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Nitric oxide (NO), formed enzymatically
from L-arginine, functions as an
endogenous signaling molecule in
numerous organs and tissues throughout
the animal and plant kingdoms. The first
NO synthase (NOS) was isolated from

mammalian brain and named neuronal
NOS (nNOS, aka: NOS1) owing to its
localization in neurons (Bredt et al.,
1990; Bredt and Snyder, 1990). NO
plays several important roles in the
brain, including in regulation of synaptic
signalling and plasticity. Additionally,
high levels of nNOS protein are present
in skeletal muscle (Brenman et al.,
1995), where NO controls muscle
contractility (Kobzik et al., 1994) and
local blood flow (Thomas et al., 1998).
nNOS activity is primarily regulated by
increases in intracellular Ca2+, which
activate nNOS through calmodulin
binding (Bredt and Snyder, 1990). NOS
enzymes are homodimeric proteins.
Recent studies show that NO actions in
brain and muscle also rely crucially upon
the association of nNOS with specific
protein complexes in neurons and
muscle cells, respectively. These

physical interactions with nNOS allow
for integration of NO signalling into
distinct transduction cascades in specific
cell types.

Neuronal nNOS
In the brain, the 160kDa nNOSa is the
predominant splice variant, and contains
an N-terminal PSD/Discs-large/ZO-1
homologous (PDZ)-binding domain,
which anchors this complex to the
postsynaptic density in the vicinity of the
N-methyl-D-aspartate type-glutamate
receptor (NMDAR). The PDZ domain of
nNOS binds to a similar PDZ domain
from the postsynaptic density protein,
PSD-95, which in turn binds to the
cytosolic tail of the NMDAR
(Christopherson et al., 1999). These
molecular interactions explain how Ca2+

influx through NMDA receptors is
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efficiently coupled to NO synthesis and
activity (Sattler et al., 1999). Following
its synthesis at postsynaptic sites, NO
may diffuse back to the presynaptic
terminal (Haley et al., 1992; Shibuki and
Okada, 1991) and increase cGMP levels
through activation of soluble guanylate
cyclase (GC) (Boulton et al., 1994,
1995).

This membrane-localized nNOS
complex is further linked to cytoplasmic
signal transduction pathways via the
physical interaction of nNOS with
DexRas 1 and the adapter protein
CAPON (Fang et al., 2000), which might
activate a downstream MAP kinase
cascade and modulate nuclear
transcription. Functionally, nNOS might
also represent a central component that
regulates synaptic transmission and
intercellular signaling, through negative
regulation of the NMDAR by S-
nitrosylation (Kim et al., 1999) and NO-
dependent activation of DexRas (Fang et
al., 2000). Additionally, the half-life of
neuronal nNOSa protein is regulated by
the Ca2+ sensitive protease calpain
(Hajimohammadreza et al., 1997).

Whereas the small quantities of NO
formed during synaptic transmission
modulate neuronal signaling, excess NO
mediates neurotoxicity in pathological
situations, such as an ischemic stroke
(Huang et al., 1994). This NO toxicity is
accentuated in the presence of oxidative
radicals such as O2–, which can also be
generated by nNOS (Pou et al., 1992).
Interestingly, nNOS-expressing neurons
are spared from injury associated with
elevated NO, which might partly be
because of the physical association of
nNOS with phosphofructokinase-M
(PFK), the rate-limiting enzyme in
glycolysis (Firestein and Bredt, 1999).
Consequently, while therapeutic
modulation of nNOS represents a
potentially important approach in the
setting of several clinically important
neurological diseases, the balance
between positive and negative effects of
nNOS derived NO in the brain are
complex and must be carefully weighed.

Skeletal muscle nNOSm
Skeletal muscle contains an alternatively
spliced nNOSµ isoform that, when
translated, results in the addition of a 34

amino acid segment within the reductase
domain (Silvagno et al., 1996). NO is
formed in contracting muscle, diffuses
out of the muscle fibers and dilates
adjacent blood vessels (Persson et al.,
1990), by activating soluble guanylate
cyclase (sGC) in arterial smooth muscle.
This pathway helps to link skeletal
muscle activity to increased local blood
flow. Skeletal muscle nNOSµ is bound
to the dystrophin associated protein
complex through interaction of the
nNOSµ PDZ domain and α-syntrophin
(Brenman et al., 1996). Importantly,
mutations of dystrophin (Brenman et al.,
1995) or sarcoglycan (Crosbie et al.,
2002) that underlie human muscular
dystrophy cause a selective loss of
nNOSµ from muscle membranes and
thereby impair local blood flow (Grange
et al., 2001). Furthermore, transgenic
restoration of nNOSµ alleviates
pathology in animal models of muscular
dystrophy (Wehling et al., 2001),
suggesting that NO augmentation
represents a strategy to treat certain
muscular dystrophies. Similar to nNOSα
in brain, nNOSµ protein turnover in
skeletal muscle is also regulated by
Ca2+-dependent calpain degradation
(Laine and de Montellano, 1998).

Cardiac Muscle nNOS µ
An nNOS protein with the same
electrophoretic mobility as nNOSµ
localizes to the sarcoplasmic reticulum
of cardiac muscle (Xu et al., 1999), and
might be associated with the ryanodine
receptor (Sears et al., 2003). The role of
nNOS in the cardiac myocyte is complex
and might regulate Ca2+ dynamics
through activation of the ryanodine
receptor (RyR), inhibition of
sarcoplasmic reticulum Ca2+-ATPase
(SERCA) or the L-type Ca2+ channel, or
through increasing phospholamban
(PLB) protein levels (Sears et al.,
2003). Interestingly, cardiac defects are
common in muscular dystrophy (Emery,
2002) and are correlated with the down-
regulation of cardiac nNOS expression
(Bia et al., 1999). Future studies
examining the roles of nNOS in the heart
have important clinical implications.
However, owing to the complex and
crucial roles for nNOS and NO in cardio-
myocyte signaling, and the potential for
superoxide generation from excessive
nNOS activity, therapeutic modulations

must be performed with care to prevent
adverse cardiac effects.

Smooth muscle nNOS
While endothelial NOS (eNOS)-derived
NO is important in the regulation of
arterial physiology and blood pressure,
the identification of nNOS and nNOSµ
in arterial smooth muscle (Boulanger et
al., 1998; Schwarz et al., 1999) suggests
that nNOS also participates in the
regulation of vascular perfusion.
Furthermore, neuron- (Hara et al., 1996)
or skeletal-muscle-derived (Lau et al.,
2000) NO generated from nNOS might
also relax blood vessels, indicating that
eNOS is not the sole modulator of NO-
dependent arterial tone. Recent evidence
also suggests that nNOS in smooth
muscle is localized to caveoli in
association with caveolin 1 and the
plasma membrane Ca2+ efflux pump 4
(PMCA 4) (Schuh et al., 2001). By
extruding Ca2+, PMCA 4 might serve a
role in the negative regulation of nNOS
in the caveoli micro-domain and limit
NO generation (Schuh et al., 2001).
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