Impaired polyamine metabolism causes behavioral and neuroanatomical defects in a mouse model of SnyderRobinson Syndrome

Oluwaseun Akinyele ${ }^{1}$, Anushe Munir ${ }^{1,2}$, Marie A. Johnson ${ }^{1}$, Megan S. Perez ${ }^{1,2}$, Yuan Gao 3, Jackson R. Foley ${ }^{4}$, Ashley Nwafor ${ }^{4}$, Yijen Wu ${ }^{5}$, Tracy Murray-Stewart ${ }^{4}$, Robert A. Casero ${ }^{4}$, Hulya Bayir ${ }^{3,{ }^{*}}$, Dwi U. Kemaladewi ${ }^{1,2, \ddagger}$
${ }^{1}$ Div. of Genetic and Genomic Medicine, Dept. of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
${ }^{2}$ Dept. of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, USA
${ }^{3}$ Children's Neuroscience Institute, Dept. of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
${ }^{4}$ Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
${ }^{5}$ Dept. of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA
*Present address: Div. of Critical Care Medicine, Columbia University Irving Medical Center/NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, USA.
${ }^{\ddagger}$ Corresponding author:
Dwi U. Kemaladewi, Ph.D. (dwi.kemaladewi@chp.edu; 0000-0002-0747-4589)

Keywords: Spermine synthase, spermine, neurological functions, rare disease, pathogenesis, mouse model

Summary statement

Characterization of a mouse model of Snyder-Robinson Syndrome reveals impaired neurological functions and mitochondrial respirations and provides a set of outcome measures to evaluate future therapeutic interventions.

Abstract

Snyder-Robinson Syndrome (SRS) is a rare X-linked recessive disorder caused by a mutation in the SMS gene encoding spermine synthase and aberrant polyamine metabolism. SRS is

characterized by intellectual disability, thin habitus, seizure, low muscle tone/hypotonia, and osteoporosis. Progress towards understanding and treating SRS requires a model that recapitulates human mutations and disease presentations.

Here, we evaluated molecular and neurological presentations in the G56S mouse model carrying a missense mutation in the Sms gene. The lack of SMS protein in the G56S mice resulted in increased spermidine/spermine ratio, failure to thrive, short stature, and reduced bone density. They showed impaired learning capacity, increased anxiety, reduced mobility, and heightened fear responses, accompanied by reduced total and regional brain volumes. Furthermore, impaired mitochondrial oxidative phosphorylation was evident in G56S cerebral cortex, G56S fibroblasts, and Sms-null hippocampal cells, and may serve as a future therapeutic target.

Collectively, our study establishes the suitability of the G56S mice as a preclinical model for SRS and provides a set of molecular and functional outcome measures that can be used to evaluate therapeutic interventions for SRS.

Introduction

The polyamines putrescine, spermidine, and spermine are positively charged metabolites involved in various cellular functions, such as maintaining chromatin structure, regulating gene expression, and fine-tuning metabolic pathways. They are also critical for immune cell activation, wound healing, tissue growth, and development (1-7). The levels of intracellular polyamines are tightly regulated via de novo synthesis, interconversion, and transport.

Putrescine is the main precursor in the de novo synthesis pathway, leading to the formation of higher-order polyamines spermidine and spermine (Fig. 1A). These reactions are controlled by a set of enzymes, namely spermidine synthase (SRM) and spermine synthase (SMS). Dysregulation or lack of enzymes involved in this process can cause aberrancies in polyamine metabolism, thereby contributing or underlying disease conditions such as cancers, Alzheimer's disease, and Snyder-Robinson Syndrome (SRS) (8-11).

SRS (OMIM: 309583) is a rare X-linked intellectual disability syndrome associated with pathogenic mutations in the SMS gene that lead to the loss or reduction of SMS enzymatic activity (10) (Fig. 1A). Consequently, the level of spermidine is elevated, whereas spermine is reduced. Individuals with SRS have altered spermidine/spermine ratio and exhibit thin body habitus, low muscle tone, developmental delays, and seizures (11-13), which worsen over time $(11,14)$. Some SRS individuals also have difficulty with walking, while some never achieve
ambulation (12). While mutation in the SMS gene was identified as the cause of SRS as early as 2003 (15), no suitable mammalian model exists to study disease pathophysiology and to develop effective therapeutic interventions. Previously, a mouse model called Gy (Gyro; because of its circling behavior) (16) harboring a complete deletion of the Sms gene was used to study SRS pathophysiology $(17,18)$. However, the presence of an additional mutation in the Phex gene encoding phosphate-regulating endopeptidase homolog, which is involved in phosphate transport and causes bone-related diseases $(17,18)$, complicated the interpretation of many of the abnormalities observed in this mouse model.

Here, we describe the disease presentation in a recently generated mouse model of SRS (19) that carries a mutation variant analogous to that reported in individuals diagnosed with severe SRS (12). Our findings revealed that the mutant mice recapitulated many phenotypic defects characteristics of SRS, including failure to thrive, short stature, decreased bone density, cognitive impairments, and reduced brain volumes. Furthermore, transcriptomic analysis and functional assay in various SMS-deficient models identified impaired mitochondrial oxidative phosphorylation as one of the molecular mechanisms underlying SRS pathogenesis.

RESULTS

Loss of SMS expression alters polyamine contents in mice.

A mouse model carrying a missense mutation in the Sms gene was generated in a collaborative effort between the Snyder-Robinson Syndrome Foundation and the Jackson Laboratory Rare Disease Translational Center (19). Specifically, the mice harbor two nucleotide changes (GGC to TCC) in exon two of the Sms gene, resulting in a Glycine to Serine substitution at position 56 of the SMS protein, hereafter called the G56S mice.

We first determined whether the G56S mutation altered the SMS expression profile and tissue polyamine levels. We found that the level of Sms mRNA remains unchanged (Fig. 1B). However, there was a near-complete loss of SMS protein in both the brain and skeletal muscles of G56S mice (Fig. 1C).

To further understand the impact of the mutation on SMS structure and functions, we performed in silico two-dimensional (2D) modeling to visualize the C-terminal and the N -terminal domains, which are important for catalytic activity and dimerization, respectively (Fig. 1D). Compared to the wildtype SMS (Fig. 1E), the presence of Serine at position 56 in the G56S SMS mutant creates an extended side chain which interferes with monomer dimerization (Fig. 1F), as
previously described by Zhang et. al., (20), and may account for the loss of SMS protein expression despite the normal transcript level.

Consequently, the spermidine level was elevated while the spermine level was reduced, resulting in a significantly higher spermidine/spermine ratio in the G56S brain (Fig. 1G) and skeletal muscles (Fig. 1H). Putrescine level was also increased in the G56S brain; however, it fell below the detection limit in the skeletal muscles. Overall, the loss of SMS expression in G56S mice resulted in elevated spermidine and the ratio of spermidine/spermine, similar to that described in cells from SRS patients (21).

Biometric parameters are significantly altered in G56S mice

SRS-affected individuals typically exhibit an asthenic physique with a thin body build, short stature, low muscle tone, and failure to thrive (11). Therefore, we interrogated whether some of these features are present in the G56S mice. We observed that the G56S mice have significantly lower body weight (Fig. 2A) and reduced length (Fig. 2B) compared to the agematched wildtype counterparts. We found no significant differences in the amount of food consumed by both the wildtype and the G56S mice, as measured using a comprehensive laboratory animal monitoring system (CLAMS) $(22,23)$ (Supplementary Fig. 1A), suggesting that the failure to thrive is attributed to the disease and not food intake.

Subsequently, we analyzed the body composition of the mice using Echo MRI. We found that the mice had a higher percentage of lean muscle mass. Further examination of the muscle phenotypes revealed no difference in muscle fiber size (Supplementary Fig. 1B, 1C) and grip strength (Supplementary Fig. 2A) between the wildtype and G56S mutant mice. Interestingly, despite the lack of apparent muscle phenotypes, there was a significant reduction in the fat weight in the G56S mice compared to the wildtype counterparts (Fig. 2C), reflecting the asthenic feature of SRS individuals.

Next, we assessed whether bone deformities were present in the G56S mice. We subjected the mice to whole-body three-dimensional micro-CT imaging and found that the G56S mice had significantly lower bone mineral density (Fig. 2D and Supplementary Fig. 2B). Collectively, altered biometric readouts, such as shortened stature, failure to thrive, reduced body fat, and bone mineral density indicate that polyamine perturbation impacts the growth and development in the G56S mice.

The G56S mice have less activity and exploratory behaviors than the wildtype animals.

 To assess their neurological presentations, the mice were subjected to a longitudinal open field test, which gauges the general locomotion and anxiety-like behavior over time. We observed a significant reduction in the total activity of the G56S mice starting at the age of 18 weeks old (Fig. 3A, Fig. 3B). The G56S mice also demonstrated a lack of exploratory behavior, as shown by their reluctance to enter the inner zone (Fig. 3C) and tendency to stay in the outer zone (Fig. 3D) of the open field arena. Such behavior is indicative of an anxiety-related response, which is one of the prominent features of neurological disorders such as SRS. Interestingly, there was no difference in the activity and exploratory behavior between the G56S and the wildtype animals younger than 18 weeks old, suggesting a progressive nature of the disease.
Cognitive impairment is evident in the G56S mice.

One of the major neurological presentations in SRS is mild to severe cognitive impairments (12). Therefore, we performed a Morris water maze (MWM) assay to assess the spatial memory and learning in the G56S mice (Fig. 4A). First, the animals were trained daily to navigate and locate an escape platform that was submerged or hidden under the water. The time required for the animals to reach the escape quadrant was recorded. On day six, the platform was either removed (probe test) or placed above the water level (visible test).

We observed that, in general, the G56S mice took longer to find the escape quadrant compared to their wildtype counterparts. The trends were not significant during the training period (Fig. 4B) and in the probe test (Fig. 4C). However, there was a significant difference in the visible test (Fig. 4D). These data indicate that the G56S mice were less effective in retaining the information necessary to complete the task compared to the wildtype counterparts, suggesting some degree of learning impairments. It is important to emphasize that the mice were only tested at 16 weeks. Thus, we were unable to verify any age-related decline in the learning impairments.

The G56S mice demonstrate heightened fear responses.

To complement the assessment of spatial learning through MWM, we measured stress-induced freezing via fear conditioning test, which centered on complete tonic immobilization behavior due to innate, anti-predator, fear-related responses in rodents. The assay comprises three parts, namely fear acquisition training (Fig. 5A), contextual (Fig. 5D), and cued (Fig. 5F) tests.

First, the mice were trained to associate sound (conditioned stimulus, CS) with a foot shock, with dedicated soundless intervals (intertrial interval, ITI) between each stimulus. The stressinduced freezing time was recorded during the CS and the ITI (Fig. 5A). We observed a consistent increase in the freezing responses following the sound stimulation in both the wildtype and G56S mice, which eventually plateaued (Fig. 5B), indicating similar rates of fear acquisition in both groups. However, during the ITIs, significantly longer and more frequent freezing responses were observed in the G56S mice (Fig. 5C), indicating more profound fear responses following stimulations than their wildtype counterparts.

On the second day, the mice were placed in the same experimental chamber, i.e., contextually similar, without any sound or electrical stimulation (Fig. 5D). We observed an increase in freezing response in the G56S mice, although it did not reach any statistical significance (Fig. 5E). On the final day, the mice were placed in a different test chamber for an initial 60 seconds habituation period, and subsequently provided with the sound stimulation, i.e., cued (Fig. 5F). The mutant mice showed clear elevated freezing percentages throughout the cued test compared to their wildtype counterparts (Fig. 5G). Taken together, these data suggest that the G56S mice exhibit heightened anxiety-related fear responses, which are typically present in neurological disorders.

Reduced total and regional brain volumes in G56S mice.

Next, we determined whether the neuroanatomical structures were impaired in the G56S mice.
We assessed the brain volumes of 18 -week-old G56S and wildtype mice using T2-weighted MRI (Fig. 6A) and found that the G56S mice had smaller total brain volumes (Fig. 6B). Furthermore, several regions such as the amygdala, corpus callosum, and hippocampus were also smaller in volumes in the G56S mice than their wildtype counterparts (Fig. 6C). Subsequently, diffusion tensor imaging protocol was applied to interrogate any microstructural integrity of the brain. We observed a significant reduction in fractional anisotropy in the G56S amygdala and corpus callosum (Fig. 6D), which indicates disrupted fiber tracts in these regions. The amygdala is responsible for fear learning and emotional responses, whereas the hippocampus is involved in various cognitive functions. Collectively, the reduction in brain volumes and disruption in microstructural integrity, particularly in the amygdala and hippocampus regions, largely support the behavioral findings seen in the G56S mice.

SMS deficiency alters transcriptomic profiles in the G56S brain cortical region.

To unbiasedly interrogate the molecular mechanisms underlying some of the observed phenotypic abnormalities, we performed transcriptomic analysis on RNA isolated from G56S and wildtype brain cortex. The G56S cortex exhibited a significant decrease in spermine content (Supplementary Fig. 3), similar to the total brain finding (Fig. 1G). We focused on the cortex because of its role in directing higher complex tasks, including learning, memory, and consciousness. Furthermore, previous studies suggest that spermine may have a protective role within the cerebral cortex $(24,25)$.
Our data revealed more than 1,000 differentially expressed genes (DEGs) between 18 weeks old wildtype and G56S mice (Fig. 7A and Supplementary Table 2), for which after statistical filtering, the top 40 DEGs were presented as a heatmap (Fig. 7B). Gene enrichment pathway analysis revealed inhibition of pathways involved in mitochondrial oxidative phosphorylation (OXPHOS) and eukaryotic initiation factor 2 (elF2) signaling crucial for ribosome protein synthesis, as well as activation of Huntington's disease, sirtuin, and synaptogenesis signaling pathways (Fig. 7C). Some of these genes were further visualized on Volcano plot (Fig. 7D) and confirmed by qRT-PCR (Fig. 7E). Specifically, we observed decreased expression of several genes involved in OXPHOS, such as Atp5e, Uqcr10, Cox6B1. Of note, the expression of other OXPHOS-related genes such as Cox4i1, Cox7b, Ndufa4, and Ndufa7 were also reduced, although they did not reach statistical significance. Furthermore, there were decreases in the expression of Rpl17 and Rsp14 (both implicated in ribosome protein synthesis via elF2 signaling), as well as increases in the expression of Hap1 (Huntington-associated protein 1) and Grin2b (ionotropic NMDA receptor subunit 2b). Collectively, the transcriptomic data presented here outline several cellular processes, including but not limited to mitochondrial OXPHOS, that transpire from SMS deficiency and altered polyamine contents in the brain.

SMS deficiency impairs mitochondrial respiration in murine hippocampal cells.

Finally, we sought to perform functional validation on the impact of SMS deficiency on mitochondrial OXPHOS. We deleted the Sms gene in mouse embryonic hippocampal cells (mHippoE-14) using CRISPR-mediated knockout (Fig. 8A), resulting in altered polyamine content (Fig. 8B). We subsequently assessed the mitochondrial respiration using Seahorse Bioanalyzer (Fig. 8C) and found a significant reduction in basal respiration, maximal respiration, the rates of ATP production, and spare respiratory capacity (Figs. 8D-8G) in the SMS-KO cells, compared to control cells. In parallel, we isolated primary fibroblasts from the G56S and wildtype mice (Supplementary Fig. 4) and measured their mitochondrial respiration. Similar to the SMS-KO hippocampal cells, the G56S fibroblasts also exhibited a significant reduction in
basal and maximal respiration, ATP production, and spare respiratory capacity. Taken together, these data strongly suggest that SMS deficiency and impaired polyamine metabolism alter mitochondrial bioenergetics and functions, which may contribute to the disease pathogenesis.

