9 Relative rate of granule dependent MT nucleation Estimated in this paper
g #/µm2 Average granule density in the fragment Absolute value does not matter in the model
gn/g 10 Granule density at which nucleation rate is half maximum Estimated in this paper
gv/g 0.5 Granule density at which MT minus-end depolymerization rate is Estimated in this paper

half maximum
q 1 Hill coefficient of nucleation rate Estimated in this paper
s 1 Hill coefficient of MT minus-end depolymerization rate Estimated in this paper
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MTs is the polymer density Nr,l(x) defined as the number of
MTs (expressed as a density) passing through the cross-section
of the fragment at coordinate x (Fig. 5). The granules can be
described by three densities – those gliding to the right (gr) and
left (gl) with speed vg on the right- and left-oriented MTs,
respectively, and the density of static granules (gs) dissociated
from the MTs (Fig. 5). The static granules associate with the
right- (left-) oriented MTs with rates proportional to the local
polymer densities of the respective fibers, konNr,l(x). This
model is deterministic and does not consider stochastic effects.
The model equations are introduced in Appendix 2.

2D computational model
The computational structure of the 2D model is a combination
of a discrete stochastic simulation of individual MT fibers and
numerical solution of continuous deterministic equations for
granule density.

A deterministic continuous description of the MTs on a 2D
domain is not reasonable. First, mathematically, such a
description presents a multi-dimensional problem that is
difficult to formulate and time consuming to simulate. Second,
the total number of MTs in a fragment (100-200) is large, but
the number of MTs passing through any local region in the
fragment is not so large. Thus, a discrete, stochastic
representation of MTs is both more convenient and more
appropriate. Therefore, we implement a discrete stochastic
model: individual MTs are nucleated with random orientation
and position, and their dynamics are tracked in a manner
consistent with the 1D model. They appear, in time, according

to a Poisson distribution and, in space, according to the local
nucleation rate, n(g), determined by the pigment distribution.
Plus ends grow at a constant rate vp and are stabilized when
they encounter the cell membrane. Minus ends shorten at a rate
dependent on the local pigment concentration, v(g).

In Appendix 4, we demonstrate that the rapid movements
and attachment/detachment kinetics of the pigment granules
can be successfully approximated with a combination of
diffusion and advection of the granule density. The diffusion
arises from the random walk undertaken by pigment granules
as they attach to and detach from MTs pointing in various
directions and has nothing to do with Brownian motion, which
is several orders of magnitude smaller and hence irrelevant.
The local rate of advection depends on the presence of
anisotropy in the local MT distribution – an isotropic MT
distribution generates no advection whereas any bias causes
movement in the direction of the bias.

We use the following scheme to calculate the velocity field
associated with a MT. Each MT generates an effective velocity
field in a rectangular domain of influence (Fig. 6). The
corresponding velocities are minus-end-directed and decrease
away from the MT according to the formula in Appendix 5. To
compute the influence of MTs on the local granule advection,
we derive an expression best described as scaled linear
superposition (see Appendix 5 for details). This scaled linear
superposition describes a sampling of the local MT network by
pigment granules rapidly attaching to and detaching from the
network allowing for each granule to be influenced by all MTs
present.

This spreading of the velocity field generated by each MT to
a neighborhood surrounding it can be interpreted in physical
terms. Because the model takes advantage of the rapid pigment
on and off rates, the velocity field must be interpreted in
probabilistic terms: in a small interval of time (the computational
time step), each pigment granule samples the local MT
environment and is transported according to a local average of
MT orientations. However, the probability of interaction
between granules and MTs is not restricted to pairs that occupy
the exact same region of space. Owing to the thermal movements
of granules and lateral thermal fluctuations of MT positions, the
probability of interaction between any such pair depends on the
distance between them. On the time-scale of attachment and
detachment (∼ 1 second), a free granule diffuses over ∼ 0.1 µm.
(Displacement is given by the following equation:

The lateral MT fluctuations are of the same order of magnitude
(Vorobjev et al., 2001). In addition, the granule size is

D/kon=~ ! 0.01µm2/sec · 1 sec = 0.1µm .)!
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Table 2. Model variables and functions 
Symbol Dimension Meaning

pr,l(x,t) µm–1 (1D), µm–2 (2D) Density of MT plus ends (right-, left-oriented)
mr,l(x,t) µm–1 (1D), µm–2 (2D) Density of MT minus ends (right-, left-oriented)
gr,l(x,t) µm–1 (1D), µm–2 (2D) Density of gliding granules (to the right, left)
gs(x,t) µm–1 (1D), µm–2 (2D) Density of static, detached granules
g(x,t) µm–1 (1D), µm–2 (2D) Total granule density
Nr,l(x,t) µm/µm (1D) MT polymer density
N(x,θ,t) µm/(µm2 rad) (2-D) MT polymer density
n(g) 1/(µm sec) (1D), 1/(µm2 sec) (2D) Nucleation rate as a function of the total granule density
v(g) µm/sec Minus-end speed as a function of the total granule density

vg

pr

konN r

mr

koff
–vg

ml

Nl

pl

–L

v(g)

Nrvp

L

Fig. 5.1D implementation of the model in a long narrow fragment of
length 2L. Two dynamic sub-populations of MTs with opposite
orientations are characterized by the densities of the plus (pr,l) and
minus (mr,l) ends and the polymer densities Nr,l. Three pigment sub-
populations are described by the densities of the granules gliding to
the right (gr) and left (gl) with speed vg, and static granules (gs)
dissociated from the MTs.
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∼ 0.1 µm. Thus, although molecular diffusion does not play a
significant role in granule movement on the long time-scale
(the scale of MT turnover), on the short time-scale of granule
attachment and detachment, it allows for granules located up
to a few hundreds of nanometers away from a given MT to
have a finite probability of interacting with it. On the time-
scale of tens of seconds, a granule in the hundreds of
nanometers wide vicinity of a MT attaches, glides, detaches
and diffuses toward and away from the MT a few times. This
justifies the effective spreading of the velocity field generated
by each MT.

