
Introduction
The regulation of gene expression by transcriptional control is
required for many cellular events and for the proper
development of an organism. The essential nature of such
control is highlighted by the large number of proteins devoted
to regulation of transcription by RNA polymerase II. In
eukaryotes, these proteins number in the thousands and
include sequence-specific DNA-binding factors, the basal
transcriptional machinary, chromatin-remodeling factors,
enzymes responsible for covalent modifications of histones and
other proteins and cofactors that bridge DNA-binding factors
and enzymes. Although activation of transcription has long
been recognized as an essential component of gene regulation,
the realization that repression of transcription also plays a
fundamental role has been appreciated only recently.
Repressive factors use several distinct mechanisms, including
competition with activator proteins for DNA binding,
sequestration of such activators, interaction with the core
transcriptional machinery, DNA methylation and recruitment
of complexes that have histone deacetylase activity. Here we
focus on components of the co-repressor machinery that
depend, at least in part, on the actions of histone deacetylases,
discussing primarily the nuclear receptor co-repressor(N-CoR)
and silencing mediator of retinoic and thyroid hormone
receptors (SMRT) (Fig. 1a) (Chen and Evans, 1995; Horlein et
al., 1995; Ordentlich et al., 1999; Park et al., 1999).

Identification of nuclear receptor co-repressors
The knowledge that the thyroid hormone and retinoic acid
receptors (T3R and RAR) actively repress transcription in the
absence of their cognate ligands through transferable
repression domains (Baniahmad et al., 1992) led to the search
for factors that might be required for effective gene repression

by unliganded nuclear receptors. The identification of a
270 kDa protein associated with unliganded T3R-RXR
heterodimers led to the cloning of N-CoR (Horlein et al.,
1995), and a similar approach identified a second, homologous
protein SMRT (Chen and Evans, 1995; Ordentlich et al., 1999;
Park et al., 1999).

N-CoR and SMRT both contain a conserved bipartite
nuclear-receptor-interaction domain (NRID) (Li et al., 1997a;
Seol et al., 1996; Zamir et al., 1996) and three independent
repressor domains that can actively repress a heterologous
DNA-binding domain (Chen and Evans, 1995; Horlein et al.,
1995; Ordentlich et al., 1999; Park et al., 1999) (Fig. 1b).
Further analysis of the NRIDs revealed that each contains a
critical L-X-X-X-I-X-X-X-I/L motif, which includes the L/I-
X-X-I/V-I motif termed the CoRNR box (Hu and Lazar, 1999;
Nagy et al., 1999; Perissi et al., 1999). This L-X-X-X-I-X-X-
X-I/L motif is similar to the L-X-X-L-L recognition motif
present in nuclear receptor coactivators (Heery et al., 1997;
McInerney et al., 1998) but is predicted to form an extended
α-helix one helical turn longer than the coactivator motif. A
preference of RAR for SMRT and T3R for N-CoR (Cohen et
al., 2000) is due to specific sequences in the L-X-X-X-I-X-X-
X-I/L motif (Hu et al., 2001) as well as to a T3R-specific
interaction domain present in N-CoR but not SMRT (Cohen et
al., 2001). 

Identification of histone deacetylase proteins
Although co-repressor molecules contributing to the repression
of T3R and RAR had been identified, the mechanism by which
N-CoR and SMRT function remained elusive until several
groups reported their association with mRpd3 and mSin3A
and B, mammalian homologues of the yeast proteins
Rpd3p/Histone Deacetylase 1 (msx mit1) and Sin3p (Heinzel
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Transcriptional repression, which plays a crucial role in
diverse biological processes, is mediated in part by non-
DNA-binding co-repressors. The closely related co-
repressor proteins N-CoR and SMRT, although originally
identified on the basis of their ability to associate with and
confer transcriptional repression through nuclear
receptors, have been shown to be recruited to many classes
of transcription factor and are in fact components of
multiple protein complexes containing histone deacetylase
proteins. This association with histone deacetylase activity
provides an important component of the mechanism that

allows DNA-binding proteins interacting with N-CoR or
SMRT to repress transcription of specific target genes.
Both N-CoR and SMRT are important targets for cell
signaling pathways, which influence their expression levels,
subcellular localization and association with other proteins.
Recently, the biological importance of these proteins has
been revealed by studies of genetically engineered mice and
human diseases such as acute promyelocytic leukemia
(APL) and resistance to thyroid hormone (RTH). 