Discussion

In this study, we present a detailed characterization of the G56S mouse model carrying a missense Sms mutation, which recapitulates variants in patients with severe forms of SRS. We first demonstrated that the G56S mice lack SMS protein, resulting in high tissue spermidine levels and spermidine/spermine ratio. Furthermore, we showed that the G56S mice have small stature, with evident failure to thrive and reduced fat content, yet slightly increased lean muscle mass. Increased spermidine has been implicated in promoting lipolysis (26), which may largely explain the reduction in body fat in the G56S mice. It is also possible that the absence of SMS or alteration in the spermidine/spermine ratio impairs mitochondrial functions $(27,28)$. In this case, the mice will depend more on glycolysis as a means of energy generation, thereby resulting in increased energy expenditure and less body fat. The decreased body weight and short stature seen in the G56S mice are consistent with the notion that disturbances in polyamine homeostasis impair cell growth and tissue development (4), which may lead to general growth failure.

We also observed low bone mineral density in the G56S mice. While most SRS-affected individuals, including those with the G56S mutation (12), are eventually diagnosed with kyphoscoliosis, no scoliosis was detected in micro-CT scans of these mice. However, we cannot rule out the possibility that abnormal spines may develop in older mice.

The G56S mice display signs of cognitive impairment, reduction in exploratory behavior, and heightened fear responses, which strongly indicate the existence of neurological abnormalities similar to what has been reported in many SRS-affected individuals. Since polyamines are involved in the development of the nervous system (29), specific brain regions might be contributing to these behavioral defects. Indeed, the volumes of the amygdala and hippocampus, which are involved in fear-associated memory and learning, are decreased in the G56S mice, similar to those reported in humans (24). The MRI finding also suggests brain atrophy, as indicated by the decrease in the fractional anisotropy value. Thus, these results indicate that impaired polyamine metabolism and excess spermidine accumulation might cause atrophy and neuronal loss in these regions (24), which could manifest as impaired behavioral and learning outcomes.

The disruption of the polyamine pathway in the central nervous system has previously been associated with abnormal behavioral defects in the Dach-SMOX mouse model with overexpression of spermine oxidase and overactive spermine catabolism $(30,31)$. Consequently, the Dach-SMOX mice have decreased spermine and elevated spermidine and by-products of spermine catabolism in the cerebral cortex $(30,31)$. Importantly, these mice show greater susceptibility to epileptic seizures and are thus used as a tool to evaluate treatment for epilepsy $(31,32)$. Given that epileptic seizure is one of the significant clinical presentations in patients with SRS (11-13), it would be crucial to interrogate whether SMS deficiency manifests as epileptic seizure in the G56S mice. Overall, the disruption of the polyamine pathway in both the Dach-SMOX and the G56S mice has significant consequences on the central nervous system pathophysiology.

One potential mechanism that explains the behavioral defects observed in the G56S mice is the spermidine-mediated disruption of receptor signaling. In an earlier study, Rubin et al. (33) reported that intra-amygdala administration of spermidine in an experimental rat model resulted in a dose-dependent increase in freezing responses. These results suggested that the excess accumulation of spermidine in the brains of G56S mice might contribute to the observed increase in anxiety-related behaviors. However, the precise mechanisms underlying spermidinemediated increases in fear responses remain unknown.

Spermidine may regulate the function of the amygdala via interactions with and modulation of the ion channel receptor for N-methyl-D-aspartate (NMDA). An earlier report detailed polyamine-mediated negative regulation of this receptor (34). Administration of arcaine, a putative competitive antagonist at the polyamine binding site of the NMDA receptor, decreased spermidine-induced fear responses in rats (33). Collectively, these results suggest that spermidine levels may impact amygdala function and that excess accumulation of spermidine may induce a fear response and other behavioral abnormalities seen in the G56S mice.

In addition to the neuroanatomic defects, the transcriptomic analysis revealed other potential mechanisms contributing to the phenotypic abnormalities observed in the G56S mice. These include impaired mitochondrial function, alterations in ribosomal protein synthesis signaling pathways, and upregulation of genes implicated in the pathogenesis of Huntington's disease. Although not elucidated further in our study, mitochondrial dysfunction has been implicated in various neurological or neurodegenerative diseases (35), including in SRS (27,28). Schwartz et al., (11) also found decreased mitochondria respiration in isolated fibroblasts from SRS patients (unpublished personal communication). Increased spermidine levels that accumulate in cells that lack SMS may promote the synthesis and release of reactive oxygen species (ROS), which
induce mitochondrial oxidative stress and impaired mitochondrial function (28). Furthermore, earlier reports suggest that spermine modulates mammalian mitochondrial translation initiation processes $(36,37)$. Thus, the lack of SMS and spermine in the G56S mice may inhibit the synthesis of mitochondrial proteins and potentially result in impaired mitochondrial functions. In addition, normal mitochondrial metabolism can result in the accumulation of potentially damaging levels of by-products, including ROS and $\mathrm{Ca}^{2+}(38)$. As a polycationic molecule, spermine is known to have the potential to scavenge mitochondrial ROS $(39,40)$ and reduce the levels of mitochondrial permeability transition pore (mPTP) generated in response to Ca^{2+} accumulation (41). Thus, the lack of SMS or an observed decrease in cellular spermine content may result in mitochondrial damage. Finally, it is also possible that mitochondrial impairment in SRS may relate to the decreased expression of nuclear genes encoding mitochondrial proteins reported in this study. Although we do not yet understand how Sms mutations and/or decrease in spermine content result in the changes in gene expression pattern observed in this study, either factor may be involved in direct or indirect interactions with critical transcription factors. Identifying these relevant transcription factors will be important to improve our understanding of how spermine and/or SMS modulate mitochondrial functions.

Finally, we acknowledge that natural history studies in mice are a valuable way to understand disease progression. Indeed, longitudinal assessments of mobility and anxiety in the open field assay show developmental changes over time (Figure 3), indicating phenotypic deterioration of the G56S mice. However, the remainder of the behavioral assays and neuroanatomical assessments were performed at a single time point, which prevented us from capturing the agerelated decline in a comprehensive manner. Such limitation was largely attributed to the difficulty in obtaining a sufficient number of hemizygous G56S mice. As shown in Supplementary Figure 5, the rate of obtaining male hemizygous G56S mice was below the typical Mendelian ratio. It is likely due to embryonic lethality; however, interrogating such a mechanism is out of the scope of this study. These observations were not unique to our facility and reported by other laboratories (personal communication, Snyder-Robinson Foundation Conference). During our disease characterization study, an effort has been made to swap the genetic backgrounds from C57BL/6J (described in this paper) to B 6 C 3 H , which is a mix of C57BL/6J and $\mathrm{C} 3 \mathrm{H} / \mathrm{HeJ}$ backgrounds, to improve the breeding quality. This new strain $\mathrm{B} 6 \mathrm{C} 3 \mathrm{H}-$ Sms ${ }^{\text {em2Lutzy } / J \text {, (Jackson Laboratory stock \# 033707), is commercially available and can be }}$ incorporated for future pre-clinical assessment of therapeutic interventions for SRS.

In conclusion, efforts to develop effective therapies for SRS will require a better understanding of the disease pathophysiology as well as suitable mutation/variant-specific animal models that
recapitulate many of the critical clinical manifestations in the affected individuals. The findings presented in this study suggest that the G56S mouse is a good model that can be used to study SRS pathogenesis and serve as an important tool for therapeutic development. Several therapeutic interventions that are currently in development focus on rebalancing the spermidine/spermine ratio using polyamine analogs $(21,42)$ or difluoromethylornithine to slow down putrescine production (21), or alleviating the effect of spermidine-induced ROS using antioxidant $(28,43)$. Gene therapy and genome editing are gaining momentum in the rare disease space (44) for which mutation in SMS in SRS would be a suitable target. Our study lays the critical foundation and provides useful parameters that may be adopted in efforts to assess the efficacy of any therapeutic agents and/or improve current clinical management of SRS.

Acknowledgments

We thank the Snyder-Robinson Foundation, C. Lutz, and A. Zuberi for generating and providing the G56S mouse model; A. Schmidt, E. Goetzman, and K. Schwab for the advice and assistance with animal imaging; W. MacDonald, R. Elbakri, and A. Chattopadhyay for the help on transcriptomic and data analyses; C. van 't Land, A. Karunanidhi, and G. Vockley for Seahorse experiment; O. Tomisin for help with the 2D protein crystal structure modeling; and Cedarlane, Canada for providing the embryonic mouse hippocampal (mHippoE-14) cells. Members of the Kemaladewi laboratory are acknowledged for technical support and input in this study. This work was supported by the RK Mellon Institute for Pediatric Research and AFM Telethon Postdoctoral Fellowship (to O.A.), the Chan Zuckerberg Rare-as-One Initiative/SnyderRobinson Foundation and University of Pennsylvania Orphan Disease Center Million Dollar Bike Ride (MDBR-20-135-SRS) to R.A.C and T.M.S., and the Children's Trust of UPMC Children's Hospital of Pittsburgh Foundation, Dept. of Pediatrics, Univ. of Pittsburgh School of Medicine, Research Advisory Committee Grant, NIH Director's New Innovator Award DP2-AR081047, NIH R01-AR078872 (to D.U.K). This research was supported in part by the University of Pittsburgh Center for Research Computing through the resources provided. Specifically, this work used the HTC cluster, which is supported by NIH award number S10OD028483.

Declaration of interests

The authors declare no competing interest.

Author contributions

Conceptualization: O.A. and D.U.K; Investigation: O.A., A.M., M.J., M.S.P., Y.G., Y.W., J.F., T.M.S, R.A.C.; Formal analysis and visualization: O.A., A.M., M.E.P., Y.G., Y.W., H.B., D.U.K; Writing: O.A. and D.U.K.; Supervision, D.U.K. All authors read and commented on the manuscript.

Data availability

All data relevant to this study are included in the article or uploaded as supplementary information. The sequencing files for the transcriptomic analysis presented in this study are available in the public open repository, https://www.ncbi.nlm.nih.gov/geo/ with the accession number GSE226413.

Materials and methods

Mice: All animals used in this study were housed at the University of Pittsburgh Division of Laboratory Animal Resources, Rangos Research Building, following the IACUC protocol number 2206137, which was approved by the University of Pittsburgh's Institutional Animal Care and Use Committee. The colony of mutant mice was established by breeding female heterozygous Sms mutation carriers (C57BL/6J-Sms ${ }^{\text {em2Lutzy } / J ; ~ J a c k s o n ~ L a b o r a t o r y ~ s t o c k ~ \# ~}$ 031170) and male WT C57BL/6J mice (Jackson Laboratory stock \# 000664). The male offspring of this cross that harbored the X-linked G56S Sms mutation and WT littermate controls were used in the experiments described in this study. To ensure that only male mice harboring the desired mutation were used, pups were genotyped at Transnetyx.com using the following probes: forward primer ACCTGGCAGGACCATGGATATTTA, reverse primer GTGTTCACATCTAAAGCCCATGAGA, reporter 1 AACAAGAATGGCAGGTAAG and reporter 2 ACGAACAAGAATTCCAGG.

Open field activity assay: The open field chamber is a hollow square field box equipped with tracking software (ACTITRACK, Panlab/Harvard Apparatus, USA) connected to an infrared tracking system that monitors animal movement. The walls of the box were opacified (covered with aluminum foil) to prevent the environment from influencing the behavior of the mouse
undergoing testing. The chamber was divided into two imaginary zones: an outer zone (45 x 45 cm) and an inner or center zone ($18.5 \mathrm{~cm} \times 18.5 \mathrm{~cm}$, centered at 22.5 cm from the wall on each side). Experiments were undertaken under constant room temperature ($22-25^{\circ} \mathrm{C}$) and light levels. The mice were habituated in the procedure room for 15 minutes each time before the assay was initiated. This was done to reduce any stress on the mice before the tests were conducted. Each mouse was released at the same location near the wall of the box and movement was evaluated for 15 minutes using the infrared tracking system. The positions recorded for each mouse were used to generate tracking plots and to determine the distance traveled, speed, and time spent in each zone (i.e., within the entire apparatus and specifically in the center zone). The total amount of time spent and the type of body motion (i.e., rearing, leaning, and vertical activity) detected in the center zone were used as relative measurements of explorative behavior and anxiety-related responses, respectively.

Auditory-cued fear conditioning: The conditioning procedure was carried out using a specifically designed chamber (model H10-11M-TC-SF Coulbourn Instruments, Whitehall, PA, USA). The conditioning chamber ($25 \times 25 \times 25 \mathrm{~cm}$) had three grey methacrylate walls, a grid floor connected to a shock scrambler to deliver foot shock as the unconditioned stimulus (US), and a speaker mounted on the chamber ceiling to deliver audible tones as the conditioned stimulus (CS). The conditioning chamber was fitted with a high-sensitivity camera system that monitored animal movement. The chamber was confined in a ventilated, soundproof enclosure ($78 \times 53 \times 50 \mathrm{~cm}$) on an anti-vibration table in a quiet room. The door to the room remained closed throughout the conditioning and testing periods.

On the first day (fear acquisition), the animals were habituated for 120 sec in the chamber before the delivery of CS-US pairs (i.e., a 75 dB tone [CS] for 20 sec followed by a $15-\mathrm{sec}$ trace and then foot shocks [US] of 0.6 mA for 2 sec) with variable and pseudo-randomly distributed intervals between pairs of stimuli ($90-203 \mathrm{sec}$). On the second day (fear retention), the session started with the mice placed in the same environment. During this phase, the mice were provided with no stimulation that might elicit contextual fear responses. Freezing responses in this otherwise familiar environment were monitored.

For the third session, the mice were placed in a different environmental setting (i.e., a chamber with a covered floor and white walls) to assess the retention of cued fear in a novel context. Baseline fear responses were monitored for 90 sec followed by the delivery of three CS (75 dB and 20 s) separated by variable inter-trial intervals (ITIs). The movement of the animal was sampled at a frequency of 50 Hz for quantitative analysis (Freezeframe, Coulbourn Instruments,

USA). Freezing was analyzed during the delivery of the CS (20 sec periods) as well as during the 15 sec trace period that would ordinarily precede the US (not delivered) to monitor the associative fear response. The animals were gently handled before, during, and after the test to avoid introducing any additional potential stress before or during each test that could influence the measured responses.

Morris Water Maze (MWM) Task: The MWM task was performed in a circular pool containing water using the procedure described by Tsien et al. (45) with slight modifications. The animals were trained to find an escape platform that was submerged in the water. The training protocol (hidden platform, used to evaluate spatial learning) included five sessions with 4 trials per session per day. Navigation was tracked by a video camera and the escape latency (i.e., the time required to locate the platform) was recorded. An animal that failed to locate the platform within 90 sec was guided to the platform. We then performed visible (to measure spatial memory) and probe (to measure non-spatial memory) tests on day six. In the visible test, colored tape was placed at the top of the platform. For the probe test, the platform was removed; the mice were allowed to swim in the pool for 60 s , and the time spent in each quadrant of the pool was recorded. The visual acuity of the mice in the pool was confirmed by the changes in the swimming direction when approached by the technician carrying out the test. The acquired data was analyzed using the ANY-maze software.

