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SUMMARY

[-Catenin can play different roles in the cell, including one and Wnt signaling. Although plakoglobin differs from (3-
as a structural protein at cell-cell adherens junctions and catenin in its functions and is unable to compensate for
another as a transcriptional activator mediating Wnt signal  defects in Wnt signaling resulting from lack off3-catenin,
transduction. Plakoglobin (y-catenin), a close homolog d3- recent evidence suggests that plakoglobin plays a unique
catenin, shares with3-catenin common protein partners role in Wnt signaling that is different from that of -
and can fulfill some of the same functions. The complexing catenin. The functional difference between catenins is
of catenins with various protein partners is regulated reflected in their differential involvement in embryonic
by phosphorylation and by intramolecular interactions.  development and cancer progression.

The competition between different catenin partners for

binding to catenins mediates the cross-talk between Key words:3-Catenin, Plakoglobin, Transactivation, Cell adhesion,
cadherin-based adhesion, catenin-dependent transcription Signal transduction

INTRODUCTION accumulation, complexing with LEF/TCF transcription factors
and transactivation of LEF/TCF target genes (Eastman and
A major lesson we have learned from gene knockout studigdrosschedl, 1999; Nusse, 1999; Roose and Clevers, 1999).
in mice is that the functions of many proteins significantlyThis nuclear signaling by3-catenin is involved in the
overlap, which enables the organism to carry out manyegulation of cell fate during embryonic development (Wodarz
physiological processes when a key component in a biologicahd Nusse, 1998), and the aberrant activatiof3-catenin-
pathway is genetically eliminated. More recent studies havmediated transactivation might contribute to cancer
reported an increasing number of examples representing ‘thpgogression by causing increased cell proliferation (Ben-Ze'ev,
other side of the coin’, namely the multifunctionality 1997; Ben-Ze'ev and Geiger, 1998; Morin, 1999; Polakis,
characteristic of certain proteins that enables cells to coordinai®99).
the regulation of what sometimes appear to be unrelated Plakoglobin (Cowin et al., 1986), also knownyasatenin
biochemical processes. In these cases, the same proté@zawa et al., 1989), another vertebrate catenin, is highly
participates in several different processes, which often at@omologous tg3-catenin (Butz et al., 1992; McCrea et al.,
carried out at different locations in the cell and form anl991). Functions of plakoglobin in cell adhesion that are
interdependent network of cellular events. similar to (in adherens junctions) and different from (in
-Catenin provides an intriguing example of suchdesmosomes) those Pfcatenin are well established (Cowin
multifunctionality: it combines the features of a majorand Burke, 1996; Schmidt et al., 1994) (Fig. 1B). In contrast,
structural protein at cell-cell junctions with those of athe participation of plakoglobin in Wnt signaling is still under
transcription factor (Barth et al., 1997; Behrens, 1999; Bendebate (Karnovsky and Klymkowsky, 1995; Kofron et al.,
Ze'ev and Geiger, 1998; Bullions and Levine, 1998;1997; Miller and Moon, 1997; Simcha et al., 1998). Recent
Seidensticker and Behrens, 2000). Whereas the great majorgtudies, however, indicate that plakoglobin may play a unique
of B-catenin is engaged in a structural role at adheren®le in the Wnt signaling pathway, one that is different from
junctions, linking adhesion receptors of the cadherin family téhat of-catenin (Charpentier et al., 2000; Simcha et al., 1996;
the actin cytoskeleton (Adams and Nelson, 1998; Yap et alzhurinsky et al., 2000).
1997), the non-junctiondd-catenin is rapidly degraded by the Here, we compare interactions that these two vertebrate
ubiquitin-proteasome system (Fig. 1A). Stabilization ofcatenins engage in and discuss recent advances in our
cytoplasmicp-catenin by Wnt signaling leads to its nuclearunderstanding of the mechanisms regulating these interactions.
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We also discuss the functional differences between plakoglobifig. 1. The various interactions involvirfgrcatenin and plakoglobin.

andp-catenin in development and tumorigenesis. (A) B-Catenin B) and plakoglobin (Pg) can bind, independently, to
the cytoplasmic tail of cadherin adhesion receptors in adherens
junctions (AJ). Viao-catenin ¢t), they mediate cadherin association

CATENIN DEGRADATION AND THE WNT PATHWAY with the actin cytoskeleton. When Wnt signaling is inactive, ffree
catenin is degraded by a multimolecular complex including the

tumor suppressor APC, axin and glycogen synthase kinase (GSK),

Although B-catenin mediates cell-cell adhesion in most cellyyion phosphorylated-catenin (PP). This complex associates with
types and tissues, the transcriptional functiofaatenin is o ubiquitin-proteasome system via the ubiquitin ly@3eCP,

constitutively suppressed by the ubiquitin-proteasomegich, together with Cull and Skp1, mediates the ubiquitination
dependent degradation of non-junctiofiatatenin (Aberle et  (ub) of B-catenin and targets it for degradation by the proteasome.
al., 1997; Orford et al., 1997; Salomon et al., 1997; Fig. 1A)The binding of Wnt to the Frizzled (Frz) receptor activates Wnt

