
INTRODUCTION

The replication cycle of human immunodeficiency virus type 1
(HIV-1) takes place at several levels in the nucleus and
cytoplasm. At the initial stages of infection the primary viral
transcript is multiply spliced into 2-kb transcripts encoding the
regulatory proteins Tat, Rev and Nef. After the synthesis of suf-
ficient levels of these proteins the host cell generates singly
spliced 4-kb mRNAs encoding Vif, Vpr, Vpu, Env and
unspliced 9-kb mRNAs encoding Gag and Pol. The HIV-1
trans-activator Rev is essential for the cytoplasmic accumula-
tion and expression of singly spliced or unspliced viral mRNAs
(Emerman et al., 1989; Felber et al., 1989; Hammarskjöld et al.,
1989; Malim et al., 1989). The regulation of splicing takes place
through the direct interaction between Rev and a cis-acting
stem-loop target sequence called the Rev response element
(RRE) present in these mRNAs (Rosen et al., 1988; Daly et al.,
1989; Hadzopoulou-Cladaras et al., 1989; Tiley et al., 1992).

The Rev protein is imported into the nucleus and accumu-
lates predominantly in the nucleoli of expressing cells. A
highly basic stretch in the Rev sequence located between
positions 35 and 50, has been identified as a nucleolar targeting
signal (NOS) (Kubota et al., 1989; Malim et al., 1989;
Cochrane et al., 1990). This domain is also required for the
highly specific binding of the Rev protein to the viral RRE
(Kjems et al., 1991; Malim and Cullen, 1991). The two regions
flanking this basic sequence are essential for the multimeriza-
tion of Rev monomers on the RRE (Olsen et al., 1990; Malim
and Cullen, 1991; Zapp et al., 1991). A short domain close to
the C-terminus of Rev which is rich in characteristically spaced
leucine residues has been hypothesized to mediate trans acti-
vation by protein-protein interactions with host cell factor(s)
critical for the export of viral pre-mRNAs (Malim et al., 1989;
Malim and Cullen, 1991). 

Several hypotheses have been offered regarding the
mechanism by which the Rev-RRE interaction and trans acti-
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transcription and a substantially intact nucleolar structure.
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medium (200 µg/ml). Resistant colonies were screened for the Rev
expression by immunofluorescence and immunoblotting using a Rev
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specific serum.

Antibodies
The Rev protein was detected by a mouse monoclonal antibody (mAb,
IgG1) or a rabbit polyclonal antibody (American Biotechnologies) at
a dilution of 1:500. In immunoelectron microscopy experiments the
Rev protein was detected on sections using a rabbit polyclonal
antibody against the C-terminal end of the protein. Human monospe-
cific autoimmune sera, the V11 serum specific for a 70 kDa antigen
of the fibrillar centers, and the serum G04 specific for a 52 kDa
antigen of the granular components were used at a dilution of 1:150
(kindly provided by Dr D. Hernandez-Verdun), and the serum specific
for the fibrillarin (kindly provided Dr R. L. Ochs) was used at a
dilution of 1:600. Protein B23 was detected either by polyclonal or
monoclonal antibodies. The polyclonal antiserum (prepared by
American Qualex, LaMirada, CA) was raised against rat recombinant
protein B23.1 purified by the procedure described by Umekawa et al.
(1993). The monoclonal antibody was a generous gift from Dr P. K.
Chan. The polyclonal and monoclonal antibodies were used at
dilutions of 1:400 and 1:500, respectively.

Except for time course experiments, the transiently transfected
COS-7 cells were fixed seventeen to fifty hours after transfection with
3% paraformaldehyde in PBS (136 mM NaCl, 2.7 mM KCl, 10 mM
Na2HPO4, 1.7 mM KH2PO4, pH 7.4) for 20 minutes and permeabi-
lized with 0.1% Triton X-100 in PBS for 5 minutes on ice. The cells
were washed extensively with PBS supplemented with 1% BSA. The
cells were incubated with the primary antibody for 35 minutes at room
he Rev protein in nucleoli is of
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y cell lines (Gerard and Gluzman, 1985)
 modified Eagle’s medium (DMEM)
10% heat-inactivated fetal calf serum
lls grown on coverslips were transfected

temperature, washed four times in PBS for 4 minutes each time, and
incubated with a fluorescein- or Texas Red-labeled secondary
antibody (Amersham) for 30 minutes at room temperature. The cells
were washed with PBS extensively, six times for 4 minutes, briefly
in H2O and ethanol, air dried and mounted on the slides with Mowiol
(Calbiochem) containing 1 mg/ml p-phenylenediamine.