In vivo Magnetic Resonance Imaging (MRI) scans: All mice were subjected to in vivo brain imaging while under isoflurane anesthesia. The mice were placed in a clear plexiglass anesthesia induction box that permitted unimpeded visual monitoring. Induction was achieved by the administration of 3% isoflurane in oxygen for several minutes. The depth of anesthesia was monitored by the toe reflex (extension of limbs, spine positioning) and respiration rate. Once established, the appropriate level of anesthesia was maintained by continuous administration of $1-2 \%$ isoflurane in oxygen via a nose cone. The mice were then transferred to the designated animal bed for imaging. Respiration was monitored using a pneumatic sensor placed between the animal bed and the mouse's abdomen. Rectal temperature was measured with a fiber optic sensor and maintained with a feedback-controlled source of warm air (SA Instruments, Stony Brook, NY, USA).
In vivo brain MRI was carried out on a Bruker BioSpec 70/30 USR spectrometer (Bruker BioSpin MRI, Billerica, MA, USA) operating at 7-Tesla field strength and equipped with an actively shielded gradient system and a quadrature radio-frequency volume coil with an inner
diameter of 35 mm . Multi-planar T_{2}-weighted anatomical images were acquired with a Rapid Imaging with Refocused Echoes (RARE) pulse sequence with the following parameters: field of view $(F O V)=2 \mathrm{~cm}$, matrix $=256 \times 256$, slice thickness $=1 \mathrm{~mm}$, in-plane resolution $=78 \mu \mathrm{mX}$ $78 \mu \mathrm{~m}$, echo time $(T E)=12 \mathrm{msec}$, RARE factor $=8$, effective echo time $(E T E)=48 \mathrm{msec}$, repetition time $(T R)=1800 \mathrm{msec}$, and flip angle $=180^{\circ}$. Multi-planar diffusion MRI was performed using the following parameters: field of view $(F O V)=2.0 \mathrm{~cm}$, matrix $=128 \times 128$, slice thickness $=1.5 \mathrm{~mm}$, in-plane resolution $=156 \mu \mathrm{~m} \times 156 \mu \mathrm{~m}, \mathrm{TE}=16.31 \mathrm{msec}, \mathrm{TR}=1500$ msec, diffusion preparation with the spin echo sequence, diffusion gradient duration $=4 \mathrm{msec}$, diffusion gradient separation $=8 \mathrm{msec}$, diffusion direction $=30$, number of A_{0} images $=1$, and b value $=1500 \mathrm{~s} / \mathrm{mm}^{2}$.

The MRI data were exported to a DICOM format and analyzed using the open-source ITKSNAP (http://www.itksnap.org) brain segmentation software by 2 independent observers who were blinded to the experimental conditions. The volumes of each region of interest (ROI), including the amygdala, corpus callosum, thalamus, ventricles, hippocampus, and cortex were manually drawn by blinded observers based on the information obtained from the Allen mouse brain atlas (https://mouse.brain-map.org/static/atlas). To account for potential differences in the sizes of brains in G56S and WT mice, volumes from each brain region were normalized to the total brain volume of each mouse.

Diffusion MRI was analyzed by the open-source DSI studio (http://dsi-studio.labsolver.org/) to obtain fractional anisotropy (FA). ROIs contributing to quantitative and statistical analyses, including the cortex, hippocampus, thalamus, corpus callosum, and ventricles with cerebrospinal fluid (CSF) were manually segmented and defined by blinded independent observers.

In vivo micro-Computed Tomography (micro-CT) scans: All mice undergoing in vivo microCT imaging were maintained under general inhalation anesthesia with isoflurane as described for MRI scans above. Once established, anesthesia was maintained with 1.5% isoflurane in oxygen administered using a nose cone, and the mouse was transferred to the designated animal bed for imaging. Respiration was monitored as described above. Respiration gating was performed using a BioVet system that was triggered by maximal inhalation with a 500 ms trigger delay.

Respiration-gated in vivo micro-CT imaging was performed with Siemens Inveon Multimodality micro-CT-SPECT-PET system with the following parameters: full rotation, 360° projections; settle time 1000 msec ; 4X4 binning; effective pixel size of $76.75 \mu \mathrm{~m}$; trans axial field of view
(FOV) 78.6 mm with 4096 pixels; axial FOV 76.1 mm with 3968 pixels 80 kV of voltage; current of $500 \mu \mathrm{~A}$; exposure time of 410 ms . The three-dimensional (3D) micro-CT images were reconstructed using the Feldkamp algorithm and were calibrated in Hounsfield Units (HU). Double distilled water was set at a readout of 0 and air at -1000 HU .

The 3D micro-CT image stacks were analyzed using the Inveon Research Workplace (IRW). The ROI analysis function was used with a thresholding tool that created several ROIs with different Hounsfield Units (HU). A cylindrical 3D ROI was drawn around the body that encompassed the entire body. All external air around the mouse was excluded from the ROI and a custom threshold was set between $400-5700 \mathrm{HU}$ to capture the bones. The mean HU values obtained from each ROI were used to quantify bone density.

Body composition measurements: The body composition (percentage lean and fat weight) of the mice was measured by quantitative MRI (EchoMRI, Echo Medical Systems, Houston, TX). Animals were placed in thin-walled plastic cylinders with plastic restraining inserts. Each animal was briefly subjected to a low-intensity electromagnetic field that measured total body composition. Percentages of fat and lean weights were determined based on total body weight.

Cell lines: Primary fibroblast cells from the ears of the G56S and WT mice were isolated using the protocol described by Khan and Gasser (46). The identity of the fibroblasts was confirmed by Vimentin immunofluorescence staining against non-fibroblasts sources. Mouse embryonic hippocampal cells (mHippoE-14) were purchased from Cedarlane, Canada. Cedarlane Canada performed authentication of the mHippoE-14 prior to shipping. Antibiotic-free supernatant was collected from all cell lines and tested for mycoplasma annually. Cell lines used in this study are confirmed to be mycoplasma-negative.

RNA isolation and quantitative polymerase chain reaction (qPCR): Total RNA was isolated from mouse tissues using the Nucleospin RNA Plus kit (Macherey-Nagel, cat\# 740984.50), following the manufacturer's instructions. cDNA synthesis was performed using the iScript Reverse Transcriptase Supermix kit (BioRad, Cat\# 1708841) according to the manufacturer's instructions. qPCR was performed using a 2 X SYBR Green Fast qPCR Mix kit (ABclonal, cat\# RM21203) in a C1000 Touch Thermal Cycler (BioRad, USA). The primer sequences used to amplify target genes of interest are listed in Supplementary Table 1. The expression of endogenous Gapdh was used as an internal control to measure the relative expression of genes
of interest. The $2^{\Delta \Delta C t}$ was used to assess relative fold change in gene expression in tissue samples from WT and G56S mice. Values are presented as the percentage change in fold expression.

RNA-sequencing (RNA-seq) and pathway enrichment analysis: After completing the RNA extraction procedure described above, samples were submitted to the Health Sciences Genomic Core at the UPMC Children's Hospital of Pittsburgh. RNA quality was determined using the Agilent Bioanalyzer 5300 Fragment Analyzer (Agilent Technologies, USA). cDNA libraries were prepared using the Illumina Stranded mRNA library preparation kit (Illumina). Sequencing was performed using the NextSeq 2000 platform with pair-end 58 bp reads. Analysis of sequence reads, including quality control, mapping, and generation of tables of differentially expressed genes (DEGs), heatmaps, and volcano plots) were performed using the Qiagen licensed CLC Genomic Workbench software vs 22.0.1. Pathway enrichment analysis of the DEGs was performed using the Qiagen-licensed Ingenuity Pathway Analysis (IPA) software. The gene expression profile identified by RNA-seq was validated by qPCR as described above.

In vitro analysis of mitochondria respiration (Seahorse assay): Oxygen consumption rates (OCRs) were determined using a Seahorse XFe96 Extracellular Flux Bioanalyzer (Agilent Technologies, Santa Clara, California, USA). Cells were plated in a 96 -well assay plate at a density of 10,000 (for mHippoE-14 cell line) or 40,000 cells/well (for primary fibroblasts) and cultured overnight. The following day, cells were equilibrated with Seahorse XF base medium (Agilent Technologies) supplemented with glucose, sodium pyruvate, and L-glutamine at $37^{\circ} \mathrm{C}$ in a non $-\mathrm{CO}_{2}$ incubator for 1 hour before assay measurement. Mitochondrial function was assessed by sequential addition of $1.5 \mu \mathrm{M}$ oligomycin, $1 \mu \mathrm{M}$ FCCP (carbonyl cyanide-4[trifluoromethoxy] phenylhydrazone), and $0.5 \mu \mathrm{M}$ rotenone/antimycin A by the Seahorse Bioanalyzer. Data was normalized by the total protein content of the cells.

Protein isolation, quantification, and western blotting. Total proteins were extracted from tissues isolated from G56S and WT mice tissues using RIPA homogenizing buffer ($150 \mu \mathrm{~L}$ of 50 mM Tris $\mathrm{HCl} \mathrm{pH} 7.4,150 \mathrm{nM} \mathrm{NaCl}, 1 \mathrm{mM}$ EDTA) followed by homogenization using a bullet blender. After homogenization, $150 \mu \mathrm{~L}$ of RIPA double-detergent buffer (2% deoxycholate, 2% NP-40, 2\% Triton X-100 in RIPA homogenizing buffer) supplemented with protease inhibitor cocktail (Roche, cat\# A32953) was added to the tissue homogenate followed by incubation on a
shaker for 1 h at $4^{\circ} \mathrm{C}$. The tissue homogenate was then centrifuged at $11,000 \mathrm{~g}$ for 10 min at $4^{\circ} \mathrm{C}$. The resulting supernatant was used to quantify total protein using the Pierce BCA protein assay kit (Thermo Scientific, cat\# 23225) according to the manufacturer's protocol. Twenty micrograms of total protein were fractionated on $4-12 \%$ gradient gel (Thermo Scientific, cat\# NP0336BOX). After proteins had separated on the gel, they were transferred by electroblotting onto a polyvinylidene fluoride (PVDF) membrane and blocked with 5% non-fat milk in TBS-Tween-20. The membrane was then incubated overnight with rabbit anti-spermine synthase (Abcam, cat\# ab156879 [EPR9252B]) or rabbit anti-vinculin (Abcam, cat\# ab129002 [EPR8185]). After incubation with the primary antibody, the membranes were washed and then incubated with the secondary antibody (Goat Anti-Rabbit IgG - HRP conjugate, Bio-Rad cat\# 1706515) for one hour at room temperature. Specific protein bands were detected using SuperSignal ${ }^{\text {TM }}$ West Femto Maximum Sensitivity Substrate (Thermo Scientific, cat\# 34095). Bands corresponding to immunoreactive SMS and Vinculin were identified and quantified using the ChemiDoc Imaging System (BioRad).

Polyamine measurement: The polyamine content in isolated tissues was measured by the precolumn dansylation, a high-performance liquid chromatography method described by Kabra et al. using 1,7-diaminoheptane as the internal standard (47).

Statistical analysis: Statistical analysis was performed using GraphPad Prism software vs 9.0. Each variable was statistically compared between the WT and G56S mice using an unpaired ttest unless otherwise stated. A p-value less than 0.05 was considered statistically significant.

References:

1. Bachrach U, Wang YC, Tabib A. Polyamines: New cues in cellular signal transduction. News in Physiological Sciences. 2001;16(3).
2. Landau G, Bercovich Z, Park MH, Kahana C. The role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation. Journal of Biological Chemistry. 2010;285(17).
3. Hesterberg R, Cleveland J, Epling-Burnette P. Role of Polyamines in Immune Cell Functions. Medical Sciences. 2018;6(1).
4. Kemaladewi DU, Benjamin JS, Hyatt E, Ivakine EA, Cohn RD. Increased polyamines as protective disease modifiers in congenital muscular dystrophy. Hum Mol Genet. 2018;27(11).
5. Akinyele O, Wallace HM. Understanding the Polyamine and mTOR Pathway Interaction in Breast Cancer Cell Growth. Medical Sciences. 2022 Sep 10;10(3):51.
6. Arruabarrena-Aristorena A, Zabala-Letona A, Carracedo A. Oil for the cancer engine: The crosstalk between oncogenic signaling and polyamine metabolism. Vol. 4, Science Advances. 2018.
7. Holbert CE, Cullen MT, Casero RA, Stewart TM. Polyamines in cancer: integrating organismal metabolism and antitumour immunity. Nat Rev Cancer. 2022 Aug 27;22(8):467-80.
8. Lewandowski NM, Ju S, Verbitsky M, Ross B, Geddie ML, Rockenstein E, et al. Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc Natl Acad Sci U S A. 2010;107(39).
9. Soda K. The mechanisms by which polyamines accelerate tumor spread. Journal of Experimental and Clinical Cancer Research. 2011;30(1).
10. Milovic V, Turchanowa L. Polyamines and colon cancer. In: Biochemical Society Transactions. 2003.
11. Schwartz CE, Peron A, Kutler MJ, Snyder-Robinson Syndrome ;, Adam MP, Ardinger HH, et al. Snyder-Robinson Syndrome Synonym: Spermine Synthase Deficiency. 2013.
12. de Alencastro G, McCloskey DE, Kliemann SE, Maranduba CMC, Pegg AE, Wang X, et al. New SMS mutation leads to a striking reduction in spermine synthase protein function and a severe form of Snyder-Robinson X-linked recessive mental retardation syndrome. J Med Genet. 2008;45(8).
13. Larcher L, Norris JW, Lejeune E, Buratti J, Mignot C, Garel C, et al. The complete loss of function of the SMS gene results in a severe form of Snyder-Robinson syndrome. Eur J Med Genet. 2020;63(4).
14. Valera Ribera C, Martinez-Ferrer, Flores Fernández E, Vázquez Gómez I, Orenes Vera A, Valls Pascual E, et al. Snyder-Robinson syndrome: differential diagnosis of osteogenesis imperfecta. Osteoporosis International. 2022;33(5).
15. Cason AL, Ikeguchi Y, Skinner C, Wood TC, Holden KR, Lubs HA, et al. X-linked spermine synthase gene (SMS) defect: The first polyamine deficiency syndrome. European Journal of Human Genetics. 2003;11(12).
16. Wang X, Pegg AE. Use of (Gyro) Gy and Spermine Synthase Transgenic Mice to Study Functions of Spermine. In 2011. p. 159-70.
17. Meyer RA, Henley CM, Meyer MH, Morgan PL, McDonald AG, Mills C, et al. Partial deletion of both the spermine synthase gene and the Pex gene in the X-linked hypophosphatemic, Gyro (Gy) mouse. Genomics. 1998;48(3).
18. Lyon MF, Scriver CR, Baker LR, Tenenhouse HS, Kronick J, Mandla S. The Gy mutation: Another cause of X-linked hypophosphatemia. Proc Natl Acad Sci U S A. 1986;83(13).
19. Laskowski S. THE JACKSON LABORATORY AND SNYDER-ROBINSON FOUNDATION ANNOUNCE NEW RESEARCH MODELS FOR SNYDER-ROBINSON SYNDROME.
20. Zhang Z, Teng S, Wang L, Schwartz CE, Alexov E. Computational analysis of missense mutations causing Snyder-Robinson syndrome. Hum Mutat. 2010 Sep;31(9):1043-9.
21. Stewart TM, Foley JR, Holbert CE, Khomutov M, Rastkari N, Tao X, et al. Difluoromethylornithine rebalances aberrant polyamine ratios in <scp>Snyder-Robinson</scp> syndrome. EMBO Mol Med. 2023 Sep 13;
22. Nie Y, Gavin T, Kuang S. Measurement of Resting Energy Metabolism in Mice Using Oxymax Open Circuit Indirect Calorimeter. Bio Protoc. 2015;5(18).
23. Wang Y, Zheng Y, Nishina PM, Naggert JK. A new mouse model of metabolic syndrome and associated complications. Journal of Endocrinology. 2009 Jul;202(1):17-28.
24. Kesler SR, Schwartz C, Stevenson RE, Reiss AL. The impact of spermine synthase (SMS) mutations on brain morphology. Neurogenetics. 2009;10(4).
25. Clarkson AN, Liu H, Pearson L, Kapoor M, Harrison JC, Sammut IA, et al. Neuroprotective effects of spermine following hypoxia-ischemia-induced brain damage: A mechanistic study. The FASEB Journal. 2004 Jul 7;18(10):1114-6.
26. Monelli E, Villacampa P, Zabala-Letona A, Martinez-Romero A, Llena J, Beiroa D, et al. Angiocrine polyamine production regulates adiposity. Nat Metab. 2022;4(3).
27. Ramsay AL, Alonso-Garcia V, Chaboya C, Radut B, Le B, Florez J, et al. Modeling Snyder-Robinson Syndrome in multipotent stromal cells reveals impaired mitochondrial function as a potential cause for deficient osteogenesis. Sci Rep. 2019;9(1).
28. Li C, Brazill JM, Liu S, Bello C, Zhu Y, Morimoto M, et al. Spermine synthase deficiency causes lysosomal dysfunction and oxidative stress in models of Snyder-Robinson syndrome. Nat Commun. 2017;8(1).
29. Slotkin TA, Bartolome J. Role of ornithine decarboxylase and the polyamines in nervous system development: A review. Brain Res Bull. 1986;17(3).
30. Cervetto C, Vergani L, Passalacqua M, Ragazzoni M, Venturini A, Cecconi F, et al. AstrocyteDependent Vulnerability to Excitotoxicity in Spermine Oxidase-Overexpressing Mouse. Neuromolecular Med. 2016 Mar 3;18(1):50-68.
31. Leonetti A, Baroli G, Fratini E, Pietropaoli S, Marcoli M, Mariottini P, et al. Epileptic seizures and oxidative stress in a mouse model over-expressing spermine oxidase. Amino Acids. 2020 Feb 13;52(2):129-39.
32. Marcoli M, Cervetto C, Amato S, Fiorucci C, Maura G, Mariottini P, et al. Transgenic Mouse Overexpressing Spermine Oxidase in Cerebrocortical Neurons: Astrocyte Dysfunction and Susceptibility to Epileptic Seizures. Biomolecules. 2022 Jan 25;12(2):204.
33. Rubin MA, Berlese DB, Stiegemeier JA, Volkweis MA, Oliveira DM, dos Santos TLB, et al. IntraAmygdala Administration of Polyamines Modulates Fear Conditioning in Rats. Journal of Neuroscience. 2004;24(9).
34. Subramaniam S, O'connor MJ, Masukawa LM, McGonigle P. Polyamine effects on the NMDA receptor in human brain. Exp Neurol. 1994;130(2).
35. Guo CY, Sun L, Chen XP, Zhang DS. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21).
36. Lee M, Matsunaga N, Akabane S, Yasuda I, Ueda T, Takeuchi-Tomita N. Reconstitution of mammalian mitochondrial translation system capable of correct initiation and long polypeptide synthesis from leaderless mRNA. Nucleic Acids Res. 2021;49(1).
37. Christian $B E$, Haque $M E$, Spremulli LL. The effect of spermine on the initiation of mitochondrial protein synthesis. Biochem Biophys Res Commun. 2010;391(1).
38. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Vol. 94, Physiological Reviews. 2014.
39. Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA. The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A. 1998;95(19).
40. Sava IG, Battaglia V, Rossi CA, Salvi M, Toninello A. Free radical scavenging action of the natural polyamine spermine in rat liver mitochondria. Free Radic Biol Med. 2006;41(8).
41. Elustondo PA, Negoda A, Kane CL, Kane DA, Pavlov E v. Spermine selectively inhibits highconductance, but not low-conductance calcium-induced permeability transition pore. Biochim Biophys Acta Bioenerg. 2015;1847(2).
42. Tantak MP, Sekhar V, Tao X, Zhai RG, Phanstiel O. Development of a Redox-Sensitive Spermine Prodrug for the Potential Treatment of Snyder Robinson Syndrome. J Med Chem. 2021;64(21).
43. Tao X, Zhu Y, Diaz-Perez Z, Yu SH, Foley JR, Stewart TM, et al. Phenylbutyrate modulates polyamine acetylase and ameliorates Snyder-Robinson syndrome in a Drosophila model and patient cells. 2022; Available from: https://doi.org/10.1172/jci.
44. Papaioannou I, Owen JS, Yáñez-Muñoz RJ. Clinical applications of gene therapy for rare diseases: A review. Int J Exp Pathol. 2023 Aug 13;104(4):154-76.
45. Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptordependent synaptic plasticity in spatial memory. Cell. 1996;87(7).
46. Khan M, Gasser S. Generating primary fibroblast cultures from mouse ear and tail tissues. Journal of Visualized Experiments. 2016;2016(107).
47. Kabra PM, Lee HK, Lubich WP, Marton L. Solid-phase extraction and determination of dansyl derivatives of unconjugated and acetylated polyamines by reversed-phase liquid chromatography: Improved separation systems for polyamines in cerebrospinal fluid, urine and tissue. J Chromatogr B Biomed Sci Appl. 1986;380(C).

Figures

Fig. 1. Lack of spermine synthase and perturbation of polyamine metabolism in SRS. A. Polyamine metabolism pathway in healthy and SRS. Abbreviations: ODC, ornithine decarboxylase; SRM, spermidine synthase; SMS, spermine synthase; SMOX, spermine oxidase; SAM, s-adenosylmethionine; AMD-1, adenosylmethionine decarboxylase; dcSAM, decarboxylated s-adenosylmethionine; PAO, acetylpolyamine oxidase; SAT1, spermidine/spermine acetyltransferase. B. Sms mRNA expression in the brain of 7 -week-old wildtype and G56S mutant. C. SMS protein expression in brain and skeletal muscles (triceps and gastrocnemius) of 7 -week-old wildtype and G56S mice. D. 2D-crystal crystal structure of the SMS protein with glycine at position 56 in the N-terminal region (circled). The 2D-crystal structure of SMS was modeled from protein data bank ID: 3C6M. E. The atomic structure of glycine at position 56 in the N-terminal region of SMS protein. F. Serine in place of glycine at position 56 of SMS protein; the extended serine sidechain is highlighted in yellow. G-H. Brain (G) and skeletal muscle (H) polyamine content and SPD/SPM ratios in 24-week-old wildtype and G56S mice quantified by HPLC. Note: putrescine levels were below the limit of detection in the G56S skeletal muscle. Data represent mean \pm S.E.M from $\mathrm{n}=3-5$ mice per group; ns $=$ not significant, ${ }^{*} p<0.05,{ }^{* *} p<0.01$.

Fig. 2. Biometric analyses of G56S and WT mice. A. Body weight was measured at the indicated ages. B. Body length of 24 -week-old mice. C. Body composition of 15-week-old mice (\% lean and \% fat weight) determined by Echo-MRI scan. D. Bone mineral density of 20 -week-old mice measured by micro-CT scan. Data represent mean \pm S.E.M., $\mathrm{n}=7$ mice per group, ${ }^{* *} p<0.01,{ }^{* * *} p<0.001,{ }^{* * * *} p<0.0001$.

Fig. 3. Anxiety-related response monitoring in an open field test. A.
Representative movement pattern of 24 weeks old WT and G56S mice. B. Total activity of the animals at the indicated ages. C. Number of entries to the inner zone of the open field chamber. D. Number of resting time in the outer zone of the open field chamber. Data represent mean \pm S.E.M., $n=7,{ }^{*} p<0.05 ;{ }^{* *} p<0.01$; ns, not significant.

Fig. 4. Performance of 16 -week-old G56S and WT mice in a Morris Water Maze (MWM) test. A. Illustration of the three components of the MWM test. The escape platform is submerged/hidden during the training period (daily for 5 days), removed during the probe test (day 6), or placed above the water level during the visible test (day 6). The top view of the area illustrates the location of the quadrants in which the animals are placed and the placement of the escape platform. B. Time required to locate a hidden/submerged escape platform on each day of the five-day training period. C. Time spent in the escape quadrant during the probe test, in which the platform was absent. D. Time required to locate a visible escape platform on day 6. Data represent mean \pm S.E.M., $\mathrm{n}=7$ mice per group; two-way ANOVA for repeated measures (A) and unpaired t-tests for (B) and (C). ns, not significant; ${ }^{*} p<0.05$.

Fig. 5. Auditory-cued fear responses of 5 months old G56S and WT mice. A. Illustration of fear acquisition training on day 1 , in which the animals were subjected to sound stimulation for 20 seconds at 75 decibels, i.e., conditioned stimulation (CS) followed by foot shock and staggered inter-trial interval (ITI). B-C. The fear response was expressed as the percentage of time spent in a stereotypical freezing state during CS (B) and ITI (C) periods. D. Illustration of contextual test on day 2, in which the animal was placed in the same environment (indicated by a square cage), yet without sound and shock stimulation. \mathbf{E}. The freezing state of the animals was recorded at the indicated times. F. Illustration of cued-fear response on day 3, in which the animals were placed in a new environment (indicated by a circle cage) and provided with CS, i.e., sound stimulation for 20 seconds at 75 decibels, three times with no foot shock and variable ITIs. G. The freezing state of the animals were recorded at baseline (during habituation), during CS and ITIs. Data represent mean \pm S.E.M. from $n=7$ animals per group and two-way ANOVA analysis for repeated measures (B-C, and E) and unpaired t-tests for (G). ns, not significant; ${ }^{*} p<0.05 ;{ }^{* *} p<0.01 ;{ }^{* * *} p<0.001$; **** $p<0.0001$.

Fig. 6. Brain MRI of 18 -week-old WT and G56S mice. A. Representative MRI images of coronal sections of WT and G56S brains. Annotations of different brain regions were based on the Allen Mouse Brain Atlas. B-C. Volumetric analyses of the total brain volume (B) and volumes of annotated regions (C) are highlighted on panel (A). Regional brain volumes were normalized to the total brain volumes. D. Fractional anisotropy (fa) was quantified using DSI studio software. Comparisons of single variables between WT and G56S mice were performed using unpaired t-tests. Data represent mean \pm S.E.M., $n=5-7$ mice per group, ${ }^{*} p<0.05$; ${ }^{* *} p<0.01$; ${ }^{* * *} p<0.001$; ns, not significant.

Fig. 7. Transcriptomic analysis of brain cortex from 18 -week-old WT and G56S mice. A. Comparison of brain cortical region between WT and G56S mice revealed 1137 differentially expressed genes (DEGs), comprising 589 upregulated and 548 downregulated transcripts. B. Heatmap of selected genes that exhibit statistically significant differences in expression ($p<0.05$) and absolute values of $\log _{2}$-fold change (LFC) greater than or equal to 1. C. Different biological pathways upon gene enrichment analysis of the upregulated and downregulated transcripts with $p<0.05$ and absolute LFC ≥ 0.5. D. A volcano plot showing the relative expression of selected genes involved in oxidative phosphorylation. E. qPCR validation of selected genes implicated in oxidative phosphorylation, eukaryotic initiation factor 2 (eIF2) signaling, and Huntington's disease. Data represent mean \pm S.E.M from $n=3$ animals per group. * $p<$ 0.05 ; ** $p<0.01$, ns, not significant.

Fig. 8. Mitochondrial respiration in SMS knockout murine hippocampal cells. A. SMS-deficient in vitro model (SMS-KO) was generated using CRISPR-mediated deletion in murine embryonic hippocampal (mHippoE) cells. SMS protein expression in the SMS-KO and CTRL mHippoE cells was assessed using Western blot and B. Polyamine content measured by HPLC. C. Mitochondrial respiration profiles of CTRL (red line) and SMS-KO (blue) cells. Oligomycin (ATP synthase inhibitor), FCCP (H^{+} ionophore), and rotenone/antimycin (mitochondria complex I/III inhibitors) were added at the indicated times. D-G. Comparison of basal respiration (D), maximal respiration (E), ATP production (F), and spare respiratory capacity (G) between mHippoE SMS-KO and CTRL assessed using a Seahorse XFe96 analyzer. Data represent mean \pm S.E.M. from $\mathrm{n}=16$ technical replicates of three independent experiments. ** $p<0.05$; ** $p<0.01$; *** $p<$ 0.001 .

WT

G56S

Supplementary Fig. 1

Fig. S1. A. 5-day food consumption monitoring of G56S and age-matched WT mice using a comprehensive laboratory animal monitoring system (CLAMS). B. Immunofluorescence images of WT and G56S mice muscle fibers stained with anti-laminin antibody to detect laminin (red) and DAPI to detect the nuclei (blue). C. Quantification of muscle fibers crosssectional area (CSA) using ImageJ software. Data represent mean \pm S.E.M, $n=3$ mice per group. ns, not significant.

Supplementary Fig. 2

Fig. S2. A. Forelimb grip strength of the G56S and WT mice, normalized to the body weight of the animals. Data is presented as mean \pm S.E.M, $\mathrm{n}=3$ mice per group. ${ }^{*} p<0.05$; ** $p<$ 0.01. B. Representative 3D micro-CT scan images of a mouse under anesthesia. Images were analyzed using the Inveon Research Workplace (IRW) and a threshold was applied to exclude soft tissues. The remaining dense tissue (bone, colored white) was subsequently quantified (green line lines around the dense bone images). Note: The scan captured about 90% of the animal's body without the tail.

Supplementary Fig. 3
Fig. S3. The polyamine content of the brain cortex of 18 -week-old wildtype and G56S mice as quantified by HPLC. The putrescine level was below the limit of detection. Data represent mean \pm S.E.M from $\mathrm{n}=3$ mice per group; $\mathrm{ns}=$ not significant, ${ }^{*} p<0.05$.

Supplementary Fig. 4
Fig. S4. A. SMS protein expression in primary fibroblasts isolated from ear clips of WT and G56S mice. Immortalized lines generated in parallel were also analyzed for SMS protein. B. Respiratory profiles of WT and G56S primary fibroblasts. Oligomycin (ATP synthase inhibitor), FCCP (H^{+}ionophore), and rotenone/antimycin (mitochondria complex I/III inhibitors) were added at the times indicated. C-E. Basal respiration (C), maximal respiration (D), and ATP production (E) in WT and G56S primary fibroblasts were assessed using a Seahorse XFe96 analyzer. Data represent mean \pm S.E.M. of $n=8$ technical replicates of two independent experiments. ${ }^{* *} p<0.01$; ${ }^{* * *} p<0.001$.

Total Mice $=376$

Supplementary Fig. 5

Fig. S5. Total number of WT, heterozygous, and hemizygous mice on the C57BL/6J background generated within one year. Breeding was set up by pairing female heterozygous mice with WT male mice.