The targeting off3-catenin to the proteasome is achievedsignaling, and disheveled (Dsh) inhikftsatenin turnover by

through its phosphorylation by a multiprotein complexsuppressing GSK activity. This results in the accumulatigg of
consisting of the serine/threonine kinase glycogen synthag@tenin in the nucleus, its complexing with TCF family transcription
kinase B (GSK) and the scaffolding proteins adenomatoudactors, and activation of target gene expression. (B) Plakoglobin can
polyposis coli (APC) and axin (reviewed by Kikuchi, 2000).”;]“"[316“:t with thelsa”;ﬁ pr.Ote('jnsﬁ"satel?'” b“é'c'j” addmoln, binds to
The phosphoserine motif in the N terminugBedatenin (Yost the desmosomal cadherins desmocollin and desmogelin in

: . . desmosomes (DES), mediating their interaction, via desmoplakin
etal., 1996) and plakoglobin (Sadot et al., 2000) is recogniz sp) and plakophilin (Plp), with intermediate filaments (IF). The

by the ubiquitin ligas@-TrCP, which catalyzes the attachment apjjity of plakoglobin to transactivate target genes in complex with
of ubiquitin peptides to the catenin molecules (Hart et al.TCF s still controversial (?).
1999; Kitagawa et al., 1999; Liu et al., 1999; Sadot et al., 2000;
Winston et al., 1999; Fig. 1A).
The ability of this multiprotein complex to triggBrcatenin ~ Wnt signaling in vivo is still controversial, because
degradation is regulated by Wnt signaling. The binding of Wnplakoglobin cannot compensate for the absen@eaaitenin in
to its receptor, frizzled, activates the scaffolding proteirknockout mice (Bierkamp et al., 1996; Haegel et al., 1995;
dishevelled (Noordermeer et al., 1994), which then interactduelsken et al., 2000; Ruiz et al., 1996). Interestingly, a recent
with axin (Itoh et al., 2000; Kishida et al., 1999; Smalley et al.study revealed that the expression of plakoglobin in the skin of
1999) and recruits several other proteins, such as GSK-binditigansgenic mice (Charpentier et al., 2000) induces a phenotype
protein (GBP/FRAT) and protein phosphatase 2C (Li et alyery different from that conferred f§scatenin expression (Gat
1999; Strovel et al.,, 2000; Fig. 1A). This leads to theet al., 1998). This phenotype is more similar to that observed
disassembly of the complex (Jho et al., 1999; Li et al., 1999vhen upstream components of the Wnt pathway are
Farr et al.,, 2000; Salic et al., 2000; Willert et al., 1999)overexpressed (Millar et al., 1999). We discuss the nature of
degradation of axin (Yamamoto et al., 1999) and thdéhese and other differences between the two catenins, and the
accumulation of-catenin in the cytoplasm and the nucleus. Inpossible involvement of plakoglobin in Wnt signaling, below.
the nucleusB-catenin interacts with LEF/TCF transcription
factors (Behrens et al., 1996; Brunner et al., 1997; Huber et al.,
1996; Molenaar et al., 1996; Riese et al., 1997; van de Weterit@ATENIN STRUCTURE AND BINDING SITES FOR
et al., 1997) and activateB-catenin:LEF/TCF dependent PROTEIN PARTNERS
transcription by providing the transactivation domain to the
LEF/TCF complex (van de Wetering et al., 1997). ThusMany molecules interact witf-catenin and plakoglobin (for
activation of the Wnt signaling cascade results in  examples, see Table 1). The functional consequences of some
catenin:LEF/TCF target gene expression. of these interactions are well established (e.g. those involving
An additional, APC- and axin-independent pathway mightadherins, LEF/TCF, or the APC/axin degradation machinery;
also regulatep-catenin degradation, given thftcatenin  see Fig. 1), whereas the significance of some other interactions
(Murayama et al., 1998; Zhang et al., 1998) and GSKs still incompletely understood.
(Takashima et al., 1998) associate with presenilin. The role of A characteristic structural feature of catenins is a central
presenilin in B-catenin degradation is still controversial, armadillo (arm) repeat domain flanked by the C- and N-
because presenilin could either stabilize (Zhang et al., 1998&rminal domains (Hatzfeld, 1999). Although all three catenin
or destabilize (Kang et al., 199%-catenin. The relative domains can mediate protein-protein interactions, the great
contributions of the presenilin and axin pathwayB-tatenin  majority of partners bind to the arm repeat region (Table 1).
stability, and the mechanism underlying presenilin-dependerithe arm repeat motif folds into a single structural unit, whose
degradation of3-catenin, are incompletely understood. tertiary structure (determined by crystallographic analysis)
Plakoglobin, similarly to-catenin, can bind to LEF/TCF revealed an array of densely packedhelices that form a
factors (Hecht et al., 1999; Huber et al., 1996; Simcha et akuperhelix that has a positively charged groove that spans the
1998; Zhurinsky et al., 2000), contains a transactivatiorntire arm repeat region (Huber et al., 1997). This groove might
domain in its C terminus (Hecht et al., 1999; Simcha et algonstitute the binding surface for the various catenin partners,
1998) and is targeted for proteasomal degradation by the axiwhich would explain the observation that at least five arm
APC complex (Kodama et al., 1999; Sadot et al., 2000; Figepeats are needed to maintain protein-protein interactions. No
1B). Although in certain cell types overexpression of Wntconsensus sequence, however, has been detected in the arm-
results in the accumulation of plakoglobin (Bradley et al.binding domains of the different catenin partners, although
1993; Papkoff et al., 1996), the involvement of plakoglobin inthey each possess many negatively charged residues, which
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could dock into the positively charged groove formed by théhis region (Hulsken et al., 1994; Kishida et al., 1998; Orsulic
arm repeats (Hsu et al., 1998; Huber et al., 1997; Omer et akt al., 1999; Rubinfeld et al., 1995; Sadot et al., 1998), the
1999). Although the nature of the binding site on the arm repeatolecular interactions formed by each protein partner are
dictates mutually exclusive binding of the various partners tanique. Thus, it is possible selectively to disrupt the binding of
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Table 1. Protein partners of3-catenin and plakoglobin