Key words: N-CoR, SMRT, Co-repressor, HDAC

Summary

Biological roles and mechanistic actions of co-
repressor complexes 
Kristen Jepsen 1 and Michael G. Rosenfeld 1,*
1Howard Hughes Medical Institute, Department and School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla,
CA 920393-0648, USA
*Author for correspondence (e-mail: mrosenfeld@ucsd.edu)

Journal of Cell Science 115, 689-698 (2002) © The Company of Biologists Ltd

Commentary



690 Journal of Cell Science 115 (4)

N-CoR

Sin3a
rpd 3

RbAp48

p100

p110

p70

p30

N-CoR

p115 p60

p52

N-CoR

p120

p29

p65

N-CoR/SMRT

HDAC3

TBL1

p37

SRCAP

N-CoR

BRG-1

BAF-170

BAF-155

BAF-47

SAP130

SF3a120

KAP-1

HDAC3

p250

p94

p96

p60 p64

p53

p50

p48

p45
p43

p40

p35

N-CoR

Sin3a

HDAC1

HDAC2

SAP30

p220

p190

p180

p145

p140

p130

p66

p63

p60

p53

p50

p46

N-CoR/SMRT

Transcripti on
fact or-

interacti on
domains

RI A B RII RIII II

Repressor domains
SANT domain

I

HDAC3

MyoD Bcl -6 Su(H)/RBP-J/
CBF1

Nuclear
receptors

Bcl -6

Pit-1Oct-1Pit-1Pit-1

PBX

HDAC4/5/7 HDAC3

AP-1, NFκB, SRF

A

B

SMRT

Nuclear receptors

Hist one and  fact or
deacet ylation

TAFs

IIB
Pol II

IIH
IIE

IIJIIA IIF

TATA
TBP

N-CoR SMRT

C



691Biological roles of corepressor complexes

et al., 1997; Nagy et al., 1997). Several years previously, the
observations that acetylation of specific lysine residues in the
N-termini of histones correlates with increased transcription
and that heterochromatic regions are generally hypoacetylated
(Grunstein, 1990; Turner, 1993) had led to studies of the
role of histone deactylase complex HDAC proteins in
transcriptional repression. Experiments in yeast identified two
HDAC complexes, HDA and HDB (Rundlett et al., 1996).
Further characterization of these complexes identified two
closely related proteins, Hda1p and the previously cloned
transcriptional regulator, Rpd3p, (Vidal and Gaber, 1991),
respectively, as the proteins essential for histone deacetylase
activity (Rundlett et al., 1996). These proteins were the first
members of what are now known to be large families of histone
deacetylases, which are classified on the basis of their
homology to Rpd3p or Hda1p as class I or class II HDACs,
respectively (Gray and Ekstrom, 2001). 

Rpd3p is linked by epistasis to Sin3p (Rpd1) (Bowdish and
Mitchell, 1993; McKenzie et al., 1993; Vidal and Gaber, 1991),
which was initially identified in genetic screens for mutations
allowing expression of HO (homothallicgene) in the absence
of its activating protein, Swi5 (Nasmyth et al., 1987). Although
an enzymatic function of Sin3p has not been demonstrated, the
protein can be linked through the SWI proteins to chromatin-
remodeling events (Winston and Carlson, 1992). Sin3p and
Rpd3p are both required for full repression and full activation
of transcription of several target genes in yeast (Vannier et al.,
1996; Vidal and Gaber, 1991; Vidal et al., 1991), which
suggests that, in common with histone acetylation, histone
deacetylation is a major player in the regulation of
transcription. 

To address the relationship between histone deacetylation
and transcription at the most basic level, Kadonaga and
colleagues used purified recombinant DrosophilaHDAC1 in in
vitro transcription assays on chromatinized templates (Huang
and Kadonaga, 2001). Their experiments demonstrate that
HDAC1 alone can mediate histone deacetylation and that a
Gal4-dHDAC1 fusion protein can repress transcription by
~60% on chromatinized templates but not on naked DNA
templates. Their data also suggest that HDAC activity blocks
the initiation step of transcription. In some systems, N-CoR
and SMRT can function as activating cofactors of HDAC3
(Guenther et al., 2001; Wen et al., 2000). This activation of
HDAC3 is mediated by a domain of N-CoR and SMRT that
overlaps with the SANT domain (named for its presence in
Swi3, Ada2, N-CoR, and TFIIB) (Aasland et al., 1996; Wen et
al., 2000; Guenther et al., 2001).