In some experiments cells were treated with either 0.04 µg or 0.5
µg/ml of actinomycin D (AMD) (Sigma), 1-40 µg/ml of α-amanitin
(Sigma), 30 µg or 50 µg/ml of 5,6-dichloro-1-β-D-ribofuranosyl ben-
zimidazole (DRB) (Sigma) to selectively inhibit RNA transcription.
In addition, 20 µg/ml of cycloheximide (Sigma) was included to
inhibit protein synthesis.

Fluorescence microscopy
The samples were examined using a laser scanning confocal micro-
scope (Noran) with a Nikon 100×/1.3 N.A. objective. For double
labeling, samples were subjected to excitation wavelengths of 488 nm
(fluorescein) or 529 nm (Texas Red) from an argon-ion laser. The
confocal images for each fluorochrome were recorded independently
and photographed using Kodak T-Max 400 film with a digital palette
(Polaroid).

Ultrastructural immunocytochemistry
Rev-expressing CMT3 cells were fixed with 8% paraformaldehyde in
200 mM Pipes (pH 7.0) containing 5 mM MgCl2 for 2 hours and then
in 0.01% glutaraldehyde in the same buffer for 2 minutes. The cells
were washed in PBS, collected by scraping and centrifuged. The cell
pellet was initially embedded in 5% gelatin in PBS, dehydrated in
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increasing concentrations of ethanol and finally embedded in
Lowicryl K4M. Polymerization was performed under long-wave-
length UV light (2× 15 W, Ted Pella) for 4 days at −20°C and for 2
days at room temperature. Ultrathin sections were placed on carbon-
Parlodoin-coated copper grids. The sections were incubated with
primary antibodies for 2-4 hours. After washing with PBS, the grids
were incubated with goat anti-rabbit IgG conjugated to 10 nm gold
particles. After washing with PBS and water, the grids were stained
with 5% aqueous uranyl acetate.

Consecutive double labeling for Rev protein and protein B23 was
performed according to the method of Slot and Geuze (1984). Briefly,
the sections were incubated with rabbit anti-Rev antibody, and 10 nm
Protein A-gold (BioCell Res. Lab.) After washing in PBS the sections
were incubated with free Protein A (0.1 mg/ml) in PBS for 10 minutes
to ensure that all Protein A binding sites were saturated. The grids
were then incubated with rabbit anti-B23 antibody, and 5 nm Protein
A-gold. Alternatively, the sections were immunolabeled with anti-
B23 antibody and 10 nm Protein A-gold first, and anti-Rev second.
As a control, free sections were labeled with anti-Rev protein antibody
on one side of the sections and then labeled with anti-B23 antibody
on the other side of the sections. 

RESULTS

Subcellular location of the Rev protein
Previous morphological studies have shown that the Rev
protein is imported to the nucleus and accumulates in the
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Fig. 1. Localization of the Rev protein and markers of nucleolar subcomponents in class 1 Rev-expressing cells. COS-7 cells transfecte
or line A5.9 CMT3 cells transformed (B,C,E,F) with the pCMVrev plasmid were subjected to double immunofluorescence microscopy
and subsequent figures the upper panel of each pair of light micrographs shows localization of the Rev protein and the lower panel sho
localization of another antigen in the same optical section. The Rev protein was localized using a monoclonal anti-Rev antibody. In cel
the first class of accumulation the Rev protein is localized to intact nucleoli (A-C) and not coincident with the distinct punctate distribu
the FCs (D) labeled with V11 autoantibody. The nucleolar distribution of the Rev protein (B) colocalized with the S4 serum against the
fibrillarin, predominantly localized in the DFC (E) and with the G04 autoantibody specifically recognized the GC (F). Bar, 10 µm.
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ich showed the presence of the Rev
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3A,C). The intensities of labeling of the Rev protein in the
nucleoli and in the nucleoplasm were approximately the same.
In these cells, nucleolar localization of the Rev protein
prevailed in the peripheral parts of the nucleoli (Fig. 3A,B,C).
In a majority of the cells the nucleoli exhibited normal sizes
and compact shapes, but in a smaller number of the cells the
nucleoli were enlarged, possibly by nucleolar fusion (data not
shown). The nucleolar fibrillar centers (FC) exhibited more
distinct punctate patterns with smaller volumes and their
numbers were increased in these cells (Fig. 3D, small arrows).
In a small number of cells the nucleoli were highly disrupted
or could not be seen at all. Since these cells were very rare they
were not given a separate classification.