The described extrapolation procedure is consistent with the
1D model in the sense that a few parallel and anti-parallel MTs
placed close together generate the same velocity field as a
similar arrangement would in the 1D model. Furthermore, if
the local MT distribution is isotropic then the corresponding
average advection is zero, and the granules disperse by an
unbiased random walk, which also conforms to the
microscopic observations.

In Appendix 4, we show that the granule density
equilibrates rapidly to the current MT distribution. That is, at
any given moment, the MT array is changing sufficiently
slowly that pigment granules achieve a pseudo steady state
distribution based on the current state of the MTs. In the
simulations, the MT distribution generates the velocity field
at each time step according to the described procedure and
we adjust granule density instantly according to the described
combination of diffusion and local advection at each time step
(see Appendix 5 for 2D equations and numerical procedure).
We update the MT distribution according to the described
discrete stochastic algorithm using the current granule
density. These calculations are repeated at each
computational step.

Results
We simulated the 1D and 2D models numerically. The dynamic
behavior of the models can best be appreciated by viewing
Movies 1-7 (http://jcs.biologists.org/supplemental/). Figs 7-9
and 12 show frames from these movies. The model simulates
a broad range of features of the self-organizing MT/motor
system. In addition, theoretical analysis of the 1D model is
given in Appendix 4.

The nature of symmetry breaking and the initial stage of
aggregation
Our explanation of the nature of the symmetry break at the
onset of pattern formation is similar to the detailed analysis of
the same 2D system in a disk-shaped fragment (Maly and
Borisy, 2002). As shown below, in the fragment, where MTs
are nucleated uniformly and isotropically, most microtubules
are directed with their minus ends toward the interior of the
fragment. The effective granule velocity field generated by the
simulated MT ensemble is almost radially symmetric, directed
toward the center and increasing away from the center, in
complete agreement with the earlier analysis (Maly and Borisy,
2002).

The 1D model provides additional insight into the
mechanism of symmetry breaking. The left-oriented MTs
nucleate everywhere within the fragment with equal likelihood,
grow in length at a constant rate and treadmill to the right.
Thus, treadmilling shifts longer left-oriented MTs to the right.
The same argument applies to the right-oriented MTs. Thus,
even though MTs are nucleated uniformly throughout the
fragment, the array that forms is not uniform but rather
generates a bias in pigment movement. Indeed, near the right
(left) edge of the fragment, almost all MTs are leading attached
granules to the left (right), while at the center of the fragment,
the numbers of oppositely oriented MTs are equal, and there
is no bias (Fig. 5).

Fig. 7A shows analytical solutions of the 1D model
equations (see Appendix 4) illustrating the MT and granule
distributions at the onset of the self-organization. As one goes
from the left (right) to the right (left) edge of the fragment, one
finds a linear increase in the number of left- (right)-oriented
MTs. Rigorous calculation (Appendix 4) shows that the
effective velocity of the granules is an odd function of the
distance from the center: increasing from the center toward the
edges, zero at the center, and directed toward the center. Thus,
within a few tens of seconds after stimulation of dynein, rapid
transport of pigment granules leads to the formation of a loose
aggregate shown in Fig. 7A.

Both granule associated nucleation and minus end
stabilization are necessary to explain the self-
organization; low granule density and/or inhibited MT
dynamics impede the pattern formation
Using computer simulations in both 1D and 2D, we
experimented with a lower nucleation rate. It was found that
aggregation and aster formation still took place, at roughly the
same time-scale, but to a lesser extent: the aggregate was
looser, and the minus ends were distributed widely in the
fragment. A similar effect was observed when the ability of
pigment granules to stabilize minus ends was attenuated. In the

Fig. 6. Illustration of the numerical implementation of the 2D
computational model. Each MT generates an effective velocity field
(arrows) in the rectangular domain of influence (see isolated MTs at
the periphery). The corresponding velocities are minus-end-directed
and decrease away from the MT. The velocity fields of individual
MTs add locally and geometrically. Note that the velocity field in the
center is not parallel to any individual MT but results from the vector
sum of individual contributions. The shading shows the granule
density generated fast by the shown effective velocity field.
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latter case, the time-scale of pattern formation also increased.
These results conform with the observations reported
previously (Rodionov and Borisy, 1997a).

Time-scale and pathway of the self-organization
Movies 1 and 4 (http://jcs.biologists.org/supplemental/) show
the simulated time course of self-organization in 1D and 2D
fragments, respectively. In 1D, a loose aggregate at the center
nucleates more MTs, the minus ends of which stay in the
aggregate while the plus ends grow outward. This accelerates
granule aggregation, which causes the nucleation of more MTs
that remain anchored in the aggregate. This positive feedback
loop leads to a tight granule aggregate at the center with most
MT minus ends focused in the pigment aggregate (Fig. 7B,
Appendix 4).

In 2D, the granules rapidly aggregate into a few local foci (Fig.
8B) and the local aggregates coalesce into the single group (Fig.
8C). At the same time, the re-organization of the MTs starts: MTs
with minus ends outside the aggregate treadmill toward the
boundary and disappear. Finally, the pigment aggregate tightens

and the MT aster emerges (Fig. 8D). This simulated
pathway reproduces faithfully the experimentally
observed sequence of events (Figs 1, 2; Movie 6,
http://jcs.biologists.org/supplemental/). Moreover,
the simulations illustrate transient distributions of
MTs that are hard to observe in the experiments.
They demonstrate that indeed the initial local
aggregates emerge near local MT minus-end
clusters, and that mini-asters hypothesized in the
qualitative model do not have time to form.