In addition to the class I and class II HDAC families, which
are themselves related, a distinct class of HDAC proteins (class
III HDACs) exists: silent information regulator 2 (SIR2)-like
proteins (Gottschling, 2000). The SIR2 genes were initially

identified by analysis of mutations that result in expression of
regions of the yeast genome that are normally transcriptionally
silenced (Nasmyth, 1982; Rine et al., 1979). Indeed,
Braunstein et al., prior to the identification of the class I
and class II HDAC proteins, noted that overexpression of
Sir2p in yeast cells produces histones that are under
acetylated (Braunstein et al., 1993). This suggested, although
in the absence of any biochemical evidence, that Sir2p has
a role in histone deacetylation. Later studies identified
nicotinamide adenine dinucleotide (NAD)-dependent ADP-
ribosyltransferase activity associated with the human Sir2p
homologue (Tsang and Escalante-Semerena, 1998), and
extension of these studies revealed the surprising fact that Sir2p
is in fact an NAD-dependent histone deacetylase (Imai et al.,
2000; Landry et al., 2000; Smith et al., 2000). Interestingly,
mammalian Sir2 can interact with and deacetylate the p53
protein, reducing the transcriptional activity of p53 (Luo et al.,
2001; Vaziri et al., 2001). The potential ability of this and other
classes of HDACs to deacetylate proteins other than histones
raises interesting possibilities for their ability to regulate gene
expression. 

The precise roles of histone deacetylation in transcriptional
repression are not fully understood. For instance, differential
display analysis of cells treated with the histone deacetylase
inhibitor trichostatin A (TSA) revealed that the expression of
just 2% of cellular genes (8 of 340 genes examined) changed,
despite an increase in core histone acetylation (Van Lint et al.,
1996). Rpd3p-null strains in yeast have defects in both
transcriptional repression and activation (Rundlett et al., 1996;
Vidal et al., 1991) and in fact show increased repression at
telomeric heterochromatin (Rundlett et al., 1996), revealing the
complicated nature of the transcriptional alterations produced
by promoter-specific usage of co-regulatory factors. Recent
studies examining the acetylation state at various promoters
revealed that different transcriptional activators confer distinct
patterns of histone acetylation and that activation is not
necessarily related to increased acetylation (Deckert and
Struhl, 2001). Experiments with Sin3p and Rpd3 mutants,
however, did reveal decreased acetylation of histones (Deckert
and Struhl, 2001). Thus many questions relating to the complex
nature of transcriptional repression versus activation with
regards to the acetylation state of histones remain, although the
finding that the class III HDAC Sir2 can deacetylate p53 (Luo
et al., 2001; Vaziri et al., 2001) suggests that HDAC proteins
have multiple roles in the cell.

Purification of co-repressor complexes
Recent biochemical evidence demonstrates that HDACs are
associated with known repression complexes, building a
circumstantial case for the involvement of HDACs in
transcriptional repression (Fig. 2). HDAC1 and HDAC2 have
been found in several complexes, including the Sin-associated
protein (SAP) complex (Zhang et al., 1997; Zhang et al.,
1998c) and the nucleosome remodeling and histone
deacetylation (NURD) complex (Tong et al., 1998; Xue et al.,
1998; Zhang et al., 1998b; Zhang et al., 1999), which has ATP-
dependent chromatin remodeling activity (Fig. 2) (Knoepfler
and Eisenman, 1999). Both complexes also contain
retinoblastoma protein (Rb)-associated proteins RbAp-46 and
RbAp-48, along with several components specific for either

Fig. 1. (A) Transcriptional repression by nuclear receptors is
regulated by recruitment of the co-repressors N-CoR and/or SMRT.
(B) The domains of N-CoR/SMRT. Repression domains (RI, RII,
RIII) and SANT domains (A and B) are indicated, as are interaction
domains for HDACs, nuclear receptors (I and II) and other
transcription factors. (C) N-CoR–SMRT compexes. Biochemical
purification techniques have revealed several different complexes
recruited by N-CoR and/or SMRT (Jones et al., 2001; Li et al., 2000;
Underhill et al., 2000; Wen et al., 2000; Guenther et al., 2000). 



