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Nitric oxide (NO) is an effector of the
innate immune system. The innate
immune system is a set of rapid host
responses to pathogens. Cells of the
innate immune system – macrophages,
neutrophils and natural killer cells –
use pattern recognition receptors to
recognize molecular patterns associated
with pathogens (Medzhitov, 2001).
Activated macrophages then inhibit

pathogen replication by releasing a
variety of effector molecules, including
NO.

Extracellular signals trigger
innate immunity
Resting immune cells lack the inducible
NO synthase (iNOS or NOS2), the
enzyme that synthesizes NO. However,
a variety of extracellular stimuli can
activate distinct signaling pathways that
converge to initiate expression of NOS2.
Cell wall components of bacteria
and fungi can trigger the innate
immune signaling cascade, leading to
expression of NOS2. For example,
lipopolysaccharide (LPS), a component
of the wall of Gram-negative bacteria,
can bind to LPS-binding protein (LBP),
which delivers LPS to CD14, a high-
affinity LPS receptor. Toll-like receptor

4 (TLR4) in conjunction with the small
extracellular protein MD-2 interacts
with the CD14-LPS complex, and then
activates an intracellular signaling
cascade via adaptors that include IRAK
and MyD88, which in turn activate
downstream molecules including
TRAF6. The innate immune pathway
then activates signaling pathways
including the mitogen-activated protein
kinase (MAPK) pathway and the nuclear
factor κB (NF-κB) pathway. These
pathways converge to activate NOS2
transcription.

Cytokines released from infected host
cells can also activate NO production,
including tumor necrosis factor α (TNF-
α) and interleukin 1β (IL-1β). Interferon
γ (IFN-γ) produced by activated immune
cells can activate NOS2 expression,
and can synergistically activate NOS2
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expression in combination with other
agents such as LPS. IFN-γ interacts with
the interferon receptor 1 (IFNR1) and
IFNR2 complex, which activates kinases
of the Jak family and signal transducers
and activators of transcription (STAT)
pathways (Darnell et al., 1994). The
interferon signaling pathway can also
activate NOS2 transcription.

Transcriptional regulation:
interacting transcription factors
activate NOS2 transcription
LPS-mediated activation of the innate
immune pattern recognition receptors
stimulates NOS2 mRNA transcription
within 2-4 hours, and NOS2 translation
within 6 hours. LPS activation of TLR4
leads to phosphorylation of inhibitor
of NF-κB kinase (IKK), which
phosphorylates the inhibitor of NF-κB
(IκB), which releases the transcription
factor NF-κB. NF-κB translocates from
the cytoplasm to the nucleus, where it
interacts with κB elements in the NOS2
5′ flanking region, triggering NOS2
transcription (Xie et al., 1994). IFN-γ
triggers NOS2 transcription by activating
the JAK/STAT pathway, leading to
synthesis of the transcription factor
interferon response factor 1 (IRF-1),
which stimulates NOS2 transcription
(Kamijo et al., 1994). IFN-γ also
provides a synergistic boost to LPS
induction of NOS2 transcription because
IRF-1 interacts with NF-κB, altering the
conformation of the NOS2 promoter
(Saura et al., 1999a). Scaffolding
proteins such as HMG-Y(I) and
transcriptional activators such as CBP
interact with IRF-1 and NF-κB, forming
a multi-subunit complex that increases
NOS2 transcription (Perrella et al.,
1999). Other transcription factors,
including Stat1α and hypoxia inducible
factor-1 (HIF-1), can also regulate NOS2
expression.

Post-transcriptional regulation:
AUUUA elements mediate NOS2
mRNA stability
The 3′ untranslated region of NOS2
mRNA contains multiple AUUUA
elements, which mediate stability of
mRNAs of cytokines. The RNA-binding
protein HuR interacts stabilizing NOS2
mRNA with the AUUUA elements of
the NOS2 mRNA, (Rodriguez-Pascual

et al., 2000). Lack of HuR leads to
destabilization of NOS2 mRNA and
decreased NOS2 expression.

Post-translational regulation:
proteins interact with NOS2 and
block NO synthesis
NOS2 does not synthesize NO until it
forms homodimers. A set of proteins can
inhibit NOS2 activity by preventing
NOS2 homodimerization. For example,
NOS-associated protein 110 kDa
(NAP110) interacts with the N-terminus
of NOS2, forming NOS2-NAP110
heterodimers, and blocking the
formation of NOS2-NOS2 dimers
(Ratovitski et al., 1999). Although
NOS2 is ubiquitylated and
phosphorylated, the significance of these
post-translational modifications is
unknown. 