Numerical simulations also give an estimate for
the time-scale of pattern formation that is close to
that observed (∼ 10 minutes in both experimental
and theoretical systems) in fragments a few tens
of microns across. In Appendix 3, we demonstrate
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Fig. 7. (A) Analytical solutions of the 1D model initial pseudo steady
state equations. In the fragment, the MT minus- and plus-end
densities are linear functions of the spatial coordinate. Upon dynein
stimulation, the granules aggregate loosely to the center of the
fragment within tens of seconds. (B) Numerical solutions of the 1D
model steady state equations. In several minutes, granules aggregate
tightly in the center with most MT minus ends focused in the
pigment aggregate. Note that the plus ends at the fragment boundary
are not shown. The total numbers of the plus and minus ends are
equal.

Fig. 8.Computer simulations of the 2D model
(compare with Figs 1 and 2). MTs are shown as
segments. The granule density is illustrated by shading
with darker areas corresponding to higher densities.
(A) Initially, the MTs are distributed randomly and the
granule density is uniform. (B) The granules quickly
aggregate into a few local foci before MTs can re-
organize. (C) The local aggregates coalesce into a
single loose aggregate over a few minutes
simultaneously with the re-organization of the MTs.
(D) The pigment aggregate tightens over the next few
minutes and the MT aster is clearly seen.
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that the relevant time-scale is determined by the characteristic
time of treadmilling across the fragment, ~L/vp ~20 µm/5
µm/minute = 4 minutes. Simulations show that pattern
formation takes place in roughly three of these time units. The
observation that self-organization takes roughly three time
units is indicative of the fact that the MT array must reassemble
roughly three times before aggregation and aster formation are
complete.

Local pigment aggregates appear transiently near local
minus end clusters
Movie 1 (http://jcs.biologists.org/supplemental/) and Fig. 7
demonstrate that, in 1D, aggregation proceeds directly to a
single granule aggregate at the center without the appearance
of transient local aggregates. However, Movie 2
(http://jcs.biologists.org/supplemental/) starts with an
inhomogeneous initial MT array. This is intended to represent
the random variation in MT densities in the fragment without
explicitly introducing stochasticity to the model. Initially, the
pigment forms three aggregates near the respective initial
minus-end clusters. Subsequently, the three aggregates merge
into two and finally into a single aggregate.

To explore the role of stochasticity in a more realistic setting,
we simulated the aggregation pathways in the 2D domain at
various nucleation rates. Fig. 9 illustrates that at a moderate
nucleation rate (reflected in the low number of MTs), a few
transient aggregates emerge near local clusters of minus ends.
At nucleation rates an order of magnitude higher, much greater
numbers of MTs are associated with a very regular distribution
of minus ends. This leads to a smooth and solitary aggregate
(Fig. 9B). These results suggest that local inhomogeneities in
initial minus-end distribution in the fragment are responsible
for local transient aggregates. These inhomogeneities are due
to stochasticity of MT nucleation when the nucleation rate is
such that 100-200 MTs are present in a fragment a few tens of
microns in size. Varying the nucleation rate through a full order
of magnitude had almost no influence on the time course of
aggregation. This last fact is a theoretically predictable feature
of the model.

Density dependencies of the rates of nucleation and
minus end disassembly
Using computer experiments, we established that there should
be no threshold in the density dependence of the minus-end
disassembly rate (dashed curve in Fig. 4). The reason is that if
the minus-end disassembly does not slow down when the
granule density increases, then the positive feedback loop
leading to self-organization is not triggered. The self-
organization pathway is not sensitive to the presence or
absence of either a threshold or saturation in the density
dependence of the nucleation rate.

Our computational model is not appropriate to specify the
quantitative dependencies of the rates of MT nucleation and
minus-end disassembly on granule density. The reason is that
the model neglects the effect of the steric repulsion of granules
in the aggregate: in reality, there is a maximal granule density
in the aggregate due to crowding, while in the model, the
density is not limited from above.

To more accurately estimate nucleation and stabilization

parameters, we carried out simulations with a modified version
of the model in which the granule density was prescribed to be
in a realistic aggregated form. Granule density, estimated using
conservation of the total number of the granules, was constant
within a disk of radius r=0.15 (in non-dimensional units)
located in the center of the fragment, and zero outside the disk.
Simulating the MT dynamics in this system, we found that the
following density dependencies provide a good fit to the
experimental data (see Appendices 6 and 7): 

where the granule density g, the granule-free minus-end
depolymerization rate v(0) and the pre-stimulus nucleation rate

g
n(g) = 0.1 +

(0.1g+ 1)

1
v(g) =, ,

(2g+ 1)

Fig. 9.MTs and granule density are illustrated as in Fig. 8. Level-
curves of granule density are added for emphasis. Both images show
the state of a fragment soon after dynein stimulation. (A) At low and
moderate nucleation rates, a few local aggregates evolve initially.
(B) At high nucleation rates, the granules initially coalesce into a
single loose aggregate.
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n(1) are normalized so that they are equal to one in the
fragment. These functions are shown as solid lines in Fig. 4.

This result means that 10% of MTs in the fragment are
nucleated spontaneously, and another 90% are formed by
granule-dependent nucleation. In the aggregated state, the
percentages are similar; however, owing to minus-end
stabilization, virtually all MTs in the aster are granule
nucleated. The density dependence of the nucleation rate is
sub-linear and mildly saturating. Before stimulation with
adrenalin, the net rate of minus-end disassembly is roughly
three times less than the rate of plus-end growth. After
aggregation, the net rate of disassembly of the minus ends
embedded in the aggregate is approximately 30 times less than
the rate of plus-end growth. These quantitative predictions of
the model can be tested.

We computed the total length of MT polymer and the
partitioning of the MTs in the presence of a tight aggregate.
The results are shown in Fig. 3A. The increase in total length
of MTs is due to both greater number and greater length of
individual MTs. The total length of MT polymer increases by
a factor of three, compared with roughly a two-fold increase
observed experimentally (Vorobjev et al., 2002). However, the
experimental number probably underestimates the total
because portions of MTs embedded in the aggregate are not
visible. The computations predict the 80-10-10-1%
partitioning of the stable – minus-end disassembling, plus-end
assembling – treadmilling MTs, in close agreement with the
observations reported previously (Rodionov and Borisy,
1997b).