692

complex. This suggests that a core HDAC complex
differentially recruits additional proteins that impart distinct
functional roles to each complex. Complexes purified by use
of anti-HDAC1 or anti-HDAC2 antibodies share common
components with the NURD complex, including MTA 2, the
ATPase Mi-2, RbAp-46 and RbAp-48 and methyl-CpG-
binding domain proteins MBD 2 and/or MBD3 (Fig. 2)
(Humphrey et al., 2001). The presence of proteins
involved in binding to methylated CpG
dinucleotides is particularly interesting given the
association between DNA methylation and gene
silencing and is consistent with studies that show
that the closely related methyl-CpG-binding
protein MeCP2 not only interacts with HDACs
and mSin3A but has TSA-dependent repression
abilities (Jones et al., 1998; Nan et al., 1998).
Although MeCP2 has not been identified in
complexes with N-CoR or SMRT, it has been
shown to bind N-CoR (Kokura et al., 2001). Thus
a picture begins to emerge in which previously
distinct methods of transcriptional repression,
including ATP-dependent chromatin remodeling,
histone deacetylation and DNA methylation, have
overlapping roles and influence one another’s
distinct enzymatic activities.

Depending on the purification strategy, different
HDAC proteins, including HDAC1, HDAC2 and
HDAC3, have also been identified in both N-CoR
and SMRT complexes (Fig. 1b) (Guenther, 2000;
Jones et al., 2001; Li et al., 2000; Underhill et al.,
2000; Wen et al., 2000). A subset of N-CoR
complexes share common components with the
SAP complex and contain HDAC1, HDAC2 and
mSin3 (Zhang et al., 1997; Zhang et al., 1998c).
Biochemical purification of complexes using anti-
N-CoR or anti-HDAC3 antibodies also revealed a
distinct complex that contains HDAC3, N-CoR or
SMRT, and transducin (beta)-like protein 1(TBL1)
(Fig. 1b) (Guenther et al., 2000; Li et al., 2000;
Underhill et al., 2000; Wen et al., 2000). TBL-1
has six WD-40 repeats (Bassi et al., 1999), a motif
also present in the Tup1 and Groucho co-
repressors, and is homologous to the Drosophila
protein ebi, which is involved in epidermal growth
factor receptor signaling pathways (Dong et al.,
1999). Under different conditions, an N-
CoR–SMRT–HDAC3 complex can also contain
Krab-associated protein 1 (KAP-1), a TSA-
sensitive co-repressor that interacts with members
of the heterochromatin protein 1 (HP1) family, and
several members of the Swi/Snf ATP-dependent
chromatin-remodeling complex family, which is
reminiscent of the ATP-dependent chromatin-
remodeling proteins found in the NURD complex
(Fig. 1b; Fig. 2) (Underhill et al., 2000). Several
groups have also shown that the third repressor
domain of N-CoR and SMRT can directly interact
in vitro with class II HDACs, including HDAC4,
HDAC5 and HDAC7 (Huang et al., 2000; Kao et
al., 2000), suggesting the full range of complexes
has yet to be purified.

HDAC1 and HDAC2 have also been identified as part of a
complex containing CoREST and a novel protein homologous
to a diverse group of oxidases and dehydrogenases (Fig. 2)
(Humphrey et al., 2001; You et al., 2001), which is also present
in one version of the NURD complex (Tong et al., 1998). This
latter protein is of particular interest because its potential
enzymatic function is reminiscent not only of the NAD-
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Fig. 2. Other HDAC-containing co-repressor complexes identified by biochemical
purification, including the Sin3-SAP (Sin-associated proteins) complex (Zhang et al.,
1997; Zhang et al., 1998c), the NURD (nucleosome remodeling and histone
deacetylation) complex (Tong et al., 1998; Xue et al., 1998; Zhang et al., 1998b;
Zhang et al., 1999), a NURD-related HDAC-complex (Humphrey et al., 2001) and a
CoREST-HDAC complex (Humphrey et al., 2001; You et al., 2001). Dashed outlines
indicate the molecule that was used to purify each complex.
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dependent Sir proteins discussed earlier but of another family
of co-repressor proteins, the C-terminal binding proteins
(CtBP), which have homology to dehydrogenase enzymes
(Nibu et al., 1998; Schaeper et al., 1998). This suggests yet
another enzymatic activity may be involved in transcriptional
repression. Note that CoREST, which was first identified as a
co-repressor for the neural restrictive factor REST (Andres et
al., 1999), MTA1, a component of the NURD complex, and N-
CoR and SMRT each contains a SANT domain (Aasland et al.,
1996). This suggests that this domain is important for some
aspects of repression.