Inhibition of NOS2 expression
Transforming growth factor β (TGF-β)
inhibits NOS2 expression through
transcriptional, post-transcriptional
and post-translational mechanisms
(Vodovotz et al., 1993). TGF-β inhibits
NOS2 transcription in part by blocking
expression of the scaffolding protein
HMG-I(Y). A variety of other signaling
molecules, including IL-4, IL-10, IL-13
and macrophage deactivation factor,
inhibit NOS2 expression by unknown
mechanisms.

NOS2 structure
NOS2 contains a C-terminal reductase
domain, which binds NADPH and
transfers electrons from NADPH to FAD
and then to FMN, and an N-terminal
oxygenase domain, which contains a
heme and binding sites for arginine,
tetrahydrobiopterin and calmodulin.
NOS2 utilizes oxygen and electrons
from NADPH to oxidize the substrate L-
arginine into the intermediate OH-L-
arginine, which is then oxidized into NO
and L-citrulline.

In contrast to the other NOS isoforms
NOS1 and NOS3, dimeric NOS2 is
always active when expressed. Although
NOS2 binds calmodulin, NOS2 is
independent of intracellular calcium
levels, whereas calcium regulates NOS1
and NOS3 activity (Cho et al., 1992).

The Vmax of NOS2 is approximately 10-
fold greater than the other NOS
isoforms; so NOS2 is a high-output NOS
compared with the low-output isoforms
NOS1 and NOS3.

NO and oxygen radicals
NO and superoxide (O2–) are radical
effectors of the innate immune system
that can directly inhibit pathogen
replication (Nathan and Shiloh, 2000).
Derivatives of NO can also block
infections. NO can combine with O2–

to form peroxynitrite anion (ONOO–).
NO can also form nitrosothiols,
nitrogen dioxide (NO2) and other
nitrosating species. Superoxide can
form hydrogen peroxide, which in turn
can form hypochlorous acid and other
oxidants. These reactive nitrogen
intermediates and reactive oxygen
intermediates can cross bacterial and
fungal walls with differing facility, and
react with specific pathogen targets
(Fang, 1997). 

Anti-bacterial effects of NO
NO is an anti-bacterial effector of the
innate immune system (Fang, 1997).
NO can inhibit bacterial DNA synthesis
by inhibiting bacterial ribonucleotide
reductase. NO can also cause double-
stranded breaks (DSBs) in bacterial
DNA. NO can modify cysteine residues
in bacterial proteins, oxidize bacterial
lipids, and interact with heme iron
and iron-sulfur clusters in bacterial
enzymes. However, it is unclear
whether modification of these bacterial
targets contributes to the anti-bacterial
effects of NO. NO mobilizes zinc in
bacteria, which suggests that DNA-
binding proteins containing zinc are
targets of NO (Schapiro et al., 2003).
It can also can increase the
susceptibility of bacteria to oxidative
DNA damage by blocking respiration
(Woodmansee and Imlay, 2003).
Peroxynitrite can oxidize bacterial
lipids and produce nitrotyrosine of
bacterial polypeptides, but the
biological significance of these
modifications is also unclear. 

Bacterial defenses against NO
Oxidants activate bacterial defenses. The
bacterial protein SoxRS serves as a
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sensor for NO, and can activate
transcription of a set of bacterial genes
whose products defend the pathogen
from oxidant damage – for example,
bacterial superoxide dismutase (SOD).
The bacterial protein OxyR can be
modified and activated by hydrogen
peroxide or NO, and directs the
transcription of bacterial genes such
as alkyl hydroperoxide reductase
(AHP), which confers resistance to
peroxynitrite, and catalase (CAT), which
deactivates hydrogen peroxide (Bryk et
al., 2000; Hausladen et al., 1996). The
bacterial protein ferric uptake regulatory
protein (Fur) also serves as an NO
sensor. Fur is an iron-containing
bacterial transcription factor that
normally represses a set of nitrosative
stress response genes. NO inactivates
Fur by interacting with its iron co-
factor, permitting expression of genes
protective against oxidative stress
(Crawford and Goldberg, 1998;
D’Autreaux et al., 2002). One bacterial
gene regulated by Fur encodes a
flavohemoglobin that can detoxify NO,
protecting pathogens from NO (Gardner
et al., 1998; Hausladen et al., 2001).
Thus multiple signaling pathways
defend bacteria against NO.

Anti-viral effects of NO
NO is an anti-viral effector of the
innate immune system. It can
inhibit replication of a variety of
viruses, including Herpesviruses,
Picornaviruses, Flaviviruses and
Coronaviruses. Viral proteases are a
target of NO. Many RNA viruses
depend on viral proteases to cleave
large viral polyproteins into smaller
viral polypeptides. NO can nitrosylate
the cysteine protease 3Cpro of
Picornaviruses, inhibiting viral protease
cleavage of the viral polyprotein, and
thus blocking viral replication (Saura et
al., 1999b; Zaragoza et al., 1998).
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