At the ultrastructural level in class 2 Rev-expressing cells
the Rev protein was localized in the nucleoplasm and the
cytoplasm as well as in the nucleoli (Fig. 4). The nucleoli

(No). The nucleoplasm was weakly labeled in the
interchromatin area. The clusters of
interchromatin granules (Ig) were not labeled. A
few gold particles were found in the cytoplasm
(Cy). (B) Within nucleoli the labeling was
localized in the DFC (D) and GC (G). The FCs
(F) were labeled only near the border with the
DFC. Bar, 0.1 µm.
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Fig. 2. In class 2 cells the Rev
protein was localized in the
nucleoplasm and the
cytoplasm as well as in the
nucleoli. The nucleoli
exhibited a greatly increased
amount of labeling in the DFC
(D) and the GC (G) compared
to class 1 cells (see Fig. 2).
The nucleoli showed reticular
patterns with increased
numbers of small FCs (F) and
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condensed chromatin. The clusters of Igs were labeled only
peripherally (Fig. 4, inset), with the signal for Rev inside the
Ig present only rarely. This distribution of Rev at the periphery
of the Igs is similar to that of nascent messenger RNAs (Huang
et al., 1994; Hendzel and Bazett-Jones, 1995). Perichromatin
granules were not labeled. The cytoplasmic signal for the Rev
protein was dispersed essentially uniformly over the
cytoplasm.

Fig. 5 shows the percentage of cells in two classes of Rev
accumulation 22 hours and 44 hours after transfection with the
Rev-expressing plasmid. The relative number of class 1 cells
was greater than 81% after 22 hours, suggesting an initial
preferred location of the Rev protein in the nucleolus.
However, after 44 hours the proportion of class 1 cells
decreased to 54% and the number of class 2 cells increased to
46%, compared to 19% after 22 hours. This suggests a con-
tinuing process of Rev protein accumulation in the nucleus
with time.

Subnucleolar location of the Rev protein
To determine the subnucleolar location of the Rev protein we
employed indirect immunofluorescence confocal laser
microscopy using specific antibodies for three distinct
nucleolar structures, the FCs, the DFCs and the granular com-
ponents (GC). The Rev protein was not entirely coincident
with autoimmune serum V11 specific for a 70 kDa antigen of
the FC (Fig. 1A,D). However, the Rev protein colocalized with
the antibody against fibrillarin, a 34 kDa protein specifically
localized in the DFC (Fig. 1B,E) and with autoimmune serum
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were treated with actinomycin D at two different doses and observed by
located from the nucleoli and the nucleoplasm to the cytoplasm after A

ibit segregated patterns for fibrillarin staining (D, arrows). After AMD t
the peripheral region of segregated nucleoli and the nucleoplasm with s
t colocalizes with translocated Rev protein (B, arrows). Class 2 cells (C)
.5 µg/ml) of Rev-expressing cells
ere nearly devoid of protein B23
n peripheral parts corresponding to
 GCs (Fig. 8E). The other parts of

largely negative for protein B23.
distributed to the nucleoplasm but
t level of B23 in the cytoplasm,

ge extent with the redistributed Rev
. The cytoplasmic level of B23 was
polyclonal anti-B23 antibody: the
body did not show cytoplasmic
cells. With longer times of AMD
 of protein B23 in the peripheral
: after 2.5 hours almost none was

sing cells with a low dose of AMD,
NA pol I transcription, suggested

tion in nucleoli depends on active
 contrast, the findings of Meyer and
at the accumulation of Rev in the
was dependent on the activity of
ent with DRB at 100 µM (31.9