Other transcription factor partners
Although cloned on the basis of their interactions with
unliganded RAR and T3R, N-CoR and SMRT appear to confer
transcriptional repression on many transcription factors.
Indeed, they serve as co-repressors for several members of the
nuclear receptor superfamily, including v-ErbA, (Busch et al.,
2000; Chen and Evans, 1995), RevErb (Zamir et al., 1996),
COUP-transcription factors (Shibata et al., 1997), PPARα
(Dowell et al., 1999) and DAX1 (Crawford et al., 1998).
Although steroid hormone receptors do not appear to interact
with N-CoR or SMRT in the absence of ligand (Chen and
Evans, 1995; Horlein et al., 1995), both the estrogen receptor
(ER) and the progesterone receptor (PR) can interact with these
co-repressors in the presence of their respective antagonists to
repress transcription (Jackson et al., 1997; Lavinsky et al.,
1998; Smith et al., 1997; Xu et al., 1996). In chromatin
immunoprecipitation assays (ChIP) performed in the breast-
tumor-derived cell line MCF-7, N-CoR and SMRT were
present on the estrogen-responsive cathepsin D and pS2
promoters in the presence of the antagonist tamoxifen but not
estrogen (Shang et al., 2000). These data suggest a role for N-
CoR and SMRT in mediating the antagonist-associated effects
of steroid hormone receptors (Chen and Evans, 1995; Horlein
et al., 1995) and provide a mechanism for the clinical
application of antagonistic ligands. 

N-CoR and SMRT have also been implicated as co-
repressors for a variety of unrelated transcription factors, which
regulate diverse cellular processes (Fig. 1b). SMRT interacts
with and can repress transcription by serum response factor
(SRF), activator protein-1 (AP-1) and nuclear factor-κB
(NFκB), which are all transcription factors involved in
stimulation of cell proliferation (Lee et al., 2000). N-CoR and
SMRT have both been implicated in abrogation of transcription
by the evolutionarily related POU homeodomain factors Pit-
1(Xu et al., 1998) and Oct-1 (Kakizawa et al., 2001), which
have important developmental roles, and by the homeobox
factor PBX (Asahara et al., 1999; Shanmugam et al., 1999),
which is an important determiner of cell fate and segment
identity. These co-repressors also interact with the Poz/zinc
finger transcription factor BCL-6, which may influence
apoptosis (Dhordain et al., 1998; Huynh and Bardwell, 1998;
Wong and Privalsky, 1998), and with the bHLH proteins MAD
(Heinzel et al., 1997), MyoD (Bailey et al., 1999) and HES-
related repressor proteins (HERPs) (Iso et al., 2001), to
suppress proliferation or induce terminal differentiation, as
well as with the Notch-activated adapter protein Su(H)/RBP-
J/CBF1 (Kao et al., 1998), which influences differentiation,
proliferation and apoptosis in many developmental systems.

SMRT has most recently been shown to interact with signal
transducers and activators of transcription 5 (STAT5)
(Nakajima et al., 2001), which plays a central role in cytokine
signaling.

Multiple mechanisms of regulation
Regulation of proteins with such a potentially broad spectrum
of activity is likely to be controlled at many levels, and indeed
reports suggest that the actions of N-CoR and SMRT are
regulated by several mechanisms. The N-terminus of N-CoR
interacts with mSiah2, the mammalian homologue of
Drosophila Seven in absentia(Zhang et al., 1998a). mSiah2
has been implicated in regulation of proteasomal degradation
of proteins (Hu et al., 1997; Li et al., 1997b; Tang et al., 1997),
and cotransfection of N-CoR and mSiah2 resulted in a dramatic
decrease in N-CoR protein levels, an effect that was not seen
in the presence of a proteasome inhibitor (Zhang et al., 1998a). 