Model predictions: role of geometry in the self-
organization

Dependence of pattern formation time-scale on
fragment size

As noted above, the time-scale of self-organization is

determined by the ratio L/vp. Therefore, the model predicts that
the pattern formation time-scale is linearly proportional to the
size of the fragment.

Self-organization in a bi-lobed fragment
To elucidate the role of fragment shape in self-organization,
we performed computer simulations in 2D domains with a
characteristic bi-lobed shape (Fig. 10; Movie 7,
http://jcs.biologists.org/supplemental/). The simulations
suggest the following sequence of events. Initially, very few
MTs pass through the corridor, so there is little
communication between the lobes. Thus, self-organization
proceeds in the lobes almost independently, according to the
scenario described above for regularly shaped fragments.
However, after two polar asters are organized in the adjacent
lobes, there is an increased number of MTs transiently
anchored by their minus ends in one of the granule aggregates
extending through the corridor and passing through the other
aggregate. These MTs establish tracks for granule transport,
so that granule density in the corridor increases. This
augments the nucleation of MTs with their minus ends in the
corridor extending outward and thus passing through both
granule aggregates. This accelerates directional granule traffic
into the corridor further enhancing the formation of a polar
MT aster in the corridor and depleting granules from the initial
aggregates. This positive feedback loop leads to the final
centered aggregation.

Thus there are three possible aggregate/aster formations, one
stable and the other two only transiently stable. The two
aggregates that form in the lobes are stable only as long as there
is no communication (i.e. MTs) between the lobes. The time-
scale of their ‘stability’ depends on the expected time before a
MT grows through the neck, predicting an inverse relationship
between the thickness of the neck and the time required for the
two aggregates to fuse in the middle of the neck. Furthermore,

a neck which is sufficiently curved to
prevent growth of MTs from one lobe
into the other should indefinitely
sustain two stable aggregates in the
lobes. Note that our results
complement previous findings
(Nedelec, 2002), who demonstrated
theoretically that MTs and minus-end-
directed motors cannot support stable
multi-aster structures.

Experimental verification of the
model predictions
It is difficult to obtain two fragments
of different size and similar shape,

Journal of Cell Science 117 (8)

Fig. 10.Self-organization in the bi-lobed
fragment. (Left) Phase contrast images
show pigment distribution. (Right) Results
of a computer simulation in the bi-lobed
fragment. The experimental images are
obtained before the adrenalin treatment,
and 5 and 10 minutes after it, respectively.
Bars, 10 µm.
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and so we tested Prediction 1 semi-quantitatively. We
observed pigment aggregation in 20 fragments of
different size excised from nine cells (for a sample cell
with two fragments see Fig. 2; Movie 5, http://
jcs.biologists.org/supplemental/). In the sample cell, the large
and small fragments were roughly 70 and 40 µm wide and
had areas 3800 and 1300 µm2, respectively. At each time step,
we measured the state of aggregation by taking phase contrast
images of the fragments and calculating the second moment
of the pigment distribution about the centroid in both the x-
and y- direction and taking the square root of their product.
(We imported the images into Matlab™ and used this
software to measure and quantify the distribution of pixels.)
This measure of the granule dispersal has the dimension of
length. Before adrenalin treatment, when the granules were
dispersed homogeneously, the measure of granule dispersal
defined in this way could be used to quantify the size of the
fragment. A circle with radius twice this value should contain

roughly 95% of all pigment granules so that four times this
value is roughly the diameter of the fragment. To find the
associated time constant of aggregation for each fragment, a
decreasing exponential function was fit to the temporal
sequence of second moments. After a slower initial stage of
aggregation, decreasing exponential functions provided
excellent fits for the linear granule dispersals as functions of
time. Fig. 11 shows the observed relationship between space
and time constants for the 20 fragments. A straight-line fit to
the data (least squares sense) is superimposed with dashed
lines representing one standard deviation above and below.
Note that we do not assume that the line goes through the
origin, a feature that is required to satisfy the scaling
prediction. Rather, this feature, which is evident in the figure,
simply emerges in the least squares fit. The slope and
intercept of the fit were found to be 26.1±7.1 second/µm and
10.5±54.8 seconds, respectively.

Note that the scaling law (T=L/vp) offers a prediction for vp,
in particular, vp=0.038 µm/second=2.3 µm/minute, which is
reasonably close to the directly observed experimental value
(4-8 µm/minute) (Rodionov and Borisy, 1997b; Vorobjev et al.,
2002). These observations and the image analysis confirm that
the pattern formation time-scale is proportional to fragment
size.

We also made two long narrow fragments, observed the
pigment aggregation process in them and compared the
observations to the 1D model analysis. Owing to technical
problems, it is hard to make such fragments, therefore we
were not able to produce fragments of various length and test
the model quantitatively. The results are shown in Fig. 12.
During the aggregation process, local aggregates form, as
seen in this figure. Finally, a single tight aggregate forms as
the system approaches steady state. The comparison with the
1D model shows qualitative agreement of the experiment and
theory.

To explore the relationship between pattern formation and
domain shape, we prepared a number of fragments with a
characteristic bi-lobed shape and observed self-organization
in such fragments (Fig. 10; Movie 6, http://
jcs.biologists.org/supplemental/). In complete agreement with
the theory, we observed that pigment aggregation proceeded
separately in each of the lobes during the first few minutes after
adrenalin treatment, much like the aggregation process seen in
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Fig. 11.The observed relationship between space (fragment size) and
time (aggregation time) constants for the 20 fragments, as explained
in the text. A straight-line fit to the data (least squares sense) is
superimposed with dashed lines representing one standard deviation
above and below.