µg/ml) for 3 hours led to the relocalization of wild-type Rev
protein to the cytoplasm. It has been shown previously that
treatment of cells with DRB causes the nucleoli to reversibly
disperse into extended beaded strands (‘necklaces’) throughout
the nucleoplasm without inhibition of RNA pol I transcription
(Scheer et al., 1984; Scheer and Benavente, 1990). After DRB
treatment (50 µg/ml) of our Rev-expressing cells for 90 minutes
the Rev protein was present in nucleoli which had dispersed dis-
tributions of FC markers (data not shown). After 3 hours incu-
bation with DRB the cells showed further dispersion of
nucleolar structure as indicated by distinct extended strands of
FC markers: in these nucleoli the Rev protein was somewhat
more dispersed than the FC markers (Fig. 9A,D). Continuing
DRB treatment for 4 hours caused a significant redistribution
of the Rev protein from nuclei to cytoplasm (Fig. 9B,C) with
highly dispersed nucleolar necklaces in the nucleoplasm visu-
alized by the anti-FC antibody (Fig. 9E). Similarly, a marker
for the GC showed a very high level of dispersion through the
nucleoplasm, but it was still partly concentrated around the
dispersed nucleolar necklaces (Fig. 9F). Similarly, protein B23
was distributed along extended nucleolar beaded strands and in
the nucleoplasm (data not shown). In a small percentage of cells

ytoplasm after AMD treatment treatment (0.5 µg/ml) for 50 minutes. The segregated nucleoli after AMD
 marker for FC (F, arrows). Bar, 10 µm.
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3 antibody (data not shown).

ells. The Rev protein remains
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esent in the dispersed nucleolar body only using the polyclonal anti-B2

 subcellular distribution of the Rev protein in Rev-expressing transformed CMT3 c
RB (50 µg/ml) treatment (A). The apparent dispersion of FCs in nucleolar body is v
 hours of DRB treatment there is significant redistribution of the Rev protein to the 
GC (F) marker antibodies reveals a relatively high level of nucleolar dispersion. Ba
ent. Thus, the Rev protein appeared
r conditions where only RNA pol II
 secondary effects of DRB are seen

ndings, we examined the effects of
nitin, which at low concentrations
iption by RNA pol II and, at higher
 III, but does not block pre-rRNA
. Rev-expressing stable cells were
 a culture medium containing α-
 nucleolar location of Rev was not
not show any morphological alter-

d with the untreated control. The dis-
g. 10D) and protein B23 (data not
peared to be normal. However, when
s were treated for 5 hours with a con-
f 30 µg/ml which also blocks RNA
Rev protein accumulated predomi-
Fig. 10B,C). The nucleoli of these
ed pattern of fibrillarin labeling that
d DFCs (Fig. 10E). Protein B23 as
3 mAb was mainly redistributed to
ion was still present in round-shaped
F). A weak cytoplasmic signal for
-amanitin treatment was detectable

In summary, these data showed that the migration of the Rev
protein to the cytoplasm was dependent on the transcriptional
activity of RNA pol I and on the nucleolar structural integrity.
Although transcription of rRNA genes continues during DRB
treatment, the nucleoli become fragmented and lose their GCs,
probably by degradation of RNA due to a deficiency in
ribosomal proteins (Granick, 1975a,b; Scheer et al., 1984).
This structural nucleolar remnant does not appear to be capable
of retaining the Rev protein. With α-amanitin at high doses and
long incubation times there appear to be secondary effects that
mimic those seen when RNA pol I transcription is blocked by
AMD.

The Rev protein redistribution to nucleoli during
recovery from AMD treatment
Having shown that the Rev protein can migrate from the
nucleus to the cytoplasm additional experiments were done to
confirm the ability of the Rev protein to reaccumulate in
nucleoli. The transiently transfected COS-7 cells were treated
with a high dose of AMD (0.5 µg/ml) for 1 hour to ensure that
in all class 1 cells the Rev protein had migrated to the
cytoplasm. After extensive washing the cells were maintained
in the presence of cycloheximide (20 µg/ml) to block protein
synthesis de novo. In time course experiments the Rev protein
was detectable in nucleoli after 3.5 hours of recovery (Fig.
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on the subcellular distribution of the Rev protein in Rev-expressing transform
rs the Rev protein remains in nucleoli (A), which exhibit essentially normal lo
 dose (30 µg/ml) and for a longer time (5 hours) causes translocation of the R
(B,C), with nucleoli showing a dispersed pattern of fibrillarin localization (E)
the nucleoplasm with some remaining in fragmented nucleoli (F, arrows) as v