Although association of N-CoR and SMRT with nuclear
receptors is clearly controlled at the level of hormone binding,
in several systems, cell signaling events seem capable of
directly regulating the association of nuclear receptors with N-
CoR and SMRT. Treatment of treated MCF-7 or Hela cells with
forskolin, which stimulates the PKA pathway, or EGF, which
stimulates the ERK MAP kinase and PKC pathways, resulted
in decreased association of N-CoR with ER in the presence of
the antagonist tamoxifen (Lavinsky et al., 1998). In addition,
in microinjection assays, treatment with forskolin or EGF
converts tamoxifen from an antagonist to an agonist of ER-
mediated transcription (Lavinsky et al., 1998). Activation of
the ERK MAP kinase pathway by L-throxine (T4) results in
serine phosphorylation of TRβ1 and dissociation of SMRT in
a hormone-independent manner (Davis et al., 2000). Similarly,
phosphorylation of SMRT by the MAP kinase kinase MEK-1
and MEK-1 kinase (MEKK-1) can inhibit interactions between
SMRT and nuclear receptors or PLZF (Hong and Privalsky,
2000). In contrast, phosphorylation of SMRT by casein kinase
II (CK2) stabilizes the SMRT–nuclear-receptor interaction
(Zhou et al., 2001). Thus, different cell signaling pathways can
effect different transcriptional outcomes. 

In addition to their role in modulating protein-protein
interactions, cell signaling pathways also cause changes
in subcellular distribution, presumably to restrict access
of transcription factors to co-repressors. CamKIV
phosphorylation of the NFκB p65 subunit results not only in
an exchange of SMRT for CBP but also in translocation of
SMRT to the cytoplasm (Jang et al., 2001). MEK-1 and
MEKK-1 signaling produces a redistribution of SMRT from
the nucleus to the perinucleus or cytoplasm (Hong and
Privalsky, 2000). Interestingly, co-repressors themselves
shuttle associated proteins to the nucleus, as is the case for both
Su(H)/RBP-J/CBF1 (Zhou and Hayward, 2001) and certain
HDAC proteins (Wu et al., 2001). Intracellular signaling events
are also thought to influence the subcellular distribution of
HDAC proteins (Grozinger and Schreiber, 2000; McKinsey et
al., 2000a; McKinsey et al., 2000b) and thus may be a general
mechanism by which co-repressor proteins are regulated.

There are also examples of regulation of co-repressor
specificity by its association with other co-repressor molecules
to form distinct co-repressor complexes. Members of the Ski
proto-oncogene family, which includes the proteins Ski and
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Sno, form complexes with N-CoR, SMRT, HDACs and mSin3
to regulate transcriptional repression by MAD and TRβ
(Nomura et al., 1999). A co-repressor complex containing N-
CoR and Ski or Sno has also been implicated as a negative
regulator of the TGFβ signaling pathway (Luo et al., 1999;
Stroschein et al., 1999). Ski or Sno, together with N-CoR, form
complexes with the SMAD proteins that positively regulate
TGFβ signaling (Moustakas et al., 2001), repressing TGFβ-
activated transcription (Luo et al., 1999; Stroschein et al., 1999).

SMRT also interacts with the transcriptional repressor
SMRT/HDAC1 associated repressor protein (SHARP) (Shi et
al., 2001). Interestingly, SHARP binds the steroid receptor
RNA coactivator SRA and suppresses SRA-activated steroid
receptor transcription activity, providing a mechanism by
which SMRT can modulate liganded nuclear receptors (Shi et
al., 2001). As the data collected increase, there will doubtlessly
prove to be additional mechanisms by which both the
regulation and specificity of N-CoR and SMRT activity are
controlled.

Roles in development and disease
Although the biological role of hormonal activation of nuclear
receptors is well established, only recently has the biological
significance of repression begun to be appreciated, with both
N-CoR and SMRT emerging as important players. The role of
N-CoR during normal development was revealed by studies of
N-CoR-null mice, which die in midgestation and exhibit
defects in developmental progression of specific erythrocyte,
thymocyte and neural events (Jepsen et al., 2000). Results in
erythroblasts were particularly intriguing because the mice had
a block in erythroid blast-forming unit (BFU-E) formation that
may be related to effects mediated by T3R. V-ErbA, an
oncogenic form of T3R that cannot bind to hormone, owing to
mutations in its C-terminal ligand-binding domain (Munoz et
al., 1988; Sap et al., 1986), thus functions as a constitutive
repressor of transcription (Damm et al., 1989), induces
erythroleukemia and fibrosarcomas in chickens and transforms
erythroid cells and fibroblasts in culture (Graf and Beug, 1983).
The constitutive repression of v-ErbA target genes, which has
been linked to recruitment of N-CoR and HDAC activity,
(Busch et al., 2000; Ciana et al., 1998) is thought to contribute
to avian erythroblastosis virus (AEV)-induced leukemic
transformation. N-CoR–/– erythroblasts have enhanced levels
of one v-ErbA target gene that encodes carbonic anhydrase II;
this suggests that unliganded T3R requires N-CoR for
repression events critical to expansion of erythroblast

progenitors. Studies in primary avian erythroblasts showed that
overexpression of T3R in the absence of T3 resulted in
sustained proliferation and tightly arrested differentiation of
erythroblasts, whereas addition of T3 caused loss of self-
renewal capacity and induced terminal differentiation (Bauer
et al., 1998). 