Table S1. qPCR primer sequences

	Name	qPCR Primer Sequence (5' \rightarrow 3')	Note
1	Mouse SMS	CCACACTATGGCAGCAGCAAG	Forward
		TGCACTGACTCTGTCATCCCC	Reverse
2	Mouse GAPDH	CTCCCACTCTTCCACCTTCG	Forward
		GCCTCTCTTGCTCAGTGTCC	Reverse
3	Mouse ATP5e	TACTCTGAAGCGACCCAGCG	Forward
		GCGTTCGCTTTGAACTCGGT	Reverse
4	Mouse Cox7B	TAGTCGCCGCAGTTCCATCT	Forward
		GCCACCACTTGCTGAATGCT	Reverse
5	Mouse Uqcr10	ACGCGATCTACGAGCACATCA	Forward
		GTCGGTGAACGGCAACTTGAAA	Reverse
6	Mouse RPS14	ATCAAACTCCGGGCCACAGG	Forward
		TGACATCCTCAATCCGCCCA	Reverse
7	Mouse RPL17	TTCCTGTAAGCGGCCAGAGG	Forward
		GCATTCCCTTGATGGCCTGG	Reverse
8	Mouse Hap1	GGCTGAGGAGCTCCGAACAT	Forward
		TCCCTGCAGTGAGTGTCACG	Reverse
9	Mouse GRIN2B	CGGAGCTGGCATCCGAATACA	Forward
		TGGAGCGTGGTCATTCCCAA	Reverse
10	Mouse Cox4i1	GTCTTGGTCTTCCGGTTGCG	Forward
		CATGTGCTCGAAGGCACACC	Reverse
11	Mouse Cox6B1	GAGTGGTACCGGCGTGTGTA	Forward
		TGCCTTCAGCTATGCGGTCA	Reverse
12	Mouse Ndufa4	GCAAGCCAAGAAGCATCCCA	Forward
		GTGCCAAGCGCATCACATACA	Reverse
13	mNdufa7	TCCTCGGGACAGAGTCGTCA	Forward
		CGCTTGGCGATCTCCTGGTA	Reverse

able S2. List of differentially regulated genes between WT and G56S cortex

Downregulated genes							Upregulated genes						
GENE ID	Chr.	Max group mean	$\begin{aligned} & \log _{2} \text { fold } \\ & \Delta \end{aligned}$	Fold Δ	P-value	FDR p-value	GENE ID	Chr.	Max group mean	$\begin{aligned} & \log _{2} \\ & \text { fold } \Delta \end{aligned}$	Fold Δ	P-value	FDR p-value
Icam4	9	1.232	-1.081	-2.116	0.015256	0.049965978	Sall4	2	0.061	2.240	4.725	0.014972619	0.049296734
Itgae	11	0.086	-1.746	-3.355	0.0149964	0.04934519	Mki67	7	0.132	1.188	2.278	0.014911876	0.049128658
Gm29427	1	0.082	-6.163	-71.637	0.0147132	0.048544108	Hif3a	7	0.575	1.006	2.009	0.014636548	0.048336364
Gm15155	X	0.155	-2.533	-5.788	0.0142146	0.047145333	Serpine1	5	0.495	1.111	2.161	0.014609617	0.048263114
Zfp708	13	0.889	-1.018	-2.025	0.01367	0.045811738	Rtl9	X	0.414	1.036	2.051	0.014601504	0.048245012
Gm36028	16	0.129	-2.512	-5.704	0.0131286	0.044305362	Lbhd2	12	4.575	1.321	2.498	0.014141085	0.046952399
Cabp5	7	0.052	-2.680	-6.407	0.012376	0.042279546	Ccdc146	5	0.175	1.498	2.825	0.014018309	0.046671642
S100a8	3	1.455	-1.472	-2.774	0.0120425	0.041255871	C3	17	0.130	1.356	2.560	0.013858007	0.046255643
Cxcr2	1	0.045	-2.728	-6.626	0.0119643	0.041043567	Ptch2	4	0.255	1.221	2.331	0.013849803	0.046245114
Rps18-ps6	13	0.354	-2.608	-6.097	0.0117889	0.040594792	Dusp27	1	0.193	1.296	2.456	0.013096298	0.044225726
Nox1	X	0.035	-3.037	-8.208	0.0115929	0.040037389	Olfr550	7	0.065	2.041	4.115	0.01287429	0.043615912
Btn2a2	13	0.556	-1.247	-2.373	0.0115272	0.039870833	Zar1	5	0.464	1.727	3.310	0.012750287	0.043251807
2410137M14Rik	17	0.119	-3.658	-12.627	0.0114156	0.039559307	Tlr9	9	0.410	1.147	2.215	0.012681643	0.043082778
Prickle4	17	0.136	-6.374	-82.941	0.0112358	0.03912124	Padi1	4	0.032	3.656	12.603	0.012406248	0.042343515
Gm12166	11	0.423	-1.943	-3.845	0.011084	0.038666368	Insrr	3	0.107	1.485	2.800	0.01142127	0.039571557
Crybg2	4	0.202	-1.233	-2.351	0.0109537	0.038303114	Piezo2	18	0.119	1.224	2.337	0.011255273	0.039181698
Crybb3	5	0.948	-1.234	-2.353	0.0105557	0.037170073	Gas2l2	11	0.127	2.074	4.210	0.010224392	0.036219378
Gm49354	13	0.436	-2.504	-5.671	0.0103565	0.036595261	Lhcgr	17	0.105	1.439	2.712	0.010196621	0.03614197
Carlr	2	0.591	-1.057	-2.081	0.010068	0.035803999	Upb1	10	0.229	1.351	2.552	0.010155438	0.036031032
Aox2	1	0.036	-2.731	-6.641	0.0100032	0.035623463	Kcnj13	1	3.008	1.085	2.121	$9.84 \mathrm{E}-03$	0.035157132
Ugt2a2	5	0.112	-2.911	-7.523	$9.21 \mathrm{E}-03$	0.033177085	Prdm1	10	0.324	1.222	2.333	$9.44 \mathrm{E}-03$	0.033878918
Meltf	16	0.211	-1.289	-2.444	$9.21 \mathrm{E}-03$	0.033177085	Xkrx	X	0.481	1.209	2.311	$9.14 \mathrm{E}-03$	0.032988803
Gm49325	10	1.561	-1.891	-3.709	8.64E-03	0.031548506	Atp10b	11	0.248	1.016	2.023	9.10E-03	0.032871908
Mcmdc2	1	0.224	-1.164	-2.241	8.30E-03	0.030467473	Irs4	X	0.302	1.393	2.626	8.90E-03	0.032289358
Pla2g4b	2	0.080	-6.666	101.533	8.16E-03	0.030048676	SIc16a8	15	0.198	3.201	9.197	$8.85 \mathrm{E}-03$	0.032171631
Gm27021	8	0.846	-1.480	-2.789	8.12E-03	0.029923006	Foxd2	4	0.246	1.542	2.912	8.80E-03	0.032000665
Ninj2	6	1.599	-1.122	-2.176	7.61E-03	0.028373499	Uncx	5	0.119	1.997	3.990	8.70E-03	0.031712493
Tmem37	1	1.299	-1.032	-2.044	7.52E-03	0.028081285	Ppl	16	0.263	1.253	2.383	$8.58 \mathrm{E}-03$	0.031363116
Cldn22	8	1.898	-1.375	-2.593	7.45E-03	0.027907129	Tjp3	10	0.216	1.448	2.729	8.56E-03	0.031292662
Theg	10	0.203	-1.941	-3.840	6.92E-03	0.026231111	Gm49387	14	0.170	6.812	112.398	8.45E-03	0.030950136
4930451111Rik	7	0.450	-2.470	-5.542	6.83E-03	0.025906738	Pi16	17	0.233	1.403	2.645	$8.35 \mathrm{E}-03$	0.030596331
Gm14443	2	0.272	-1.367	-2.580	$6.78 \mathrm{E}-03$	0.025770946	Lyve1	7	0.404	1.348	2.546	$8.21 \mathrm{E}-03$	0.030205314
I11b	2	0.385	-1.718	-3.291	$6.33 \mathrm{E}-03$	0.024308452	Sgcd	11	0.499	1.083	2.119	$8.01 \mathrm{E}-03$	0.029587199
Msinl	17	0.110	-2.381	-5.209	6.29E-03	0.024218452	Rspo4	2	0.106	2.110	4.316	7.86E-03	0.029158838
Nxf7	X	0.530	-1.381	-2.604	6.26E-03	0.024107165	Art4	6	0.086	2.781	6.875	$7.63 \mathrm{E}-03$	0.028440374
Ms4a6b	19	0.697	-1.043	-2.061	5.96E-03	0.023145939	Casr	16	0.323	1.542	2.911	$7.58 \mathrm{E}-03$	0.028311324
Tsacc	3	2.120	-1.354	-2.557	$5.94 \mathrm{E}-03$	0.023082795	Drd2	9	6.856	1.004	2.006	$7.26 \mathrm{E}-03$	0.027284202
Cldn14	16	0.313	-1.664	-3.169	$5.90 \mathrm{E}-03$	0.022928132	Gabrr1	4	0.104	2.216	4.647	$7.15 \mathrm{E}-03$	0.026982211
Cpa2	6	1.275	-1.085	-2.121	$5.74 \mathrm{E}-03$	0.022418642	Col6a6	9	0.114	1.424	2.683	7.15E-03	0.026962991
Aldh3a1	11	0.754	-1.308	-2.476	$5.65 \mathrm{E}-03$	0.02212661	Cd109	9	0.306	1.124	2.180	$7.08 \mathrm{E}-03$	0.026729975
4930447C04Rik	12	0.224	-1.368	-2.581	5.39E-03	0.021313052	Prl	13	0.174	4.013	16.144	6.64E-03	0.025301073
Cklf	8	0.471	-1.061	-2.087	$5.31 \mathrm{E}-03$	0.021078633	Lbp	2	1.281	1.079	2.112	6.63E-03	0.025277187
Tph2	10	0.567	-1.231	-2.347	5.20E-03	0.020688469	Tspan10	11	0.113	4.278	19.396	$6.30 \mathrm{E}-03$	0.024224603
Riiad1	3	3.277	-1.010	-2.014	4.83E-03	0.019466421	Lpar3	3	0.241	1.573	2.976	$6.25 \mathrm{E}-03$	0.024107165
Dapk2	9	0.646	-1.162	-2.238	$4.75 \mathrm{E}-03$	0.019186352	Baiap2l1	5	0.398	1.407	2.651	$6.12 \mathrm{E}-03$	0.02369708
Espnl	1	0.140	-1.457	-2.746	$4.67 \mathrm{E}-03$	0.018906298	Omp	7	7.290	2.073	4.207	6.06E-03	0.023446773
Gm28040_1	1	0.507	-2.062	-4.176	$4.58 \mathrm{E}-03$	0.018628452	Hs3st3a1	11	0.700	1.159	2.233	$5.97 \mathrm{E}-03$	0.023167195
Hsbp111	18	0.996	-1.390	-2.621	$4.36 \mathrm{E}-03$	0.017855181	Xirp1	9	0.045	2.275	4.841	$5.73 \mathrm{E}-03$	0.022412724
Adam8	7	0.447	-1.294	-2.451	4.33E-03	0.017784998	Ripk4	16	0.204	1.490	2.810	$5.69 \mathrm{E}-03$	0.022278549
Tsks	7	0.356	-1.484	-2.797	4.33E-03	0.017761659	Otogl	10	0.134	1.386	2.614	$5.60 \mathrm{E}-03$	0.021988938
Cyp2a5	7	1.058	-1.812	-3.510	$4.18 \mathrm{E}-03$	0.017277402	Vmn1r206	13	0.090	2.165	4.483	$5.37 \mathrm{E}-03$	0.02126614
5430401F13Rik	6	0.442	-7.275	154.900	$4.12 \mathrm{E}-03$	0.017088884	Trim58	11	0.070	4.007	16.082	$5.33 \mathrm{E}-03$	0.021139014
Gzma	13	0.254	-2.500	-5.656	4.11E-03	0.017036255	Ebf2	14	0.279	1.207	2.308	5.28E-03	0.020994739
Pde6g	11	0.302	-2.260	-4.789	4.10E-03	0.017031615	Krt73	15	1.003	1.051	2.073	$5.27 \mathrm{E}-03$	0.020926536
Arc	15	108.220	-1.098	-2.141	4.07E-03	0.016912551	Derpc	8	0.620	2.145	4.423	5.13E-03	0.020458671
Cyp11a1	9	0.969	-1.024	-2.034	3.87E-03	0.016198655	Ndor1_1	2	0.443	1.784	3.443	$4.91 \mathrm{E}-03$	0.019735353
Padi6	4	0.187	-1.888	-3.701	3.75E-03	0.01576052	Galr1	18	0.181	1.687	3.220	$4.59 \mathrm{E}-03$	0.018650884
Ankrd31	13	0.080	-1.721	-3.296	3.62E-03	0.01535137	Wdr72	9	0.039	4.383	20.864	$4.53 \mathrm{E}-03$	0.018444103
Cwh43	5	0.673	-1.186	-2.276	3.35E-03	0.014418289	Gm20517	17	0.078	7.181	145.156	$4.45 \mathrm{E}-03$	0.018153393
Shld3	13	1.470	-1.023	-2.033	3.26E-03	0.014111735	Ttc21a	9	0.353	1.378	2.600	$4.43 \mathrm{E}-03$	0.018104735
Ccdc18	5	0.335	-1.172	-2.253	3.21E-03	0.013926538	Rd3l	12	0.316	1.798	3.478	$4.34 \mathrm{E}-03$	0.017810698
Gm2004	2	0.255	-7.667	203.241	$3.19 \mathrm{E}-03$	0.013868882	Gm21149	5	0.149	4.230	18.767	$4.31 \mathrm{E}-03$	0.017706449
Gm42420	6	1.160	-1.582	-2.993	3.15E-03	0.013731805	Sim1	10	0.044	2.159	4.467	$4.30 \mathrm{E}-03$	0.017684148
Gm49345	13	0.266	-2.785	-6.891	2.97E-03	0.013026242	Gsx2	5	0.318	1.828	3.549	$4.20 \mathrm{E}-03$	0.017351742
Myl2	5	0.332	-1.739	-3.338	$2.75 \mathrm{E}-03$	0.012189479	Krt5	15	0.119	2.788	6.908	$4.17 \mathrm{E}-03$	0.017243666