Fig. 12.The time course of aggregation in a 1D fragment. (A) Phase contrast images of a 1D fragment (the width is much smaller than the
typical MT length). (B) Line scans of intensity through the midline of the fragment. (C) Simulation results from the 1D model with an
inhomogeneous MT array (see Movie 2, http://jcs.biologists.org/supplemental/). The top row shows the initial state of the pigment distribution
(roughly uniform). During the aggregation process, local aggregates form, as seen in the second row. Finally, a single tight aggregate forms as
the system approaches steady state.
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regularly shaped fragments. A large aggregate developed in
each lobe, somewhat closer to the corridor between the lobes
than to the centers of the lobes. In the next few minutes, the
aggregates converged and finally merged into the single
aggregate in the corridor between the lobes. Fluorescent
images of the MTs (not shown) also confirmed the theoretical
scenario.

Discussion
We have developed a computational model of the MT/dynein
system that demonstrates in silico aggregation of granules
coated with dynein motors into a single focus and formation
of a polar MT aster, thereby reproducing the phenomena
experimentally observed in melanophore fragments. The
model accounts for the self-organization phenomenon by
assuming that (1) there is no physical MT transport, (2) dynein
motors transport granules toward MT minus ends, (3) the MT
nucleation rate is an increasing function of granule density, and
(4) the rate of MT minus-end disassembly is a decreasing
function of granule density. The model explains self-
organization as a positive feedback loop based on the mutually
enhancing processes of motor transport to MT minus ends
leading to motor concentration and motor-mediated nucleation
and stabilization of the MT minus ends.

Faithful quantitative reproduction of the observed
aggregation and aster formation phenomena requires the
existence of granule-associated factors able to both nucleate
MTs, and slow down their minus-end disassembly. The
model supports the qualitative assumption of Vorobjev et al.
(Vorobjev et al., 2001) that granule-mediated nucleation and
disassembly inhibition are equally important. Although there
are a number of possible corresponding molecular
mechanisms, we favor the hypothesis that dynein motors
themselves are able to enhance the MT nucleation rate,
perhaps by binding tubulin dimers and assembling a template
for filament growth, and to transiently cap the MT minus
end.

Some of the model parameters are available, either directly
or indirectly, from published data. We estimated the rest of the
parameters by fitting the theoretical results to the quantitative
experimental data. In order to test the model, we made
theoretical predictions for the dependence of the time of
aggregation on fragment size and for pattern formation in the
bi-lobed fragments and compared them with experimental
observations. The semi-quantitative agreement between
experiment and theory lend additional support to the model.
Detailed quantitative measurements in fragments with altered
MT dynamics and pigment density are necessary to test a few
other model predictions: (1) decreased granule density leads to
a more diffuse aggregate; (2) increased granule density leads
to tighter aggregation into a single focus without transient
aggregates; (3) specific constraints on the functional
dependencies of the MT nucleation and minus-end
disassembly rates on granule density.

The model has a number of limitations stemming from the
constraints of mathematical solvability. These are: (1)
inadequate treatment of the effect of steric repulsion of the
pigment granules and of the observed process of granules
being squeezed upward into the third, vertical dimension in
tightly packed aggregates; (2) neglecting the possibility of

granule transport toward the MT minus ends continuously,
without numerous dissociations; (3) underestimating the
probability of a granule associating with the same MT it just
dissociated from. More importantly, the model does not
capture the self-centering phenomenon that we describe
briefly below.

In a different experimental preparation described elsewhere
(Rodionov and Borisy, 1997b), in which granules are dispersed
but MTs are pre-organized by the centrosome of the mother cell,
the granules rapidly aggregate to the edge of the fragment where
the minus ends are concentrated. The aggregate subsequently
shifts to the center of the fragment (Rodionov and Borisy, 1997b).
Movie 3 (http://jcs.biologists.org/supplemental/) demonstrates
the model-predicted pattern formation corresponding to this
assay in which granules are initially distributed uniformly with
all MT minus ends at the left and their plus ends at the right. The
initial stage of aggregation is as observed in experiments but the
aggregate stops far from the center, near the left edge of the
fragment. Similarly, the 2D simulations (see Movie 4,
http://jcs.biologists.org/supplemental/; Figs 8, 9) show that the
aggregate is positioned close to but not exactly at the center of
the fragment. Aggregation exactly at the center in some
simulations (Fig. 7) is the consequence of the perfectly symmetric
initial conditions and absence of stochastic effects. Therefore,
there are molecular mechanisms responsible for the self-centering
phenomenon that are not accounted for in our model. We
hypothesize that force generation and length dependent
differential buckling of MTs are essential for self-centering (Tran
et al., 2001). We will address this problem in detail elsewhere.
Despite these limitations, the model elucidates a pathway for
aster formation in MT/motor systems.

Appendix 1
Experimental materials and methods
Tissue cultures of black tetra melanophores were prepared as
described previously (Rodionov et al., 1994). To prepare
fragments, melanophore processes were dissected with
microneedles with a 0.1 µm tip diameter. Aggregation of
melanosomes in the fragments was triggered with 0.5 µM
adrenalin. Phase contrast images of fragments were obtained
using a Nikon TE300 microscope equipped with a Watek high-
resolution video camera. Fragments with labeled MTs were
obtained by injection of parental cells with Cy3-labeled tubulin
(Rodionov et al., 2001) and subsequent dissection of
fragments. Images of MTs were captured with a Photometrics
CH350 back-illuminated cooled CCD camera.

Appendix 2
1D model equations, scaling and non-dimensionalization
We model the MTs and granules deterministically on the 1D
domain –L<x<L. We assume that there are sufficiently many
MTs that it is appropriate to keep track of them in terms of
local densities. The equations used to track plus-end densities,
pr,l(x,t), and minus-end densities, mr,l(x,t), are summarized by:

Here g(x,t) is the local total concentration of pigment granules.

(1)pr,l = ± vp pr,l +n(g) ,
∂
∂t

∂
∂x

mr,l = ± [v(g)mr,l] + n(g) .
∂
∂t

∂
∂x
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The first term on the right-hand side of each equation describes
the advection of plus ends at a constant rate vp and of minus
ends at a rate v(g). The second terms describe nucleation with
a rate n(g).