A dominant-negative N-CoR protein, lacking the repression
domains in the N-terminus but retaining the nuclear receptor
interaction domains, has also been used in an attempt to define
specific biological roles for co-repressors (Feng et al., 2001).
Transgenic mice expressing this construct in hepatocytes
showed an increased proliferation of hepatocytes and a
derepression of T3-regulated hepatic target genes (Feng et al.,
2001). A dominant-negative approach has also been used in
Xenopusand resulted in embryos that exhibited phenotypes
similar to those treated by RA, namely reduction of anterior
structures such as forebrain and cement gland (Koide et al.,
2001). These data suggest that RAR-mediated repression of
target genes is critical for head formation.

Whereas knockout and dominant-negative transgenic
animals allow one to assess the consequences of loss of co-
repressor function, various disease models have allowed
investigation of inappropriate gain of co-repressor function
(Table 1). For instance, resistance to thyroid hormone (RTH)
is a human genetic disease characterized by an impaired
physiological response to thyroid hormone and is associated
with mutations in T3R-β (Kopp et al., 1996) that fail to release
N-CoR or SMRT upon hormone treatment (Safer et al., 1998;
Yoh et al., 1997). Transcriptional activation by mutant T3R-β
in response to hormone is diminished compared with that of
wild-type T3R-β. Repression might also be involved in normal
thyroid hormone physiology because deletion of genes
encoding all known thyroid hormone receptors results in a
phenotype less severe than that of mice lacking thyroid
hormone (Gothe et al., 1999). Thus, there seems to be a role
for the unliganded T3Rs in development, which suggests co-
repressor involvement.

Roles for N-CoR and SMRT in several types of leukemia are
also well characterized. Acute promyelocytic leukemia (APL),
caused by a block in myeloid differentiation, is associated with
rearrangements of RAR-α, which most commonly result in
fusions of the RAR-α gene with the promyelocytic leukemia
gene (PML) or the promyelocytic leukemia zinc finger gene
(PLZF) (Lin et al., 1999). Both RAR-α fusion proteins retain the
ability to interact with N-CoR and SMRT (Hong et al., 1997).
Interestingly, although retinoic acid (RA) can induce remission
in APLs resulting from PML-RAR-α translocations, APLs
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Table 1. N-CoR/SMRT in disease 
Proposed role for N-CoR/SMRT

Leukemias
Acute promyelocytic leukemia (APL) APL is caused by gene rearrangements resulting in fusions of RAR-α with PML or PLZF. Both fusion 

proteins interact with N-CoR and SMRT. 
Acute myeloid leukemia (AML) AML is caused by gene rearrangements resulting in fusions of AML1 and ETO. The AML1-ETO fusion 

protein can interact with N-CoR and SMRT.
Common acute lymphoblastic leukemia (cALL) cALL is caused by chromosomal rearrangements of TEL, whose product interacts with SMRT.

Other diseases
Resistance to thyroid hormone (RTH) A disease caused by mutations in the T3R-β gene that results in a failure to release N-CoR or SMRT upon 

hormone treatment.
Huntington’s disease Disease caused by the Huntington’s disease gene product, huntingtin, which interacts with N-CoR. N-CoR 

in the diseased brain is cytoplasmic, whereas in normal brain it is both nuclear and cytoplasmic.
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resulting from PLZF-RAR-α translocations are insensitive to
RA (Lin et al., 1999). Although co-repressor interactions with
PML-RAR-α fusions are less sensitive to the effects of RA than
are interactions with wild-type RAR-α, pharmacological
concentrations of RA do result in the dismissal of the co-
repressor complex and in activation of transcription. In contrast,
the PLZF-RAR-α fusion protein interacts with the co-repressor
even in the presence of RA. These observations correlate co-
repressors with the disease state, because the relative RA
sensitivity of the interaction between the RAR-α fusions and N-
CoR or SMRT correlates with their response to RA treatment.
Interestingly, histone deacetylase inhibitors such as TSA, in
combination with RA, not only overcome the transcriptional
repressor activity of both PML-RAR-α and PLZF-RAR-α but
also render PLZF-RAR-α sensitive to RA (He et al., 1998).
Together, these results indicate that the presence of a co-
repressor is one criterion for disease progression.

