Development involves tightly paced, reproducible sequences of events, yet it must adjust to conditions external to it, such as resource availability and organismal damage. A major mediator of damage-induced immune responses in vertebrates and insects is JAK/STAT signaling. At the same time, JAK/STAT activation by the Drosophila Upd cytokines is pleiotropically involved in normal development of multiple organs. Whether inflammatory and developmental roles of JAK/STAT intersect is unknown. Here, we show that JAK/STAT is active during development of the prothoracic gland (PG), the organ that controls metamorphosis onset through ecdysone production. Reducing JAK/STAT signaling decreased PG size and slightly advanced metamorphosis. Conversely, JAK/STAT hyperactivation, achieved through overexpression of pathway components or SUMOylation loss, caused PG hypertrophy and metamorphosis delay. Interestingly, tissue damage and tumors, known to secrete Upd cytokines, also activated JAK/STAT in the PG and delayed metamorphosis. Finally, we show that expression of transcription factor Apontic, a JAK/STAT target in the PG, recapitulates PG hypertrophy and metamorphosis delay. JAK/STAT damage signaling, therefore, regulates metamorphosis onset at least in part by coopting its developmental role in the PG.

This content is only available via PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Article PDF first page preview

Article PDF first page preview