B-Catenin  Plakoglobin Binding site Function
Protein partner binding binding on catenins of the interaction References
Classical cadherins + + Arm repeats Adhesion Kemler, 1993
Desmocollin - + Arm repeats Adhesion Troyanovsky et al., 1994b
Desmoglein + Arm repeats Adhesion Troyanovsky et al., 1994a
Desmoplakin - + Arm repeats Adhesion Kowalczyk et al., 1997
Fascin + ND* Arm repeats Adhesion Tao et al., 1996
IQGAP + ND N terminus and the Adhesion Fukata M et al., 1999; Kuroda et al., 1998
1st arm repeat
Keratin 5 - + ND Adhesion Smith and Fuchs, 1998
MAGI + ND C terminus Adhesion Dobrosotskaya and James, 2000
p35-Cdk5 kinase + ND Arm repeats Adhesion Kwon et al., 2000
Protein-tyrosine + + ND Adhesion Muller et al., 1999
phosphatase LAR
a-Catenin + + N terminus and the Adhesion Aberle et al., 1996
1st arm repeat
FAM + ND ND Catenin de-ubiquitination Taya et al., 1999
EGFR + ND Arm repeats Catenin phosphorylation Hoschuetzky et al., 1994; Takahashi et al., 1997
APC + + Arm repeats Degradation Rubinfeld et al., 1993; Shibata et al., 1994
Axin/conductin + + Arm repeats Degradation Behrens et al., 1998; Ikeda et al., 1998; Kodama et
al., 1999
B-TrCP + + N terminus Degradation Hart et al., 1999; Sadot et al., 2000; Winston et al.,
1999
Presenilin + ND ND Degradation (?) Murayama et al., 1998; Yu et al., 1998; Zhang et al.,
1998
NLK + ND N terminus LEF/TCF phosphorylation Ishitani et al., 1999
Caveolin-1 + + ND Membrane localization (?) Galbiati et al., 2000
Nupl1 + ND ND Nuclear import Fagotto et al., 1998
PI3 kinase + ND ND Regulation of catenin Espada et al., 1999
stability
CBP/P300 + ND N and C terminus Transactivation Hecht et al., 2000; Takemaru and Moon, 2000
LEF-1 + + Arm repeats Transactivation Behrens et al., 1996; Huber et al., 1996
Pontin + ND N terminus and Transactivation Bauer et al., 1998
arm repeats
RAR + ND Arm repeats Transactivation Easwaran et al., 1999
SMAD4 + ND ND Transactivation Nishita et al., 2000
SOX17 + ND Arm repeats Transactivation Zorn et al., 1999
TBP + + N and C terminus Transactivation Hecht et al., 1999
(in plakoglobin —
C terminus only)
TCFs + ND Arm repeats Transactivation Korinek et al., 1997; Molenaar et al., 1996

*ND, not determined.

certain proteins to the arm repeats by mutations within the ard®93) and axin (Behrens et al., 1998; Kishida et al., 1998),

domain, but maintain the binding of other partners (Prieve anand is

Waterman, 1999).