Fap	2	0.679	-1.083	-2.118	$2.73 \mathrm{E}-03$	0.01213112	Tram2	1	0.318	1.045	2.063	$3.96 \mathrm{E}-03$	0.016522911
Sftpc	14	2.187	-1.140	-2.203	$2.70 \mathrm{E}-03$	0.012039046	Cenpe	3	0.203	1.282	2.431	3.96E-03	0.016516251
Gm28040_2	1	0.717	-1.605	-3.042	$2.68 \mathrm{E}-03$	0.011959293	Nkx6-1	5	0.113	2.309	4.955	3.94E-03	0.016448186
Ptpn18	1	1.990	-1.033	-2.047	$2.63 \mathrm{E}-03$	0.011737559	Postn	3	0.766	1.055	2.078	$3.91 \mathrm{E}-03$	0.016328544
Il12a	3	1.087	-1.356	-2.559	$2.27 \mathrm{E}-03$	0.010443603	Fbxl7	15	0.404	1.222	2.332	$3.79 \mathrm{E}-03$	0.015926839
Sult1c1	17	0.235	-3.086	-8.493	$2.26 \mathrm{E}-03$	0.010394065	1700012B09Rik	9	0.942	1.633	3.101	$3.57 \mathrm{E}-03$	0.015181755
BC035044	6	1.279	-1.088	-2.126	$2.20 \mathrm{E}-03$	0.010186514	Krt2	15	1.196	1.102	2.146	$3.57 \mathrm{E}-03$	0.015181755
Ly6m	15	0.100	-3.208	-9.238	$2.09 \mathrm{E}-03$	$9.76 \mathrm{E}-03$	Mmp19	10	0.361	1.464	2.759	3.53E-03	0.015052811
Lypd2	15	1.000	-1.913	-3.766	$2.09 \mathrm{E}-03$	$9.75 \mathrm{E}-03$	Gm4767	10	0.147	1.797	3.475	3.33E-03	0.014341057
Hjv	3	0.584	-1.526	-2.880	$2.04 \mathrm{E}-03$	9.54E-03	Gxylt2	6	0.374	1.010	2.014	3.25E-03	0.014080706
Ccl6	11	1.782	-1.063	-2.089	$1.91 \mathrm{E}-03$	9.02E-03	Chrna10	7	0.469	2.280	4.856	3.24E-03	0.014038216
Zar11	5	0.871	-1.622	-3.079	$1.89 \mathrm{E}-03$	8.96E-03	A730046J19Rik	X	0.157	1.845	3.593	$3.23 \mathrm{E}-03$	0.014009994
Fam174c	10	4.596	-1.072	-2.102	$1.88 \mathrm{E}-03$	$8.91 \mathrm{E}-03$	Avp	2	5.003	2.153	4.447	3.22E-03	0.0139575
Cd40	2	0.308	-1.644	-3.126	$1.84 \mathrm{E}-03$	8.79E-03	Ly75	2	0.243	1.202	2.301	3.14E-03	0.013680301
Rnf39	17	1.835	-1.004	-2.005	$1.81 \mathrm{E}-03$	8.66E-03	Zic3	X	0.757	1.010	2.014	3.10E-03	0.013517732
Gm28778	1	1.092	-2.205	-4.609	$1.76 \mathrm{E}-03$	8.47E-03	Nkx2-1	12	0.427	1.723	3.301	$3.02 \mathrm{E}-03$	0.01322799
Olfr464	11	0.400	-1.636	-3.107	$1.76 \mathrm{E}-03$	8.46E-03	Adamts5	16	0.348	1.005	2.006	$2.78 \mathrm{E}-03$	0.012312269
Gm3696	14	1.386	-1.048	-2.067	1.70E-03	8.20E-03	Fgf16	X	0.978	1.689	3.224	$2.74 \mathrm{E}-03$	0.012163341
Arr3	X	0.403	-1.726	-3.308	$1.69 \mathrm{E}-03$	8.18E-03	BC035947	1	0.488	1.388	2.618	$2.64 \mathrm{E}-03$	0.011780173
Hpx	7	0.561	-1.599	-3.028	$1.47 \mathrm{E}-03$	7.30E-03	Ak7	12	0.570	1.504	2.836	$2.64 \mathrm{E}-03$	0.011780173
Ocm	5	0.719	-1.896	-3.723	$1.45 \mathrm{E}-03$	7.22E-03	Gucy2f	X	0.203	1.291	2.447	$2.37 \mathrm{E}-03$	0.010785066
Gm6619	6	0.969	-3.401	-10.566	$1.35 \mathrm{E}-03$	$6.76 \mathrm{E}-03$	Nmb	7	10.408	1.474	2.778	2.29E-03	0.010488119
Golt1a	1	0.167	-2.676	-6.390	$1.33 \mathrm{E}-03$	$6.72 \mathrm{E}-03$	SIc38a8	8	0.200	2.283	4.867	$2.24 \mathrm{E}-03$	0.010346868
Ugt2a1	5	0.283	-3.508	-11.377	$1.23 \mathrm{E}-03$	$6.26 \mathrm{E}-03$	Cldn19	4	0.284	1.900	3.733	$2.22 \mathrm{E}-03$	0.010252521
Hes3	4	0.142	-2.864	-7.280	$1.21 \mathrm{E}-03$	6.20E-03	Flnc	6	0.348	1.107	2.153	$2.21 \mathrm{E}-03$	0.010215889
Ccnb1ip1	14	0.232	-2.225	-4.675	$1.21 \mathrm{E}-03$	$6.20 \mathrm{E}-03$	Fam167a	14	0.567	1.052	2.074	2.17E-03	0.010092077
Gm2296	9	0.432	-2.838	-7.149	$1.21 \mathrm{E}-03$	$6.19 \mathrm{E}-03$	Gm49368	7	0.052	3.419	10.695	$2.09 \mathrm{E}-03$	$9.76 \mathrm{E}-03$
Urah	7	0.750	-1.617	-3.068	$1.21 \mathrm{E}-03$	$6.19 \mathrm{E}-03$	Cdca7l	12	0.412	1.558	2.944	$2.09 \mathrm{E}-03$	$9.76 \mathrm{E}-03$
Spag6	2	1.015	-1.191	-2.284	$1.20 \mathrm{E}-03$	6.16E-03	Dsg2	18	0.366	1.094	2.134	2.02E-03	$9.46 \mathrm{E}-03$
Il11ra2	4	0.295	-2.116	-4.336	$1.18 \mathrm{E}-03$	$6.05 \mathrm{E}-03$	Hephl1	9	0.113	7.828	227.296	$2.00 \mathrm{E}-03$	9.39E-03
Spdya	17	0.655	-1.462	-2.754	$1.17 \mathrm{E}-03$	6.03E-03	Arhgef16	4	0.396	1.689	3.225	$1.96 \mathrm{E}-03$	$9.21 \mathrm{E}-03$
Olfr77	9	0.216	-1.259	-2.393	1.15E-03	5.95E-03	Lhx1	11	0.063	2.750	6.725	$1.95 \mathrm{E}-03$	9.19E-03
Vsig2	9	0.722	-1.609	-3.050	$1.07 \mathrm{E}-03$	5.60E-03	6430571L13Rik	9	3.415	1.111	2.160	$1.94 \mathrm{E}-03$	9.16E-03
Dazl	17	1.136	-1.000	-2.001	1.00E-03	$5.31 \mathrm{E}-03$	SIc43a3	2	0.504	1.811	3.508	$1.90 \mathrm{E}-03$	8.98E-03
Ccl9	11	0.985	-1.106	-2.153	8.05E-04	4.42E-03	Sfmbt2	2	0.315	1.098	2.140	$1.86 \mathrm{E}-03$	8.87E-03
Traf5	1	1.699	-1.023	-2.032	$7.79 \mathrm{E}-04$	$4.31 \mathrm{E}-03$	S100a5	3	18.688	2.913	7.531	$1.75 \mathrm{E}-03$	8.39E-03
Cenpa	5	1.425	-1.177	-2.260	$7.55 \mathrm{E}-04$	4.20E-03	Vash2	1	0.822	1.057	2.081	$1.68 \mathrm{E}-03$	8.12E-03
9430038101Rik	7	0.611	-1.014	-2.020	$6.76 \mathrm{E}-04$	$3.81 \mathrm{E}-03$	Prss56	1	0.490	2.383	5.217	$1.67 \mathrm{E}-03$	8.07E-03
Slfn2	11	1.826	-1.122	-2.176	$5.85 \mathrm{E}-04$	3.40E-03	Col6a3	1	0.252	1.053	2.074	$1.66 \mathrm{E}-03$	8.04E-03
S100a4	3	4.855	-1.267	-2.406	$5.65 \mathrm{E}-04$	3.30E-03	Serpina9	12	1.264	1.427	2.688	$1.58 \mathrm{E}-03$	$7.76 \mathrm{E}-03$
Ptges3l	11	1.126	-1.231	-2.348	$5.59 \mathrm{E}-04$	3.27E-03	Prdm12	2	0.091	3.268	9.636	$1.52 \mathrm{E}-03$	7.51E-03
Tcap	11	4.094	-1.099	-2.142	$5.31 \mathrm{E}-04$	3.14E-03	Cubn	2	0.090	1.672	3.187	1.49E-03	7.37E-03
Gngt2	11	2.871	-1.058	-2.082	$5.04 \mathrm{E}-04$	3.00E-03	Emilin2	17	0.726	1.025	2.034	$1.44 \mathrm{E}-03$	7.14E-03
Fcor	8	11.272	-1.009	-2.012	$4.38 \mathrm{E}-04$	$2.66 \mathrm{E}-03$	Pcdhb21	18	0.659	1.039	2.055	$1.43 \mathrm{E}-03$	7.13E-03
Mpl	4	0.282	-2.027	-4.076	$4.37 \mathrm{E}-04$	$2.66 \mathrm{E}-03$	Pcdhb2	18	1.050	1.077	2.110	$1.43 \mathrm{E}-03$	7.11E-03
Gmfg	7	2.348	-1.419	-2.675	$4.28 \mathrm{E}-04$	$2.61 \mathrm{E}-03$	Fzd5	1	0.448	1.062	2.088	$1.36 \mathrm{E}-03$	6.84E-03
Prss22	17	1.166	-1.609	-3.051	3.97E-04	$2.47 \mathrm{E}-03$	Barhl2	5	0.700	1.676	3.195	$1.32 \mathrm{E}-03$	6.66E-03
Tmem232	17	0.918	-1.291	-2.447	3.60E-04	$2.28 \mathrm{E}-03$	Esyt3	9	0.689	1.317	2.491	$1.23 \mathrm{E}-03$	6.28E-03
Adamts13	2	0.462	-1.366	-2.578	3.40E-04	$2.17 \mathrm{E}-03$	Cdh23	10	0.212	1.201	2.299	$1.12 \mathrm{E}-03$	$5.81 \mathrm{E}-03$
Lat2	5	2.131	-1.220	-2.330	$3.37 \mathrm{E}-04$	$2.16 \mathrm{E}-03$	Spata18	5	0.308	2.117	4.338	1.10E-03	5.73E-03
Ly6d	15	0.643	-2.446	-5.447	3.29E-04	2.12E-03	Myh4	11	0.283	1.937	3.830	$1.06 \mathrm{E}-03$	$5.55 \mathrm{E}-03$
Kif4	X	0.617	-1.252	-2.382	3.27E-04	$2.11 \mathrm{E}-03$	Tmem26	10	0.092	2.539	5.813	$1.05 \mathrm{E}-03$	$5.52 \mathrm{E}-03$
Gm5617	9	7.211	-1.112	-2.162	3.07E-04	$2.00 \mathrm{E}-03$	Rab37	11	2.208	1.458	2.747	$1.03 \mathrm{E}-03$	$5.42 \mathrm{E}-03$
Cd164l2	4	2.925	-1.246	-2.371	$2.95 \mathrm{E}-04$	$1.94 \mathrm{E}-03$	Duox2	2	0.042	3.945	15.403	$9.84 \mathrm{E}-04$	5.23E-03
Fbxo17	7	1.793	-1.081	-2.115	2.95E-04	$1.94 \mathrm{E}-03$	Ghsr	3	0.097	2.449	5.462	9.05E-04	$4.88 \mathrm{E}-03$
Asb11	X	1.998	-1.121	-2.175	$2.87 \mathrm{E}-04$	$1.90 \mathrm{E}-03$	Col4a6	X	0.294	1.242	2.366	8.32E-04	$4.55 \mathrm{E}-03$
Rpe65	3	1.793	-1.313	-2.484	$2.51 \mathrm{E}-04$	$1.69 \mathrm{E}-03$	Alx3	3	0.995	1.385	2.612	8.14E-04	$4.46 \mathrm{E}-03$
B230307C23Rik	16	1.427	-1.102	-2.146	$2.51 \mathrm{E}-04$	$1.69 \mathrm{E}-03$	Mgam	6	0.072	8.357	327.981	7.93E-04	$4.38 \mathrm{E}-03$
Tmprss7	16	1.018	-1.252	-2.381	2.10E-04	$1.46 \mathrm{E}-03$	Gh	11	1.039	8.408	339.614	7.54E-04	4.20E-03
Npc111	11	0.243	-2.167	-4.492	$2.07 \mathrm{E}-04$	$1.45 \mathrm{E}-03$	Foxd3	4	0.387	8.417	341.707	7.45E-04	$4.16 \mathrm{E}-03$
Nanos3	8	0.763	-2.228	-4.684	$2.04 \mathrm{E}-04$	$1.43 \mathrm{E}-03$	Foxb1	9	0.096	3.231	9.392	7.30E-04	$4.09 \mathrm{E}-03$
Sap25	5	0.325	-5.508	-45.492	$2.01 \mathrm{E}-04$	$1.41 \mathrm{E}-03$	Tfap2c	2	0.248	2.523	5.747	7.21E-04	4.04E-03
Pagr1a	7	2.112	-2.461	-5.506	1.80E-04	$1.29 \mathrm{E}-03$	Lmod1	1	0.696	1.299	2.460	6.86E-04	3.86E-03
Gm11627	11	4.981	-1.085	-2.122	$1.74 \mathrm{E}-04$	$1.25 \mathrm{E}-03$	Gabre	X	0.234	1.701	3.252	$6.71 \mathrm{E}-04$	3.80E-03
Spata24	18	4.844	-1.060	-2.085	$1.53 \mathrm{E}-04$	$1.12 \mathrm{E}-03$	Trim67	8	0.719	1.043	2.060	$6.42 \mathrm{E}-04$	3.67E-03
Nudt6	3	2.450	-1.109	-2.157	$1.53 \mathrm{E}-04$	$1.12 \mathrm{E}-03$	Gm49496	13	0.845	8.535	370.982	6.26E-04	3.59E-03
Ctsk	3	2.757	-1.007	-2.009	$1.44 \mathrm{E}-04$	$1.06 \mathrm{E}-03$	Zim1	7	0.550	1.058	2.082	6.22E-04	3.58E-03
Cd7	11	1.580	-1.796	-3.473	$1.25 \mathrm{E}-04$	9.40E-04	Fign	2	0.362	1.103	2.147	$6.14 \mathrm{E}-04$	3.53E-03
Higd1b	11	4.627	-1.165	-2.243	$1.08 \mathrm{E}-04$	8.34E-04	Dlx6	6	4.211	1.012	2.017	$5.66 \mathrm{E}-04$	3.30E-03
Barx2	9	3.093	-1.042	-2.059	1.03E-04	8.04E-04	Siglec1	2	0.068	2.373	5.180	$5.64 \mathrm{E}-04$	3.30E-03
Lsm5	6	10.730	-1.100	-2.144	$9.54 \mathrm{E}-05$	7.53E-04	Ssc5d	7	0.541	1.315	2.488	$5.61 \mathrm{E}-04$	3.28E-03
Sptbn5	2	0.553	-1.016	-2.022	8.69E-05	6.99E-04	Cpa6	1	0.670	2.354	5.114	$5.17 \mathrm{E}-04$	3.07E-03
Gm13305	4	0.197	-3.527	-11.525	7.05E-05	$5.88 \mathrm{E}-04$	Sostdc1	12	1.391	1.703	3.256	$5.17 \mathrm{E}-04$	3.07E-03
Rskr	11	1.155	-1.547	-2.922	$6.86 \mathrm{E}-05$	$5.74 \mathrm{E}-04$	Prrg4	2	0.238	1.887	3.698	$5.06 \mathrm{E}-04$	$3.01 \mathrm{E}-03$