Pigment granules can be in any one of three states: attached
to a left-oriented MT and gliding to the left; attached to a right-
oriented MT and gliding to the right; or unattached and static.
The equations describing the temporal evolution of these three
states are given by: 

Here gr,l(x,t) is the local concentration of the right- and left-
moving granules, respectively, and gs(x,t) is the local
concentration of the static granules; g(x,t) = gr(x,t) + gl(x,t) +
gs(x,t). The last term in the first equation describes the gliding
of the granules with speed vg. The first terms in the equations
are responsible for the dissociation of the granules from the
MTs with the constant rate koff, while the second terms describe
the attachment of the static granules to the MTs. The rates of
attachment to the right- and left-oriented MTs are proportional
to the corresponding MT polymer densities, Nr,l(x,t).

The polymer densities are calculated using the following
integral equations: 

The expression for Nl is derived from the fact that the polymer
density of left-oriented MTs at x is equal to the number of
fibers passing through the coordinate x, which can be found as
the number of minus ends to the left of x less the number of
plus ends to the left of x. Nr is derived similarly.

No boundary conditions are needed for the static granule
densities. The natural boundary conditions for the other
densities are: 

The functions n(g) and v(g) are given by the following
general expressions built using Hill functions: 

In the expression for the nucleation rate, the parameter n0 is
the background granule-independent nucleation rate. The
parameter n1 is the maximal amplitude of the density-
dependent nucleation rate. The parameter q is the Hill
coefficient which, biologically, is a measure of the
cooperativity required of pigment granules in nucleating MTs,
and mathematically determines the presence (at large values of
q) or absence (at q∼ 1) of a threshold effect. The parameter gn
is the half maximum concentration at which saturation
becomes noticeable or, for large values of q, the value of the
threshold. Fig. 4A illustrates three qualitatively different cases.
The solid curve corresponds to q=1 (no threshold/

cooperativity) and large values of n1 and gn (no saturation at
realistic concentrations). The dashed curve corresponds to q=1
(no threshold/cooperativity) and moderate values of n1 and gn
(saturation). The dotted curve corresponds to q=3
(threshold/cooperativity behavior) and moderate values of n1
and gn (saturation). Comparison of the theoretical and
experimental data shows that the first case is the best fit:
q=1, n1=10, gn=10. (We normalize n0 and n1 by the value of
the nucleation rate in the fragment, and gn by the value of the
granule density in the fragment.)

In the absence of granules, the net minus-end
depolymerization rate is equal to the plus-end growth rate, vp.
The function v(g) decreases monotonically with increasing
granule density. A simple model explains the form given above.
Suppose a MT minus end can be in one of two states, capped
(C) or disassembling (D). The uncapping rate is the product of
the uncapping rate constant and the density of capped MTs,
kuC. However, the reverse reaction depends on the local
pigment concentration and the structural nature of capping. If
s pigment granules are required to cap a minus end, then the
transition probability is kcgs. At equilibrium, if D is the fraction
of disassembling minus ends, then C=(kc/ku)gsD is the fraction
of capped minus ends. Assuming the disassembly rate is
constant (vp), the model predicts that the net disassembly rate
is v(g)=vpku/(ku+kcgs). We have renamed and rescaled the
parameters in the expression above for reasons of interpretation
and nondimensionalization.

The parameter s is refered to as the Hill coefficient, which
is a measure of the cooperativity required of pigment granules
in stabilizing the minus ends. Large values of s correspond to
the presence of a threshold density below which granules have
little or no effect on minus-end depolymerization. The
parameter gv is the value of the threshold density at large s, or,
for s∼ 1, the value of the half maximum density at which the
net depolymerization rate is half what it is in the absence
of granules. Fig. 4B illustrates two qualitatively different
cases. The solid curve corresponds to s=1 (no
threshold/cooperativity), while the dashed curve corresponds
to s=3 (threshold/cooperativity behavior). Comparison of the
theoretical and experimental data shows that the first case is
the best fit: s=1, gv=0.5. (We normalize gv by the value of the
granule density in the untreated fragment.) At values of s∼ 1,
the model is insensitive to varying parameter gv. However,
increasing the Hill coefficient s introduces sensitivity to
changes in gv. This occurs because large values of s introduce
threshold behavior to the stabilization phenomenon and, when
the threshold is too high, the positive feedback mechanism is
not triggered.

We choose half the size of the fragment, L, as the unit of
length measurement, and the constant net polymerization rate
vp as the unit velocity so that the unit of time is L/vp. We
choose the (uniform) density of pigment in the untreated
fragment, g, as the scale for granule density. We define the
characteristic nucleation rate in the fragment n=n(g), where
n(g) is given by Eqn 5. The characteristic scales of MT plus-
and minus-end densities, p and m, are determined by the
product of the characteristic nucleation rate and the
characteristic time for a MT end to travel across the fragment:
p=m=nL/vp.

Using these scales, we arrive at the following non-
dimensional form of the model equations: 

gq
n(g) =n0+n1

gq
n+gq

,
gs

vv(g) =vp
gs

v+gs
. (5)

(4)
pr(L) = 0 , mr(L) = 0 , pl(−L) = 0 , ml(−L) = 0 ,

gr(−L) = 0 , gl( L) = 0 .

(3)Nl(x) = Nr(x) =
⌠

⌡

x

−L

[ml(y) −pl(y)]dy,
⌠

⌡

L

x

[mr(y) −pr(y)]dy.

(2)

gr,l =−koffgr,l +konNr,lgs+−vg

gs=koff(gl +gr)−kon(Nr +Nl)gs.

gr,l ,
∂
∂t

∂
∂x

∂
∂t
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To avoid introducing confusing notation, here we use the same
notation for the non-dimensional model variables t → tvp/L,x
→ x/L,gr,l,s → gr,l,s/g,pr,l → pr,l/p,mr,l → mr,l/m, as that used
for the dimensional variables.

