Plasma membrane (PM) transporters of the major facilitator superfamily (MFS) are essential for cell metabolism, growth and response to stress or drugs. In Saccharomyces cerevisiae, Jen1 is a monocarboxylate/H+ symporter that provides a model to dissect the molecular details underlying cellular expression, transport mechanism and turnover of MFS transporters. Here, we present evidence revealing novel roles of the cytosolic N- and C-termini of Jen1 in its biogenesis, PM stability and transport activity, using functional analyses of Jen1 truncations and chimeric constructs with UapA, an endocytosis-insensitive transporter of Aspergillus nidulans. Our results show that both N- and C-termini are critical for Jen1 trafficking to the PM, transport activity and endocytosis. Importantly, we provide evidence that Jen1 N- and C-termini undergo transport-dependent dynamic intramolecular interactions, which affect the transport activity and turnover of Jen1. Our results support an emerging concept where the cytoplasmic termini of PM transporters control transporter cell surface stability and function through flexible intramolecular interactions with each other. These findings might be extended to other MFS members to understand conserved and evolving mechanisms underlying transporter structure–function relationships.

This article has an associated First Person interview with the first authors of the paper.

You do not currently have access to this content.