Tspan11	6	1.043	-1.110	-2.158	6.59E-05	5.54E-04	Igf1	10	0.840	1.012	2.016	5.00E-04	$2.98 \mathrm{E}-03$
Nup37	10	3.259	-1.048	-2.068	6.46E-05	5.46E-04	Clca3a1	3	0.405	2.144	4.421	4.97E-04	2.97E-03
Mis18a	16	4.969	-1.002	-2.003	$6.21 \mathrm{E}-05$	$5.29 \mathrm{E}-04$	Pkp2	16	2.943	1.050	2.071	4.83E-04	2.89E-03
Rdm1	11	6.523	-1.023	-2.032	6.17E-05	5.26E-04	Chrna2	14	0.373	1.816	3.522	$4.65 \mathrm{E}-04$	$2.80 \mathrm{E}-03$
Gm50253	17	0.692	-1.299	-2.460	5.15E-05	$4.51 \mathrm{E}-04$	Ppm1j	3	1.912	2.123	4.355	$4.55 \mathrm{E}-04$	$2.75 \mathrm{E}-03$
Ccdc84	9	1.602	-1.076	-2.108	5.02E-05	4.42E-04	Kcne2	16	0.776	3.433	10.803	4.40E-04	$2.68 \mathrm{E}-03$
Hba-a2	11	327.603	-1.155	-2.227	$4.75 \mathrm{E}-05$	4.20E-04	SIc18a2	19	0.242	2.092	4.262	4.07E-04	$2.51 \mathrm{E}-03$
Atoh7	10	0.949	-1.883	-3.687	$4.25 \mathrm{E}-05$	3.85E-04	Mecom	3	0.492	1.032	2.045	$4.01 \mathrm{E}-04$	$2.49 \mathrm{E}-03$
Mobp	9	149.552	-1.197	-2.293	4.18E-05	3.79E-04	Gpr101	X	2.267	1.238	2.358	3.87E-04	$2.42 \mathrm{E}-03$
Gm49333	16	0.173	-4.753	-26.955	3.97E-05	3.63E-04	Folr1	7	0.958	2.751	6.733	3.63E-04	2.29E-03
Sag	1	2.214	-1.175	-2.258	3.60E-05	3.34E-04	Gm9732	14	0.184	4.037	16.420	3.38E-04	2.17E-03
Gm14434	2	1.098	-1.913	-3.765	3.25E-05	3.07E-04	Six 3	17	1.193	1.826	3.545	3.13E-04	2.03E-03
Proca1	11	2.839	-1.170	-2.251	3.13E-05	2.97E-04	Glra1	11	0.349	1.995	3.986	3.11E-04	2.02E-03
Coa4	7	3.778	-1.074	-2.105	$2.80 \mathrm{E}-05$	2.70E-04	P2ry1	3	0.729	1.236	2.356	3.03E-04	$1.98 \mathrm{E}-03$
Tmsb15b2	X	6.679	-1.255	-2.387	$2.47 \mathrm{E}-05$	$2.41 \mathrm{E}-04$	Gm49353	10	4.752	1.113	2.163	3.02E-04	$1.98 \mathrm{E}-03$
Ifit1bl1	19	2.309	-1.172	-2.254	$2.32 \mathrm{E}-05$	2.29E-04	Crhr2	6	0.621	1.482	2.793	3.00E-04	$1.97 \mathrm{E}-03$
Pdzph1	17	1.022	-1.192	-2.284	2.23E-05	2.22E-04	Shox2	3	0.151	4.922	30.316	2.86E-04	$1.89 \mathrm{E}-03$
Cyp2g1	7	0.524	-3.582	-11.972	2.00E-05	2.02E-04	Nppa	4	1.215	2.815	7.036	$2.75 \mathrm{E}-04$	1.83E-03
Hba-a1	11	178.809	-1.153	-2.223	$1.92 \mathrm{E}-05$	$1.95 \mathrm{E}-04$	Pcdhb6	18	1.024	1.068	2.096	$2.71 \mathrm{E}-04$	$1.80 \mathrm{E}-03$
Bcas1	2	78.413	-1.171	-2.251	$1.60 \mathrm{E}-05$	1.67E-04	Stac	9	1.083	1.276	2.421	$2.68 \mathrm{E}-04$	$1.79 \mathrm{E}-03$
Mbp	18	430.303	-1.091	-2.130	$1.55 \mathrm{E}-05$	1.63E-04	Nid2	14	1.065	1.030	2.042	$2.54 \mathrm{E}-04$	$1.71 \mathrm{E}-03$
Amn	12	4.397	-1.032	-2.045	$1.55 \mathrm{E}-05$	1.63E-04	Glra4	X	0.183	3.855	14.466	$2.52 \mathrm{E}-04$	$1.70 \mathrm{E}-03$
Tmsb15b1	X	6.223	-1.456	-2.743	$1.54 \mathrm{E}-05$	1.62E-04	Cdh3	8	0.218	2.379	5.201	$2.52 \mathrm{E}-04$	$1.70 \mathrm{E}-03$
Cenps	4	2.517	-1.228	-2.343	$1.45 \mathrm{E}-05$	$1.54 \mathrm{E}-04$	Insyn2a	7	2.619	1.035	2.049	$2.44 \mathrm{E}-04$	$1.66 \mathrm{E}-03$
Olfr78	7	0.111	-2.673	-6.378	$1.34 \mathrm{E}-05$	$1.44 \mathrm{E}-04$	Slc17a8	10	0.591	1.274	2.418	$2.43 \mathrm{E}-04$	$1.65 \mathrm{E}-03$
Gm10334	6	0.888	-2.599	-6.058	1.19E-05	$1.30 \mathrm{E}-04$	Rin3	12	0.771	1.039	2.054	2.30E-04	$1.57 \mathrm{E}-03$
Tefm	11	4.573	-1.065	-2.092	1.17E-05	$1.28 \mathrm{E}-04$	Epn3	11	0.525	1.916	3.773	$2.14 \mathrm{E}-04$	$1.49 \mathrm{E}-03$
Clec18a	8	1.026	-1.432	-2.699	$1.14 \mathrm{E}-05$	1.26E-04	Tubb6	18	1.831	1.661	3.162	$2.09 \mathrm{E}-04$	$1.46 \mathrm{E}-03$
G0s2	1	7.935	-1.055	-2.078	$1.05 \mathrm{E}-05$	1.17E-04	Cckar	5	0.091	4.360	20.538	$2.08 \mathrm{E}-04$	$1.45 \mathrm{E}-03$
Cd300c2	11	4.834	-1.222	-2.333	$1.00 \mathrm{E}-05$	1.13E-04	A2m	6	0.835	1.177	2.262	$2.04 \mathrm{E}-04$	$1.43 \mathrm{E}-03$
Pigbos1	9	13.772	-1.161	-2.237	8.31E-06	9.66E-05	Rbm20	19	1.051	1.044	2.062	2.02E-04	$1.42 \mathrm{E}-03$
Prcd	11	3.885	-1.293	-2.450	7.62E-06	8.94E-05	Mfrp	9	0.906	2.759	6.769	2.00E-04	$1.41 \mathrm{E}-03$
Gm6710	2	2.225	-1.253	-2.383	7.26E-06	8.60E-05	Crybg1	10	0.332	1.464	2.758	1.99E-04	1.40E-03
Ccl27b	4	2.163	-2.434	-5.405	5.45E-06	6.76E-05	Enpp3	10	0.147	2.078	4.223	$1.90 \mathrm{E}-04$	$1.34 \mathrm{E}-03$
Ccdc58	16	6.495	-1.085	-2.121	5.03E-06	6.35E-05	Epha2	4	0.735	1.270	2.412	$1.86 \mathrm{E}-04$	$1.32 \mathrm{E}-03$
Scx	15	2.199	-1.613	-3.058	3.60E-06	$4.70 \mathrm{E}-05$	Lama1	17	0.446	1.171	2.252	1.85E-04	$1.31 \mathrm{E}-03$
Gm5148	3	5.861	-1.011	-2.015	3.28E-06	$4.36 \mathrm{E}-05$	Tex15	8	0.210	1.636	3.109	$1.82 \mathrm{E}-04$	$1.30 \mathrm{E}-03$
Plb1	5	0.396	-1.753	-3.370	3.15E-06	4.22E-05	Ecel1	1	7.965	1.397	2.634	$1.62 \mathrm{E}-04$	1.18E-03
Kazald1	19	3.972	-1.335	-2.522	2.27E-06	3.18E-05	Frem2	3	0.361	1.144	2.210	$1.62 \mathrm{E}-04$	1.17E-03
Hilpda	6	6.604	-1.153	-2.223	$2.21 \mathrm{E}-06$	3.12E-05	Neb	2	0.132	1.449	2.729	$1.51 \mathrm{E}-04$	$1.11 \mathrm{E}-03$
Mdfic2	6	1.049	-2.025	-4.070	2.16E-06	3.07E-05	Gdnf	15	0.210	2.124	4.358	$1.48 \mathrm{E}-04$	$1.09 \mathrm{E}-03$
Cela1	15	2.345	-1.341	-2.533	$1.61 \mathrm{E}-06$	$2.40 \mathrm{E}-05$	Vdr	15	0.190	2.252	4.765	$1.41 \mathrm{E}-04$	$1.04 \mathrm{E}-03$
Evi2a	11	12.960	-1.040	-2.056	$1.54 \mathrm{E}-06$	$2.31 \mathrm{E}-05$	Tspan18	2	2.376	1.195	2.289	$1.40 \mathrm{E}-04$	$1.04 \mathrm{E}-03$
Efcab10	12	4.963	-1.564	-2.957	$1.34 \mathrm{E}-06$	2.06E-05	Filip11	16	1.485	1.057	2.081	1.40E-04	1.04E-03
Dtl	1	1.322	-1.061	-2.086	$1.29 \mathrm{E}-06$	2.02E-05	Cyp26b1	6	3.077	1.030	2.042	$1.23 \mathrm{E}-04$	9.29E-04
Echdc2	4	5.909	-1.003	-2.004	1.05E-06	1.69E-05	Minar1	9	0.802	1.149	2.218	$1.22 \mathrm{E}-04$	$9.28 \mathrm{E}-04$
Ctla2a	13	6.182	-1.067	-2.094	7.90E-07	$1.34 \mathrm{E}-05$	Loxl1	9	1.440	1.105	2.151	1.20E-04	9.13E-04
Smim4	14	5.361	-1.196	-2.291	7.38E-07	$1.28 \mathrm{E}-05$	Pcdhb13	18	1.611	1.108	2.155	1.12E-04	8.62E-04
2310009B15Rik	1	10.617	-1.042	-2.059	7.15E-07	$1.24 \mathrm{E}-05$	Ntsr1	2	3.033	1.064	2.091	1.12E-04	8.58E-04
Hbb-bt	7	76.496	-1.614	-3.061	6.67E-07	1.17E-05	Dnah11	12	0.140	2.042	4.117	$1.12 \mathrm{E}-04$	8.57E-04
Mthfs	9	3.406	-1.466	-2.763	6.20E-07	1.10E-05	Drc7	8	1.009	1.908	3.754	1.07E-04	8.27E-04
Mthfsl	9	8.638	-1.093	-2.133	5.95E-07	1.07E-05	Lrrc55	2	5.433	1.112	2.162	$1.05 \mathrm{E}-04$	8.14E-04
Ormdl1	1	5.907	-1.081	-2.115	5.79E-07	1.04E-05	Npffr2	5	0.282	3.979	15.766	$9.61 \mathrm{E}-05$	7.57E-04
Plekhb1	7	128.788	-1.112	-2.162	5.58E-07	$1.01 \mathrm{E}-05$	Cspg4b	13	0.380	1.257	2.391	$9.49 \mathrm{E}-05$	7.51E-04
Psmg4	13	17.153	-1.091	-2.130	$5.31 \mathrm{E}-07$	9.68E-06	Pappa	4	0.108	2.309	4.954	$9.43 \mathrm{E}-05$	7.47E-04
Pcbd2	13	21.521	-1.039	-2.055	5.15E-07	9.46E-06	Mpz	1	0.219	4.216	18.585	9.19E-05	7.32E-04
Tyw5	1	5.236	-1.043	-2.061	4.27E-07	8.05E-06	Scube2	7	0.466	2.053	4.149	9.18E-05	$7.31 \mathrm{E}-04$
Gm14418	2	3.165	-1.320	-2.497	3.52E-07	6.89E-06	Fam184b	5	1.597	1.007	2.010	$9.14 \mathrm{E}-05$	7.28E-04
Sebox	11	2.533	-1.855	-3.616	3.33E-07	6.58E-06	Adamts9	6	0.694	1.190	2.282	8.39E-05	$6.81 \mathrm{E}-04$
Haus1	18	7.138	-1.096	-2.138	3.24E-07	6.42E-06	Sema5a	15	4.972	1.013	2.018	8.33E-05	$6.77 \mathrm{E}-04$
Agmat	4	1.568	-2.102	-4.292	2.89E-07	5.83E-06	Gdpd4	7	0.160	4.328	20.080	7.71E-05	6.35E-04
Rps20	4	57.768	-1.021	-2.030	$2.24 \mathrm{E}-07$	4.73E-06	Htr1d	4	0.901	1.560	2.949	7.05E-05	5.88E-04
Saysd1	14	5.773	-1.019	-2.027	2.13E-07	$4.52 \mathrm{E}-06$	Htr4	18	1.052	1.205	2.305	6.52E-05	5.50E-04
Shld1	2	6.828	-1.059	-2.083	1.77E-07	3.90E-06	Lgr6	1	1.955	2.060	4.169	6.34E-05	5.37E-04
Etnk2	1	3.174	-1.217	-2.324	$1.74 \mathrm{E}-07$	3.84E-06	Mab2111	3	1.138	1.827	3.547	5.91E-05	5.08E-04
Oxld1	11	11.001	-1.201	-2.298	1.62E-07	3.61E-06	Emilin1	5	1.160	1.133	2.194	$5.88 \mathrm{E}-05$	5.06E-04
Gng11	6	15.850	-1.098	-2.140	1.10E-07	2.59E-06	Ccdc187	2	0.477	1.158	2.231	5.86E-05	5.05E-04
Thrsp	7	27.069	-1.144	-2.209	$8.59 \mathrm{E}-08$	2.09E-06	Il12rb2	6	0.150	4.186	18.205	5.52E-05	4.80E-04
Eef1b2	1	101.516	-1.050	-2.071	8.19E-08	$2.01 \mathrm{E}-06$	Svep1	4	0.195	1.702	3.254	5.35E-05	4.66E-04
Zfp931	2	5.877	-1.137	-2.199	7.50E-08	1.85E-06	Fbln2	6	1.527	1.049	2.069	5.03E-05	$4.42 \mathrm{E}-04$
S100a16	3	70.710	-1.025	-2.035	7.19E-08	1.79E-06	Slc6a3	13	0.439	2.823	7.075	$4.77 \mathrm{E}-05$	4.23E-04
Cox8a	19	952.702	-1.000	-2.001	7.02E-08	1.75E-06	Gng4	13	45.349	1.206	2.308	$4.75 \mathrm{E}-05$	4.20E-04
Cldn10	14	20.726	-1.016	-2.022	6.97E-08	$1.74 \mathrm{E}-06$	Lhx8	3	1.108	2.869	7.304	$4.48 \mathrm{E}-05$	4.01E-04
Ddit4l	3	8.382	-1.019	-2.026	$5.97 \mathrm{E}-08$	1.52E-06	Zfhx3	8	0.293	1.138	2.200	$4.26 \mathrm{E}-05$	3.85E-04