Appendix 3
Model parameters
The model parameters are listed in Table 1. Some of them
(vp, vg, L, koff) are known from experiments. For others, we rely
on numerical simulations and dimensional analysis combined
with indirect experimental evidence. The behavior of the model
depends crucially on three non-dimensional combinations of
parameters e=vp/vg, k1=koffL/vg, and k2=konL3n/(vgvp). The
small parameter e ~0.067 is the ratio between the fast time-
scale associated with granule transport to the slow time-scale
associated with MT treadmilling. The fact that this parameter
is so small means that granule density rapidly equilibrates to a
slow changing MT distribution. This fact is conceptually an
important feature of the model and simplifies both analytic and
numerical calculations. The parameter k1=5 is the ratio of the
characteristic time of granule transport, L/vg ~5 seconds, to the
average time of gliding before detachment, 1/koff ~1 second.
Its value, relatively large compared with unity, corresponds to
(and legitimizes) the claim that granules attach and detach
frequently, rather than glide to the minus end of MTs directly
upon attachment.

The value of parameter k2 can be estimated from the
following argument. Note that k2 can be represented as
k2=kon × [(nL/vp) × L] × (L/vg). Here nL/vp is the scale of the
MT plus- and minus-end concentrations and the expression in
the square brackets is the characteristic MT polymer density.
Therefore, kon × [(nL/vp) × L] is the characteristic frequency of
granule attachment, which means k2 is the ratio of the
characteristic granule transport time, L/vg, to the characteristic
time in detached state, vp/(konnL2). It was observed in the
experiments with nascent fragments (Rodionov and Borisy,
1997b) that granules were rapidly transported across the
fragment, almost at the same rate as the rate of gliding. This
indicates that the characteristic time in the detached state is
much less than the characteristic granule transport time and,

therefore, parameter k2 must be much greater than unity.
Simulations show that, provided k2 is large compared with
unity, the behavior of the model is insensitive to variations in
that parameter. The derivation of the 2D model equations,
which do not depend on the value of k2, relies on this fact. In
simulations of the 1D model we used k2=100.

The time-scale of nucleation, 1/(nL) (the average time
required for the nucleation of a MT anywhere in the fragment),
can be estimated by noting that the MT array in a fragment is
capable of turning over completely in a period of about 10
minutes. Assuming the MT array consists of 100-300 MTs, we
infer a time-scale for the nucleation of a single MT to be few
seconds. Using these indirect estimates for the non-
dimensional combinations of parameters, we calculated the
dimensional values of the model parameters and listed them in
Table 1. In particular, we predict that n∼ 0.001 µm2 second) and
that kon ~1/second.

Finally, let us note that although we use the value k1=5 in
1D, this value turns out to generate very diffuse aggregates in
2D. Good results are achieved at a value of k1=500, two orders
of magnitude greater than our original prediction. This
modification is discussed and justified in Appendix 6, below.

Appendix 4
Analysis of 1D model equations
Asymptotic analysis of the 1D model provides insight into the
behavior of the system, allows us to find analytical solutions
to the model equations and, more importantly, suggests a
generalization of the 1D model to the more realistic 2D case.

We will use the notations g = gl + gr +gs and h = gl – gr.
Adding and subtracting equations (Eqn 7), we obtain: 

Because k1, k2 @ e, the equation for gs (Eqn 7) is always in a
pseudo steady state relative to gl,gr. This means: 

Substituting the last expression into the equation for h, we find: 

In the realistic limit k1! k2, gs is small relative to g and the
last equation reduces to: 

Taking time derivatives of the equation for g and spatial
derivatives of this last equation for h, we can eliminate the
variable h leaving the following equation for the variable g: 

In our case, k1=5 and e!1. This means that, on the fast time-
scale, the transient combination of advection and diffusion

(11)
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adjusts the granule density to the slowly changing MT density.
In the quasi steady state, the granule density is given by the
balance of effective advection and diffusion: 

The effective diffusion is due to the random motion of
granules on the MT array. As for the advection term, as
granules come on and off quickly, they essentially sample the
local MT population. Thus, their velocity is given by the
difference between the probability of attaching to a left mover,
Nl/(Nr+Nl), and that of attaching to a right mover, Nr/(Nr+Nl).

Eqn 12 can be solved analytically in certain cases. In the
untreated fragment, where both the nucleation rate and the
minus-end depolymerization rate are constant [n(g) = n = 1,
v(g) = v(1)], steady state solutions to Eqns 6 are easily found: 

These linear distributions of MT ends are illustrated in Fig. 7A.
Using these to calculate the MT polymer densities, Nl and Nr,
we get the following equation for the granule distribution that
develops within seconds of adrenalin treatment: 

which integrates up twice to:

g(x) = 0.5(x2+ 1)–k1

The corresponding granule distribution is plotted in Fig. 7A.
To calculate the steady state distribution after pattern

formation is complete, we follow a similar procedure. This can
be done in the limiting case where gn @ 1, n0 ! n1/gn, q=1 and
s=1, which essentially means n(g) is linear and v(g) is a first
order saturating Hill function. First, we solve for the MT ends
in terms of the as yet unknown granule distribution [φx(x)]: 

These are used to calculate Nl and Nr and, after substitution
into Eqn 12 and integration, we obtain: 

Integration of this equation gives the following boundary value
problem:

where C is the constant of integration that can be found from

the conservation of the total number of granules. Note that the
form of this equation guarantees that the solution is symmetric
about the origin, that is, the steady state aggregate is centered.
Numerical solution of this equation is depicted in Fig. 7B.