ubiquitinated after

interaction between the

phosphorylated serines on its N terminus (by G&#kd thel3-

The mutually exclusive binding of catenins to differentTrCP ubiquitin ligase (Hart et al., 1999; Jiang and Struhl,
partners, and the different localizations of various catenii998; Kitagawa et al., 1999; Latres et al., 1999; Liu et al.,
complexes in the cell, contributes to their distinct moleculad999; Sadot et al.,, 2000; Winston et al.,, 1999). This
compositions (Fig. 1). The binding sites for partners in the Nscaffolding function of-catenin (and probably also of

and C-terminal domains of catenins, in addition to the arnplakoglobin) in the assembly of mutually exclusive complexes
domain, enable the catenins to act as scaffolds for multiprote{frig. 1) is essential for cell adhesion and Wnt signaling and
assemblies. For example, the N-termini [Bftatenin and provides a mechanism for cross-talk between these processes.
plakoglobin can recruita-catenin to ternary complexes

containing cadherin family adhesion receptors (Aberle et al.,

1994; Nagafuchi et al., 1994), thus bridging adherenREGULATION OF CATENIN INTERACTIONS

junctions to the actin cytoskeleton (Fig. 1). In the nucleus,

both the N- and C-termini off-catenin link the B-  The different catenin complexes described above co-exist
catenin:LEF/TCF complex to the basal transcriptionsimultaneously in the cell (Fig. 1A). The recruitmentfof
machinery (Hsu et al., 1998; van de Wetering et al., 1997) vieatenin into each of these complexes is regulated by the relative
interactions with TATA-box-binding protein (TBP) (Hecht et abundance off-catenin and the various factors that bpd

al., 1999) and CREB-binding protein (CBP) (Hecht et al.catenin (Fagotto et al., 1996; Heasman et al., 1994; Hulsken et
2000; Takemaru and Moon, 2000). In the degradatioml., 1994; Orsulic et al., 1999; Sadot et al., 1998; Sanson et al.,
complex,-catenin is recruited via its arm repeat domain byl996; Simcha et al., 1998) and by phosphorylation-dependent
APC (Hulsken et al., 1994; Rubinfeld et al., 1993; Su et al¢changes in the affinity of interactions between catenins and
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their partners (Behrens et al., 1993; Kinch et al., 1995; RourE996), plakoglobin might also interact with the same nuclear

et al., 1999; Willert et al., 1999). partners (Fig. 1B). Plakoglobin forms a complex with LEF-1

N . o when the two molecules are co-transfected into cells (Huber et
Competition between catenin partners for binding to al., 1996; Simcha et al., 1998), but its ability to bind to other
B-catenin nuclear proteins will have to be investigated.