αα
f recovery was the same in the
suggesting that there was normally
f Rev protein in the cytoplasm. In
line under the same experimental
 hours) was required before Rev
ig. 11B,C). The difference was
 level of Rev protein expressed in
ith reaccumulated Rev protein still
d a segregated pattern of fibrillarin
ws). The Rev protein was located
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re it colocalized with protein B23
ficant proportion of the cell popu-
ghtly altered pattern of nucleolar
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tein (Fig. 11C) which was coinci-
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e that the Rev protein is predomi-
leoli of cells expressing moderate
er conditions that maintain normal

nucleolar structure and function. However, when preribosomal
RNA transcription is inhibited or high levels of Rev accumu-
late the protein is not strictly nucleolar in location. The latter
condition suggests that nucleoli contain a finite number of sites
for accumulation and when these sites are saturated the Rev
protein spills over into the nucleoplasm. Thus, nucleolar
structure and function as well as the level of Rev expression
strongly influence the subcellular location of the Rev protein.

The transiently transfected COS-7 cells provided evidence
that the first site of Rev accumulation in the cell is the
nucleolus. At short times (up to 3 hours) after transfection the
Rev protein was predominantly in the nucleoli with only back-
ground levels of fluorescent labeling in the surrounding nucle-
oplasm. At later times after transfection there was a gradual
increase in the number of cells accumulating Rev in the nucle-
oplasm, further supporting the idea that the nucleolus is the
preferred site of Rev accumulation. The most likely route the
Rev protein follows to the nucleolus is through the nucleo-
plasm by a two-step process (Girard et al., 1994). In this model
there is receptor-mediated transport across the nuclear pore
complex via nuclear localization sequences (NLSs), first to the
nucleoplasm and then accumulation within the nucleolus via
additional interactions with other macromolecules already
present in the nucleolus. Our data suggest that most, if not all,
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pressing cells after AMD treatment. Transiently transfected COS-7 (A) or transf
l) for 1 hour and then allowed to recover in the presence of cycloheximide (20 µ
 of recovery the Rev protein is detectable in the round-shaped nucleoli of class 1
rin localization (D, arrows). Class 2 cells (arrowheads) were insensitive to AMD
fter 6 hours of recovery the Rev protein is localized predominantly in the periph

alized with the segregated distribution of protein B23 (E, F, arrows). Bar, 10 µm
arily targeted to the nucleolus after

idence indicate that an actively tran-
essary for nucleolar location of the
 protein is located in two of the three
mponents, the DFC and GC, which
cts of rDNA transcription, ribosomal

olved in preribosomal particle matu-
 using RNA pol inhibitors provide
role of rDNA transcription. Selective
used rapid release of the Rev protein

timately to the cytoplasm. The effects
versible; i.e. removal of AMD from
to slowly return to the nucleolus. Fur-
umulation did not require new protein
rotein apparently can move from the
 and from the cytoplasm back to the

resynthesized as suggested by recent
lim, 1994; Richard et al., 1994).
 in the nucleolus apparently requires
mal RNA and the restoration of a

us.
sing apparently very high levels of

MD treatment. This is best explained
 for nucleolar components which are

drawn out of the nucleolus by overwhelming amounts of Rev.
In this case Rev is concentrated at the periphery of nuclei, as
if it is waiting to be exported to the cytoplasm. A similar dis-
tribution of Rev was observed by Kalland et al. (1994). Over-
production of the Rev protein may saturate the transport system
and prevent translocation into the cytoplasm.

In Rev-expressing cells treated with α-amanitin at concen-
trations that only inhibit RNA pol II there was no release of
the Rev protein from the nucleolus. Furthermore, treatment
with DRB at concentrations which inhibit RNA pol II, but not
RNA pol I did not cause release of the Rev protein. In the latter
case there was minimal disruption of the nucleolus. Thus, RNA
pol I, but not RNA pol II transcription appears to be essential
for the nucleolar location of the Rev protein. 

Recently, Meyer and Malim (1994) demonstrated that the
Rev protein shuttles between the nucleus and cytoplasm. They
also concluded that the accumulation of the Rev protein in cell
nuclei is dependent on the activity of RNA pol II, because the
inhibition of RNA pol II alone by DRB or by high doses of
AMD led to the relocalization of wild-type Rev to the
cytoplasm. However, our data showed that on the one hand,
selective inhibition of RNA pol I led to translocation of the
Rev protein to the cytoplasm. On the other hand, selective inhi-
bition of RNA pol II by α-amanitin or DRB did not cause the
translocation. The discrepancies between our data and those of
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