Appendix 5
2D model equations
Eqn 12 of the reduced 1D model allows generalization to the
2D situation. First, the diffusion term in Eqn 12 is generalized
to the 2D Laplacian. Second, introducing the polymer density
of MTs distributed in 2D space and in angle N(x,θ) we can
generalize the advection term as follows. In 1D, Eqn 12
suggests that the granule velocity in a given direction is
proportional to the number of MTs in this direction divided by
the total number of MTs at this point. In 2D, the same idea
leads to the following equation governing the granule
distribution: 

Because we treat MTs as discrete entities in the 2D
computational model, the integrals over densities in Eqn 13 are
replaced by sums over individual MTs. The MTs are nucleated
as described in Section 3. We keep track of each MT plus- and
minus-end coordinates, pi and mi for the ith MT, respectively,
by numerically solving the equations: 

Here ui is the unit vector pointing from the minus end to the
plus end of the ith MT. Plus ends are stabilized when they reach
the boundary of the fragment, and MTs are removed when the
corresponding minus ends reach the boundary.

We approximate the velocity V(x) in Eqn 13 by the discrete
approximation, the meaning of which is described in Section
3 and Fig. 6: 

where di is the distance from the point x to the ith MT (i.e. to
the line segment joining pi and mi), and function ζ(x,i)=1 if
the point x belongs to the domain of influence of the ith MT
shown in Fig. 6, and ζ(x,i)=0 otherwise. Rigorously speaking,
such a rectangle has one side equal to the MT length, another
side equal to α, and the centers of the MT and rectangle
coincide. Numerically, we use the smoothing parameter
α=1/30.

To implement the 2D model, at each step we (1) nucleate
new MTs and eliminate any MTs whose minus ends reach the
boundary, as described above; (2) update the positions of the
plus and minus ends of the MTs using equations (Eqn 14); (3)
find the velocity field using Eqn 15; and finally, (4) solve the
diffusion-advection equation (Eqn 13) using the updated
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velocity field and no-flux boundary conditions. The latter
equation is solved on a rectangular grid using standard finite
difference numerical methods (Garcia, 1994).

Appendix 6
Diffusion in 2D and the neck of bi-lobed fragments
Recall that the diffusion term in Eqns 12 and 13 arises not from
Brownian motion but rather from the movement along the
isotropic component of the MT network. However, this term
appears to be independent of MT polymer density. The
problem arises from the assumption, in Appendix 4, that gs is
small relative to g, which is valid only if Nl+Nr is large relative
to k1/k2 ~1/20. In the 2D implementation, the corresponding
term,

is always sufficiently large provided that the point in question
(x) is within the domain of influence of at least one MT.
However, due to stochasticity, there are occasionally regions in
which there are no MTs, thereby violating the assumption. In
a square domain, we correct for this by increasing k1 to a value
that generates a realistically tight aggregate.

In the bi-lobed geometry, we must account for the fact that
essentially no MTs enter the neck until late in the process. The
first obvious correction to try is to reduce the diffusion
coefficient (1/k1) to a fraction of its original value in the neck
(setting it to zero causes severe computational difficulties).
Unfortunately, this approach fails because of the pseudo steady
state assumption – in the model, pigment instantly equilibrates
to the stable steady state associated with the current MT array.
Through the neck, this instantaneous equilibration requires a
unrealistically high rate of flux. Therefore, we solve the
pigment equation independently on each half of the domain,
applying a no flux boundary condition along the midline of the
neck. This guarantees that there is no transport of pigment
across the neck so that each half has a conserved quantity of
pigment. This simplification can be justified by the fact that in
the narrow neck the steric repulsion of the granules prevents
large fluxes. We allow MTs to nucleate and grow everywhere
in the fragment.

Appendix 7
Simulations with the static aggregate
To obtain quantitative estimates of the nucleation and minus-
end stabilization behavior, we assume that the packed pigment
aggregate is fixed at the center of the fragment. The aggregate
is circular with radius r=0.15 and has a constant granule
concentration. Both the area and initial constant granule
density are normalized by unity, so ga is simply the total
number of granules, 1, divided by the area of the aggregate:
ga=1/(πr2). Under these conditions, only three values of the
granule density are present: 1, before aggregation; ga, in the
aggregate; and 0, outside the aggregate. Therefore, we have to
define three values of the functions n(g) and v(g):
n(0),n(1),n(ga),v(0),v(1),v(ga) that provide the best fit for the
available data.

The following argument provides a rough estimate for these
values. The minus end of a MT nucleated in the aggregate takes

around r/v(ga) time units to escape the aggregate. Meanwhile, the
plus end takes about 1 time unit to reach the fragment edge.
Assuming 1,r/v(ga), the typical MT spends 1 time unit growing
with its minus end in the aggregate followed by about [r/v(ga)−1]
time units with its plus ends at the fragment edge and its minus
end in the aggregate. Once free of the aggregate, the minus end
reaches the fragment edge about 1 time unit after escaping the
aggregate. The proportion of time growing is given by 1/[r/v(ga)
+1]. Both ends are stable for a proportion of time given by [r/v(ga)
–1] / [r/v(ga) +1]. Finally, shortening occurs for a proportion of
time given by 1/[r/v(ga) +1]. The experimentally measured
proportions are approximately 0.1 (growing), 0.8 (both ends
stable) and 0.1 (shortening). This means that r~9v(ga). Estimates
of the aggregate size from the experimental data give the value of
r∼ 0.15, and therefore v(ga)~0.0167. Under the assumption that
MTs treadmill in the absence of granules, we set v(0)=1. The
choice of a value for v(1) is determined qualitatively from the
behavior immediately following adrenalin treatment. Before
treatment, a sufficient MT array must develop in order to get a
loose aggregate but not so much so that stochasticity is lost. A
value of v(1)∼ 0.3 fits these criteria.

The value of n(0) represents the level of spontaneous
nucleation in the absence of granules and must be small
compared with 1. Otherwise, the number of treadmilling MTs
is too high (recall that treadmillers represent ∼ 1% of MTs). The
value of n(1)=1 is determined by the scaling. The value of n(ga)
has to be found numerically by matching the observed increase
in total length of MT polymer after aggregation.

After several trials, we found that the following values give
a good fit to the 80-10-10-1% partitioning of the MTs and to
the twofold increase in total MT length after aggregation: 

The following functions provided a good fit to the data: 
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