Competition between different catenin partners for a limited pool Cell-cell contacts of both the adherens junction and
of catenins can regulate the function of catenins. For exampldesmosome types contain plakoglobin (Cowin et al., 1986;
overexpression of cadherins results in the recruitment of theig. 1B). A competition between classical and desmosomal
majority of B-catenin into adherens junctions, thus reducing it€adherins for plakoglobin binding is involved in the regulation
availability for complexing with LEF/TCF factors and thereby of the assembly of these junctions (Ben-Ze'ev and Geiger,
inhibiting B-catenin-mediated transcription (Orsulic et al., 1999;1998; Cowin and Burke, 1996; Lewis et al., 1997). In adherens
Sadot et al.,, 1998; Simcha et al.,, 1998). Such cadherjnnctions, plakoglobin binds t-catenin and anchors adherens
overexpression leads to severe aberrations in the developmenjwictions to actin (Knudsen et al., 1995; Fig. 1A), whereas, in
Xenopus(Fagotto et al., 1996; Heasman et al., 1994) andlesmosomes, plakoglobin binds to the desmosomal cadherins
Drosophila(Sanson et al., 1996), which requires signalin@-by desmocollin and desmoglein (Troyanovsky et al., 1994a,b) and
catenin. In contrast, the decrease in cell-cell adhesion during the desmoplakin (Kowalczyk et al., 1997) and keratins (Smith
epithelial-mesenchymal transition might lead to the release @nd Fuchs, 1998), providing a link to the intermediate filament
some cadherin-associatetatenin, which could contribute to cytoskeleton (Schmidt et al., 1994; Fig. 1B). Interestingly,
activation of LEF/TCF-dependent transcription (Eger et al.although plakoglobin can anchor classical cadherinsavia
2000; Espada et al., 1999). The interaction between cadherioatenin to actin in adherens junctions, it loses this ability when
andp-catenin, in addition to sequestering the potential signalinghcorporated into desmosomes. This specificity is achieved by
pool of B-catenin, also competes with the APC-aigatenin  mutually exclusive interactions of plakoglobin withcatenin
degradation machinery, thereby protecting the pool of catenired desmosomal cadherins (Chitaev et al., 1998).
that is involved in adhesion from degradation (Hulsken et al., In the absence of Wnt signaling, when the level of ffee
1994; Rubinfeld et al., 1995). catenin is relatively low, there is probably strong competition
Whereas overexpression of cadherins results in thior the limiting amount off3-catenin (and most probably
sequestering d3-catenin away from the nucleus and inhibition plakoglobin) among various partners. Whehcatenin
of its signaling function, overexpression of LEF-1, in contrastaccumulates, in response to activation of the Wnt pathway, this
leads to translocation d#-catenin to the nucleus in MDCK competition is relieved anfgtcatenin can function in both Wnt
cells (Simcha et al., 1998) and induces double axis formatiasignaling and cell adhesion (Hinck et al., 1994; Shibamoto et
in Xenopus (Behrens et al., 1996), through thp- al., 1998; Yanagawa et al., 1997).
catenin:LEF/TCF pathway (Fagotto et al., 1996; Heasman et N . )
al., 1994; Molenaar et al., 1996). Competition between [B-catenin and plakoglobin
In addition to competition between the cytoplasmic andrhe binding of the two catenins to common protein partners
nuclear partners for-catenin binding, there might be (Fig. 1) raises the possibility of competition between these two
competition between several transcription factors that interagtroteins for their various partners. For example, the expression
with B-catenin in a mutually exclusive fashion. For examplepf high levels of exogenous plakoglobin can efficiently
the binding of3-catenin to LEF/TCF family members (Behrens displace the endogeno(sscatenin from adherens junctions,
et al., 1996; Huber et al., 1996; van de Wetering et al., 1997gading to its degradation by the proteasome (Salomon et al.,
members of the SOX subfamily of HMG domain-containing1997). Similarly, in plakoglobin-knockout mic@;catenin is
transcription factors (Zorn et al., 1999) and to retinoic acidncorporated into desmosomes, which are normally devoid of
receptor (RAR) (Easwaran et al., 1999) is mediated by arthis protein (Bierkamp et al., 1999; Ruiz et al., 1996). The
interaction with the arm domain @fcatenin. competition for binding to the degradation machinery between
The various members of the LEF/TCF family differ in their -catenin and overexpressed plakoglobin (Miller et al., 1999;
abilities to interact with regulatory (co-repressor) proteins sucBimcha et al., 1998) or membrane-anchored forms of both
as groucho (Levanon et al., 1998; Roose et al., 1998), CtBfatenins (Klymkowsky et al., 1999; Miller and Moon, 1997)
(Brannon et al., 1999) and wiflacatenin (Roose et al., 1999). might compromise degradation, cause accumulation of the
Thus, competition between different LEF/TCF factors forendogenoug-catenin (Miller et al., 1999; Simcha et al., 1998)
B-catenin binding might affect the regulation @fcatenin- and therefore actiate LEF/TCF-mediated transcription
dependent transactivation by these proteins. TranscriptiofiKlymkowsky et al., 1999; Simcha et al., 1998; Zhurinsky et
factors such as SOX17 and R&RIso compete with LEF/TCF al., 2000; Fig. 2A). This type of competition, however, was
for B-catenin binding, and inhibit LEF/TCF-dependentdemonstrated only in cells overexpressing plakoglobin, and it
transcription (Zorn et al., 1999). In addition to suppressings not known whether the endogenous plakoglobin competes at
LEF/TCF signaling, the association betwef@tatenin and sites other than adherens junctions, or whether plakoglobin can
RAR is suggested to mediate the co-activation of RARfegulateB-catenin signaling in vivo.
regulated target genes Iyycatenin (Easwaran et al., 1999). ) ) .
The role played by these interactionafatenin with SOX17  Nucleocytoplasmic shuttling of catenins
and RAR in vivo remains, however, to be determined. Regulation of catenin levels by the Wnt pathway is considered
Since the interaction @-catenin with transcription factors to be the major mechanism by which catenins are driven into
is mediated mostly by the arm domain of the molecule, whickhe nucleus. However, the balance between catenin functions
is highly homologous to that of plakoglobin (Cowin and Burke,n the cytoplasm and the nucleus might also be regulated by
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mechanisms controlling their import into and export from thehese phosphorylation sites lead to stabilizatiofs-catenin
nucleus. Catenins lack classical nuclear localization signand activation off-catenin-dependent transactivation in a
sequences (NLSs) and probably accumulate in the nucleus fagriety of tumors (Ben-Ze’ev and Geiger, 1998; Morin, 1999;
two mechanisms. Two groups have demonstrated diredBolakis, 1999). In addition to enhancing catenin degradation,
importin-independent nuclear import Bfcatenin in a semi- the phosphorylation of catenins by GSK increases their binding
permeabilized cell model for nuclear import (Fagotto et al.in vitro to the cytoplasmic domain of cadherin (Miller and
1998; Yokoya et al., 1999), which could be mediated by th#loon, 1997), but the significance of this observation to catenin
interaction betweenB-catenin and the Nupl nucleoporin function in cells is unclear.