N-CoR and SMRT have also been implicated in acute
myeloid leukemias (AML). 12-15% of AMLs result from the
t(8;21) translocation between AML1 and ETO. AML1
upregulates a number of target genes critical to normal
hematopoiesis, and the AML1-ETO fusion protein represses
transcription of these target genes. In common with ETO, the
AML1-ETO fusion protein can interact with N-CoR and
SMRT, and mutations that abolish this interaction affect the
ability of AML1-ETO both to repress transcription and to
inhibit differentiation of hematopoeitic precursors (Gelmetti et
al., 1998; Lutterbach et al., 1998; Wang et al., 1998). The role
of N-CoR in AML also appears to be partially due to
recruitment of histone deacetylase activity, since recent studies
have revealed that the histone deacetylase inhibitors TSA and
phenylbutyrate (PB) both partially reverse ETO-mediated
transcriptional repression, and PB can induce partial
differentiation of an AML1-ETOcell line (Wang et al., 1999). 

A third class of leukemia results from chromosomal
rearrangements of the E26 transforming specific (ETS)-related
gene TEL, which encodes a strong transcriptional repressor that
recruits a co-repressor complex including SMRT, mSin3A and
HDAC3 (Chakrabarti and Nucifora, 1999; Wang and Hiebert,
2001). The overall theme for involvement of N-CoR and
SMRT in progression of these leukemias thus appears to be the
ability of histone-deacetylase-associated repression to block
differentiation and allow uncontrolled growth of hematopoietic
cells, which ultimately results in the diseased state.

N-CoR has also been implicated in pathologies associated
with the nervous system. The C-terminus of N-CoR interacts
with the N-terminus of the Huntington’s disease gene product,
huntingtin, in both yeast two-hybrid screens and pull-down
assays (Boutell et al., 1999). Although N-CoR is generally
thought to exert its action in the nucleus (Horlein et al., 1995),
immunohistochemical studies on Huntington’s disease brains
and control brains revealed that the localization of N-CoR and
mSin3 in the diseased cortex and caudate is exclusively
cytoplasmic, whereas in the normal brain they are localized in
the nucleus as well as the cytoplasm. This suggests that
relocalization of co-repressor proteins in the diseased brain
alters transcription and is thus involved in the pathology of this
disease. Interestingly, though perhaps counter-intuitively,
inhibitors of HDAC activity can arrest neurodegeneration
associated with Huntington’s disease in aDrosophila model
(Steffan et al., 2001). 

Conclusions
Here, we have focused mainly on the N-CoR/SMRT family of
HDAC-associated co-repressors, but there are several
repressors that associate with HDACs. These include non-
DNA-binding cofactors such as CtBP (Turner and Crossley,
2001) and groucho/TLE proteins (Chen and Courey, 2000),
transcription factors that interact directly with HDACs such
MEF2, (Lu et al., 2000), which functions in myogenesis, and
proteins involved in methylation-induced gene repression such
as MeCP2 (Jones et al., 1998; Nan et al., 1998). In fact, it
appears that a single transcription factor can frequently utilize
more than one family of co-repressor. Hairy, for example, can
interact with both CtBP and groucho/TLE proteins (Paroush et
al., 1994; Poortinga et al., 1998), and Hesx1 interacts with
groucho/TLE proteins and N-CoR (Dasen et al., 2001). On the
basis of current studies, it is impossible to determine whether
more than one co-repressor is bound to a transcription factor
at the same time on a given promoter, but these studies will
certainly be done in the near future.

It is intriguing, as mentioned earlier, that a growing number
of co-repressor complexes are associated, if circumstantially,
with proteins connected to redox pathways. These include
CTBP, the FAD-binding protein found in the HDAC1/2 and
NURD complexes, and the NAD-dependent class 3 HDACs.
Several lines of evidence also point to a connection between
DNA methylation and histone deacetylation (Dobosy and
Selker, 2001), suggesting that multiple enzymatic activities are
recruited to DNA, either simultaneously or sequentially, and
subsequently modulate transcriptional repression.

We apologize to our colleagues for the many important papers that
could not be cited because of space limitations. Work from our
laboratory was supported by grants from the NIH (DK07494 to K.J.).
M.G.R. is an investigator with the HHMI.
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