(Fagotto et al., 1998). Alternatively, since overexpression of (-Catenin and plakoglobin are also phosphorylated on
LEF/TCF leads toP-catenin accumulation in the nucleus tyrosine residues by receptor and non-receptor tyrosine kinases
(Behrens et al., 1996; Molenaar et al., 1996; Simcha et allHamaguchi et al., 1993; Matsuyoshi et al., 1992), and the EGF
1998), it was suggested that the nuclear import of#he receptor directly interacts witlfs-catenin and plakoglobin
catenin/LEF (or plakoglobin/LEF) complex is mediated by the(Hoschuetzky et al., 1994; Muller et al., 1999). The decrease
classical NLS provided by LEF/TCF proteins. It is alsoin affinity of B-catenin for cadherin upon phosphorylation by
possible that if3-catenin normally shuttles between the SRC (Roura et al., 1999) is consistent with the observation that
cytoplasm and the nucleus, overexpression of LEF/TCF leadse  non-junctional catenin  pool is preferentially
to a more efficient sequestration of catenins by LEF/TCF in thphosphorylated on tyrosine (Kinch et al., 1995) and might
nucleus. Since the elevation in the levels of eifleatenin or  represent a mechanism for regulation of cell adhesion by
plakoglobin leads to their nuclear accumulation when théyrosine kinases and phosphatases. Whether tyrosine
levels of LEF/TCF are very low (Simcha et al., 1996, 1998)phosphorylation of catenins affects their interaction with
LEF/TCF-independent mechanisms are likely to be importanpartners in the degradation complex or with transcription
for regulating the nuclear import of catenins in vivo. factors in the nucleus remains to be determined.

Interestingly, thédrosophilaf-catenin homolog, Armadillo, The interactions of catenins with their junctional partners
is excluded from the nuclei of some cells that display higland with the degradation machinery are affected by
levels of this protein in the cytoplasm (Cox et al., 1999b). Thiphosphorylation of the catenin partners. Since the binding site
implies that there might be a regulation of catenin nucleafor catenin partners in the arm repeat domains of catenins is
import/export, or a specific anchoring of the protein in theenriched in positively charged residues, the interactions
cytoplasm, when its levels increase, which would prevent itmediated by this catenin domain are enhanced by the
nuclear localization. Such anchoring might occur, for examplgghosphorylation of the binding sites of catenin partners. Thus,
in cells expressing mutant presenilin, since the inhibitioprof the phosphorylated forms of APC and axin display markedly
catenin degradation by LiCl (an inhibitor of GSK activity) in enhanced binding tB-catenin (Rubinfeld et al., 1996; Willert
such cells results in accumulationBs€atenin in the cytoplasm et al., 1999), and dephosphorylation of axin, in response to Wnt
and not, as expected, in the nucleus (Nishimura et al., 1999%ignaling, results in the release @catenin from the

Since the arm repeat domain implicated in the nucleadegradation complex (Jho et al., 1999; Willert et al., 1999). The
import of catenins is very similar Brcatenin and plakoglobin phosphorylation of cadherin by GSK and casein kinase Il also
(Cowin and Burke, 1996), it is conceivable that plakoglobinjncreases the affinity @3-catenin for the cadherin cytoplasmic
when overexpressed, can enter the nucleus by a mechanidamain (Lickert et al., 2000).
similar to that used bf-catenin. However, the soluble pool of ) ) ) ) )
endogenous plakoglobin in epithelial cells is much smaller thaRegulation of catenin function by their terminal
that of p-catenin (Sadot et al., 2000; Simcha et al., 1998). Thigomains
probably explains the observation that plakoglobin, in contragh contrast to their arm domains, the N- and C-terminal
to B-catenin, is not translocated into the nucleus followingdomains ofp-catenin and plakoglobin share little sequence
LEF-1 overexpression in MDCK cells (Simcha et al., 1998), osimilarity (Cowin and Burke, 1996). Recent studies have
transfection of dominant negatieTrCP, both of which result indicated that the terminal domains of both catenins might also
in B-catenin localization to the nucleus (Sadot et al., 200(ye involved in regulating the interaction of the arm repeats with

Simcha et al., 1998). various protein partners (Chitaev et al., 1996; Palka and Green,
. ) . 1997; Wahl et al., 2000; Zhurinsky et al., 2000). For example,
Phosphorylation of catenins and their partners the binding of catenins to cadherins through the arm repeats is

Catenins  undergo  serine/threonine  and  tyrosinenhanced by deletion of the C terminus in plakoglobin (Chitaev
phosphorylation that regulates their interactions with otheet al., 1996). Such a deletion can also markedly stimulate the
proteins. The N-termini of-catenin and plakoglobin contain assembly of plakoglobin-containing desmosomes (Palka and
the GSK consensus phosphorylation site (Aberle et al., 199Green, 1997). The exclusion ffcatenin from desmosomes
Yost et al., 1996). However, GSK does not efficientlyinvolves the terminal domains of the molecule, since the arm
phosphorylate mammaligBrcatenin in vitro and needs to be domain of B-catenin can efficiently bind to desmosomal
linked to 3-catenin by axin, which contains binding sites forcadherins (Wahl et al., 2000). Comparison of the abilities of
both proteins (Kitagawa et al., 1999). The phosphorylation o8-catenin—plakoglobin chimeras to bind to desmoglein 2
the N-terminal serine residues of catenins is required for thedtemonstrated that the N- and C-terminal domairfs@dtenin
interaction with the ubiquitin ligaseg3-TrCP and their cooperate to abolish this binding, and when these domains of
subsequent degradation by the proteasome (Hart et al., 1998akoglobin are replaced by those [®tatenin the resulting
Kitagawa et al., 1999; Latres et al., 1999; Liu et al., 1999; Sadathimeric molecule cannot bind to desmoglein 2 (Wahl et al.,
et al., 2000; Winston et al., 1999; Fig. 1). Point mutations ir2000).
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The terminal domains of boflrcatenin and plakoglobin are two-hybrid screen (Cox et al., 1999a). An alternative
also involved in the downregulation of catenin:LEF:DNA possibility is that the N- and C-termini interact, which Wahl et
ternary complex formation (Zhurinsky et al., 2000; Fig. 2B).al., have demonstrated by a modified two-hybrid assay (Wahl
Although full-length plakoglobin interacts with LEF-1 almost et al., 2000; Fig. 2B,b). Although the exact nature of these
as efficiently as doeR-catenin (Fig. 2A,B), its ability to form intramolecular interactions in catenins remains to be unraveled,
a ternary complex with LEF-1 and DNA is very weakthey propose the intriguing possibility that interactions
(Zhurinsky et al., 2000). In contrast, a construct containing thbetween catenins and their partners are modulated by such
arm domain of plakoglobin alone very efficiently assemblesntramolecular interactions. For example, the binding of
into ternary complexes (Fig. 2B,c). An inhibitory action of thetranscription factors (e.g. CBP, TBP) to the catenin terminal
terminal domains is apparently common to both catenins, sina@®mains may promote binding of the LEF-catenin complex to
the arm repeats @catenin also form ternary complexes moreDNA (Zhurinsky et al., 2000; Fig. 2B,d). Moreover, one can
efficiently than does the full-length protein (Zhurinsky et al.,speculate that the decrease in the affinity of catenins for
2000). cadherin, upon catenin tyrosine phosphorylation of the last arm

Given that the C-termini of3-catenin and plakoglobin repeat (Roura et al., 1999), might involve negative regulation
contain the acidic transactivation domain, and the arm repeat$ cadherin-catenin interaction by the catenin’s C terminus
form the positively charged binding site, the C-termini of(Chitaev et al., 1996). These intriguing possibilities remain to
catenins might interact with the arm domain and thus regulatee addressed experimentally.
the interactions with proteins that bind to this site (Fig. 2B,b). In conclusion, the regulation of interactions between
This notion is supported by the finding that the C terminus ofatenins and their partners is achieved through several
DrosophilaArmadillo can bind to its arm repeat domain in amechanisms, including competition between different
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partners, phosphorylation and intramolecular interactions. Th£996). The phenotypes that lead to embryonal death are,
understanding of the cooperation and cross-talk between thelsewever, very different for the two catenins. Whereas the lack of
mechanisms in the fine tuning of the numerous functionplakoglobin leads to defects in desmosome assembly that result
catenins perform in development and cancer remains the compromised heart development (Bierkamp et al., 1996; Ruiz
challenge for future investigation. et al., 1996), mice lackin§-catenin are characterized by an
inability to form dorsal structures in the developing embryos
(Huelsken et al., 2000). These defects reflect the importance of

THE FUNCTION OF CATENINS IN DEVELOPMENT B-catenin in Wnt-mediated axis formation. In contrast, adherens
AND CANCER junctions are well developed if-catenin-null embryos, and

] elevated plakoglobin levels compensate for the adhesive role of
Catenins and development B-catenin (Haegel et al., 1995; Huelsken et al., 2000). Owing to

Catenin-mediated cell adhesion and Wnt signaling both plathe early embryonal lethality in plakoglobin-knockout mice, one
multiple roles in various developmental processes and also gannot rule out the possibility that plakoglobin-mediated Wnt
the adult organism. Adherens junctions define tissue integritgignaling is needed at later stages of development. Future studies
mediate specific cell-cell recognition, participate inemploying conditional, tissue-specific, knockouts might reveal
determining epithelial cell polarity and sequester manyhe requirements for plakoglobin in development and in the adult
signaling molecules to cell adhesion sites, thereby regulatingrganism.
signal transduction (Barth et al., 1997; Behrens, 1999; Ben- Intriguing studies of transgenic mice expressing eiflrer
Ze'ev, 1999; Gumbiner, 1996; Steinberg and McNutt, 1999)catenin or plakoglobin under a skin-specific keratin 14
Whnt signaling elicits a very broad range of catenin-dependemromoter recently implicated plakoglobin in signaling
and -independent responses (Peifer and Polakis, 200@Zharpentier et al., 2000; Gat et al., 1983 atenin expressed
including specification of cell fate at different stages ofunder this promoter stimulated de novo hair follicle
development (Wodarz and Nusse, 1998), regulation of cefiroliferation and, at a later stage, caused hair tumors in adult
proliferation (Gat et al., 1998; Kolligs et al., 1999; Orford etmice (Gat et al., 1998). In contrast, plakoglobin expression
al., 1999; Young et al., 1998) and survival (Orford et al., 1999)]riven by the same promoter resulted in an opposite phenotype
cytoskeletal remodeling to define cell polarity (Peifer anddisplaying hair growth that was slower in comparison with that
Polakis, 2000; Thorpe et al., 2000) and cell motilityof wild-type mice and a decrease in the period of the hair
(Heisenberg et al., 2000; Wallingford et al., 2000). growth phase (Charpentier et al., 2000). It is not known

The requirements fof3-catenin and plakoglobin in cell whether this phenotype resulted from attenuatiof-cétenin
adhesion and Wnt signaling have been compared by genetiaclear signaling, since immunofluorescence studies revealed
analysis inDrosophila Xenopusand mice. InDrosophila ~ no change if8-catenin levels or localization in the skin of these
mutations that disrupt Armadillo functions lead to defects imrmice. Such effects could still be related to subtle changes in
both cell adhesion and Wnt signaling. Although H&itatenin - endogenouf-catenin (due to plakoglobin overexpression) that
and plakoglobin can complement the adhesion def@cts, were below the detection limit of immunofluorescence.
catenin demonstrated only partial signaling activity, and Other studies suggest that plakoglobin recruits LEF/TCF
plakoglobin was completely inactive in signaling (White et al. proteins into a plakoglobin-containing complex that binds to
1998). DNA very inefficiently (Zhurinsky et al., 2000; Fig. 2B), which

In XenopusmaternaB-catenin establishes the dorso-ventralcan potentially antagonize3-catenin:LEF/TCF signaling.
asymmetry (Funayama et al., 1995; Heasman et al., 1994) aAtternatively, plakoglobin might form a transcriptional
specifies formation of axial structures by acting as part of theomplex that has a different specificity of DNA recognition and
Wnt signaling pathway (Sumanas et al., 2000). Althouglinduces plakoglobin-specific target genes (Fig. 2B,d). This
Xenopus plakoglobin is also expressed at this stage ohotion is supported by the observation that expression of WNT-
development, it cannot compensatefearatenin removal, and 3 or DVL-2 (an isoform of dishevelled, Fig. 1) in the skin of
depletion of maternal plakoglobin RNA does not affect axidransgenic mice (Millar et al., 1999) results in phenotypes
specification, which indicates thicatenin has a specific role that are similar to those observed when plakoglobin is
in this process (Kofron et al., 1997). Initial studies showing thabverexpressed (Charpentier et al., 2000) and very different
the ventral microinjection of plakoglobin Kenopusmbryos from those displayed in mice overexpressiigatenin. This
induces dorsalization of the embryos (similarlyBtecatenin)  may indicate the involvement of plakoglobin in Wnt signaling
were thus unexpected (Karnovsky and Klymkowsky, 1995)downstream of Wnt-3 and Dvl-2 (Millar et al., 1999). Note,
However, later studies have shown that cells expressing hidgiowever, that both Wnt-3 and Dvl-2 are very efficient at
levels of exogenous plakoglobin display increased levels adlevatingf-catenin levels in cultured cells (Lee et al., 1999).
endogenoug-catenin (probably resulting from sequestrationBy examining the effects of Wnt-3 and Dvl-2 on plakoglobin
of key components ifi-catenin degradation), thus suggestingand B-catenin and comparing them with the effects of other
that there is an indirect action \Becatenin (Miller and Moon, components of the Wnt pathway (and of other Wnt isoforms),
1997). This issue is still under debate, because Klymkowskywe should learn more about the possible involvement of
et al., have suggested that additional mechanisms of action piakoglobin in Wnt signal transduction and whether this role
membrane-tethered catenins involve recruitment of LEF/TCHEs different from that played by-catenin.
factors in the cytoplasm (Klymkowsky et al., 1999). ] o )

The elimination of eithef-catenin or plakoglobin by gene Differential involvement of  B-catenin and
knockout in mice results in embryonic lethality (Bierkamp et al.plakoglobin in cancer progression
1996; Haegel et al., 1995; Huelsken et al., 2000; Ruiz et aB3-Catenin levels are elevated in cancers of various origins and
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