Mt3	8	426.586	-1.026	-2.037	5.02E-08	1.32E-06	Oprm1	10	0.276	1.526	2.880	4.19E-05	3.80E-04
Opalin	19	14.975	-1.064	-2.091	$5.01 \mathrm{E}-08$	$1.32 \mathrm{E}-06$	Lhx5	5	0.189	2.960	7.782	$3.95 \mathrm{E}-05$	$3.62 \mathrm{E}-04$
Fis1	5	179.651	-1.019	-2.027	$4.95 \mathrm{E}-08$	$1.30 \mathrm{E}-06$	Gcnt1	19	1.810	1.748	3.360	3.95E-05	$3.62 \mathrm{E}-04$
Tmed1	9	12.824	-1.013	-2.017	$4.86 \mathrm{E}-08$	$1.28 \mathrm{E}-06$	Crb1	1	0.429	1.355	2.558	$3.91 \mathrm{E}-05$	3.60E-04
Dpm3	3	19.997	-1.048	-2.068	$4.80 \mathrm{E}-08$	$1.27 \mathrm{E}-06$	Htr2c	X	12.536	1.051	2.072	$3.85 \mathrm{E}-05$	$3.55 \mathrm{E}-04$
Tyrobp	7	49.279	-1.101	-2.145	$4.71 \mathrm{E}-08$	$1.25 \mathrm{E}-06$	Rtl1	12	0.113	2.411	5.318	$3.73 \mathrm{E}-05$	$3.45 \mathrm{E}-04$
Lage3	X	8.604	-1.058	-2.082	$4.55 \mathrm{E}-08$	$1.22 \mathrm{E}-06$	Tafa3	3	0.220	3.446	10.896	$3.71 \mathrm{E}-05$	3.44E-04
Zswim7	11	13.747	-1.159	-2.233	$4.16 \mathrm{E}-08$	$1.13 \mathrm{E}-06$	Pcdha10	18	1.419	1.109	2.156	$3.56 \mathrm{E}-05$	$3.32 \mathrm{E}-04$
Nudcd2	11	10.596	-1.029	-2.041	3.99E-08	$1.09 \mathrm{E}-06$	Tpbgl	7	2.721	1.113	2.163	$3.29 \mathrm{E}-05$	3.10E-04
Hscb	5	9.706	-1.341	-2.534	$3.81 \mathrm{E}-08$	$1.05 \mathrm{E}-06$	Klhl1	14	0.693	1.364	2.574	3.27E-05	3.08E-04
Pdlim2	14	7.670	-1.129	-2.188	$3.55 \mathrm{E}-08$	9.99E-07	Grem1	2	0.812	1.679	3.202	$2.69 \mathrm{E}-05$	$2.61 \mathrm{E}-04$
Cox16	12	6.338	-1.011	-2.016	3.27E-08	$9.31 \mathrm{E}-07$	Adra2b	2	0.253	2.366	5.154	$2.67 \mathrm{E}-05$	$2.58 \mathrm{E}-04$
Vti1b	12	137.282	-1.062	-2.087	3.14E-08	8.98E-07	Shisa6	11	5.377	1.502	2.833	$2.53 \mathrm{E}-05$	$2.46 \mathrm{E}-04$
Nkain4	2	45.135	-1.001	-2.002	2.98E-08	8.62E-07	SIc35d3	10	2.602	1.809	3.505	$2.48 \mathrm{E}-05$	$2.42 \mathrm{E}-04$
Sec61b	4	37.398	-1.012	-2.017	$2.73 \mathrm{E}-08$	7.97E-07	Hspa1b	17	13.471	1.628	3.091	$2.18 \mathrm{E}-05$	$2.17 \mathrm{E}-04$
Selenow	7	1605.333	-1.053	-2.074	$2.70 \mathrm{E}-08$	7.93E-07	Igfbpl1	4	0.904	2.116	4.334	$2.00 \mathrm{E}-05$	$2.02 \mathrm{E}-04$
Ciao2a	9	25.636	-1.063	-2.089	$2.64 \mathrm{E}-08$	$7.77 \mathrm{E}-07$	Notch2	3	2.879	1.053	2.074	$1.76 \mathrm{E}-05$	$1.81 \mathrm{E}-04$
BC028528	3	6.361	-1.564	-2.956	$2.61 \mathrm{E}-08$	7.69E-07	Rassf4	6	1.813	1.171	2.251	$1.63 \mathrm{E}-05$	$1.69 \mathrm{E}-04$
Gm11808	4	868.926	-1.023	-2.033	$2.48 \mathrm{E}-08$	7.30E-07	Dsc3	18	0.583	1.455	2.742	$1.49 \mathrm{E}-05$	$1.58 \mathrm{E}-04$
Cox6b1	7	530.444	-1.009	-2.012	$2.44 \mathrm{E}-08$	7.23E-07	Nlrp10	7	0.190	3.398	10.543	$1.43 \mathrm{E}-05$	$1.53 \mathrm{E}-04$
Tnnc1	14	13.631	-1.578	-2.985	$2.26 \mathrm{E}-08$	$6.77 \mathrm{E}-07$	Pcdha6	18	1.454	1.089	2.127	$1.43 \mathrm{E}-05$	$1.53 \mathrm{E}-04$
Rpl27	11	201.738	-1.072	-2.103	2.23E-08	6.68E-07	Col5a2	1	0.720	1.220	2.329	$1.42 \mathrm{E}-05$	$1.52 \mathrm{E}-04$
Rpl7	1	319.809	-1.038	-2.054	$2.17 \mathrm{E}-08$	$6.56 \mathrm{E}-07$	Tenm2	11	8.758	1.125	2.181	$1.34 \mathrm{E}-05$	$1.44 \mathrm{E}-04$
Drap1	19	233.925	-1.017	-2.023	$2.15 \mathrm{E}-08$	6.52E-07	Chrm2	6	2.611	1.153	2.224	$1.33 \mathrm{E}-05$	$1.43 \mathrm{E}-04$
Mrpl54	10	58.985	-1.061	-2.087	1.93E-08	5.96E-07	Nkain3	4	0.969	1.332	2.517	$1.30 \mathrm{E}-05$	$1.41 \mathrm{E}-04$
Izumo4	10	13.011	-1.005	-2.006	$1.77 \mathrm{E}-08$	5.50E-07	Sh3rf2	18	1.059	1.704	3.257	$1.27 \mathrm{E}-05$	$1.38 \mathrm{E}-04$
Idnk	13	6.060	-1.021	-2.029	$1.75 \mathrm{E}-08$	5.44E-07	Myof	19	0.886	1.154	2.226	$1.14 \mathrm{E}-05$	$1.26 \mathrm{E}-04$
Rplp1	9	1415.181	-1.052	-2.073	$1.58 \mathrm{E}-08$	4.97E-07	Pcdha9	18	2.223	1.006	2.008	$1.03 \mathrm{E}-05$	1.16E-04
Uqcr11	10	456.561	-1.119	-2.173	$1.51 \mathrm{E}-08$	$4.79 \mathrm{E}-07$	Prok2	6	0.417	2.727	6.620	$9.96 \mathrm{E}-06$	$1.13 \mathrm{E}-04$
Hint1	11	275.140	-1.089	-2.128	1.43E-08	$4.58 \mathrm{E}-07$	Slit1	19	15.540	1.107	2.153	9.98E-06	1.13E-04
H2-T23	17	15.976	-1.069	-2.098	$1.35 \mathrm{E}-08$	$4.42 \mathrm{E}-07$	Cldn2	X	0.530	3.568	11.859	9.39E-06	$1.07 \mathrm{E}-04$
Rps28	17	249.919	-1.006	-2.008	1.33E-08	$4.37 \mathrm{E}-07$	Tchh	3	1.277	1.218	2.326	$9.18 \mathrm{E}-06$	$1.05 \mathrm{E}-04$
Bola3	6	13.695	-1.109	-2.156	$1.33 \mathrm{E}-08$	4.36E-07	Ttr	18	261.301	4.896	29.769	9.06E-06	$1.04 \mathrm{E}-04$
Zfp945	17	2.219	-1.100	-2.143	$1.32 \mathrm{E}-08$	4.36E-07	Gpr50	X	0.432	2.742	6.692	8.85E-06	$1.02 \mathrm{E}-04$
Ccdc107	4	39.563	-1.048	-2.068	$1.20 \mathrm{E}-08$	4.01E-07	Arhgap36	X	1.525	1.880	3.681	8.77E-06	$1.01 \mathrm{E}-04$
Rps17	7	510.139	-1.172	-2.253	$1.19 \mathrm{E}-08$	3.99E-07	Vangl1	3	0.688	1.178	2.262	$8.75 \mathrm{E}-06$	$1.01 \mathrm{E}-04$
Stac2	11	54.584	-1.089	-2.128	$1.19 \mathrm{E}-08$	3.99E-07	Itih2	2	2.214	1.190	2.281	7.62E-06	$8.94 \mathrm{E}-05$
Mrps16	14	12.617	-1.055	-2.078	9.54E-09	3.26E-07	Trp73	4	0.358	1.957	3.882	6.95E-06	8.27E-05
Nme3	17	35.438	-1.030	-2.042	8.60E-09	2.97E-07	Hspa1a	17	9.667	1.549	2.926	$6.34 \mathrm{E}-06$	$7.69 \mathrm{E}-05$
Rplp0	5	286.580	-1.068	-2.096	8.42E-09	2.92E-07	Abca4	3	0.524	1.494	2.816	$6.21 \mathrm{E}-06$	$7.55 \mathrm{E}-05$
Slirp	12	10.203	-1.053	-2.075	$8.01 \mathrm{E}-09$	2.79E-07	Dlx1	2	8.850	1.389	2.619	$5.92 \mathrm{E}-06$	$7.25 \mathrm{E}-05$
Hsd11b1	1	11.995	-1.496	-2.820	7.35E-09	2.59E-07	Scube3	17	0.505	1.639	3.115	5.59E-06	6.90E-05
Cstb	10	47.035	-1.018	-2.025	$7.21 \mathrm{E}-09$	2.55E-07	Rgs9	11	7.286	1.233	2.351	5.50E-06	$6.81 \mathrm{E}-05$
Mgst3	1	113.215	-1.001	-2.001	$6.91 \mathrm{E}-09$	2.47E-07	Oxtr	6	2.979	1.041	2.058	$5.28 \mathrm{E}-06$	$6.59 \mathrm{E}-05$
Rps6	4	559.255	-1.074	-2.106	$6.71 \mathrm{E}-09$	$2.41 \mathrm{E}-07$	Slc4a5	6	0.274	4.472	22.192	$5.24 \mathrm{E}-06$	$6.55 \mathrm{E}-05$
Med21	6	17.341	-1.076	-2.107	$6.68 \mathrm{E}-09$	2.40E-07	Zfhx4	3	0.700	1.043	2.060	$4.74 \mathrm{E}-06$	$6.03 \mathrm{E}-05$
Med31	11	11.717	-1.124	-2.179	$6.22 \mathrm{E}-09$	$2.24 \mathrm{E}-07$	Pde1c	6	0.784	1.011	2.016	$4.53 \mathrm{E}-06$	$5.78 \mathrm{E}-05$
Cox6a1	5	926.523	-1.086	-2.124	5.59E-09	2.04E-07	Acan	7	0.798	1.462	2.755	4.46E-06	$5.70 \mathrm{E}-05$
Cox7c	13	216.254	-1.165	-2.242	5.60E-09	$2.04 \mathrm{E}-07$	Meis1	11	1.040	1.699	3.247	$4.27 \mathrm{E}-06$	$5.49 \mathrm{E}-05$
Atp5o_2	16	281.631	-1.053	-2.074	5.30E-09	$1.96 \mathrm{E}-07$	Bend4	5	1.049	1.098	2.141	$4.00 \mathrm{E}-06$	$5.18 \mathrm{E}-05$
Mrps18c	5	29.719	-1.004	-2.005	5.29E-09	$1.95 \mathrm{E}-07$	Alx4	2	0.612	1.430	2.695	3.39E-06	$4.48 \mathrm{E}-05$
Rps9	7	228.943	-1.084	-2.120	5.26E-09	$1.95 \mathrm{E}-07$	Eln	5	2.472	1.145	2.212	$3.03 \mathrm{E}-06$	$4.08 \mathrm{E}-05$
Selenof	3	123.152	-1.138	-2.200	5.22E-09	1.93E-07	Thsd4	9	1.907	1.457	2.745	3.00E-06	$4.05 \mathrm{E}-05$
Nat8f1	6	12.161	-1.241	-2.363	$4.96 \mathrm{E}-09$	1.87E-07	Tnrc6b	15	4.076	1.017	2.024	$2.63 \mathrm{E}-06$	$3.61 \mathrm{E}-05$
Rpsa	9	327.177	-1.103	-2.148	4.89E-09	$1.84 \mathrm{E}-07$	Cntnap5c	17	1.534	1.337	2.526	$2.62 \mathrm{E}-06$	$3.60 \mathrm{E}-05$
Psmd10	X	17.127	-1.050	-2.071	$4.48 \mathrm{E}-09$	$1.71 \mathrm{E}-07$	Chrna3	9	0.268	2.978	7.877	$2.25 \mathrm{E}-06$	$3.17 \mathrm{E}-05$
Atp5h	11	426.107	-1.061	-2.087	4.43E-09	$1.70 \mathrm{E}-07$	Epha3	16	1.773	1.056	2.080	$2.16 \mathrm{E}-06$	$3.07 \mathrm{E}-05$
Dmac1	4	49.544	-1.002	-2.003	$4.42 \mathrm{E}-09$	$1.69 \mathrm{E}-07$	Sema3g	14	2.449	1.196	2.291	$2.12 \mathrm{E}-06$	$3.02 \mathrm{E}-05$
Tmem160	7	52.295	-1.023	-2.032	$4.42 \mathrm{E}-09$	$1.69 \mathrm{E}-07$	Fhdc1	3	0.928	1.305	2.470	$1.99 \mathrm{E}-06$	$2.86 \mathrm{E}-05$
Arl1	10	93.628	-1.097	-2.138	$4.25 \mathrm{E}-09$	1.65E-07	KI	5	2.819	1.985	3.959	$1.94 \mathrm{E}-06$	2.80E-05
Hbb-bs	7	547.675	-1.903	-3.740	$4.11 \mathrm{E}-09$	$1.60 \mathrm{E}-07$	Tshz1	18	12.905	1.233	2.350	$1.92 \mathrm{E}-06$	$2.77 \mathrm{E}-05$
Tmem218	9	7.642	-1.062	-2.087	3.80E-09	$1.49 \mathrm{E}-07$	Sall3	18	2.012	1.397	2.633	$1.79 \mathrm{E}-06$	$2.62 \mathrm{E}-05$
Zfyve21	12	15.993	-1.109	-2.157	$3.74 \mathrm{E}-09$	$1.48 \mathrm{E}-07$	Hcn3	3	4.086	1.008	2.011	$1.70 \mathrm{E}-06$	$2.51 \mathrm{E}-05$
Rpl24	16	489.211	-1.088	-2.126	$3.74 \mathrm{E}-09$	$1.47 \mathrm{E}-07$	Tmem72	6	0.113	4.226	18.710	$1.70 \mathrm{E}-06$	$2.51 \mathrm{E}-05$
Nenf	1	113.198	-1.049	-2.069	3.54E-09	$1.41 \mathrm{E}-07$	Gabrq	X	0.626	2.025	4.071	$1.69 \mathrm{E}-06$	$2.50 \mathrm{E}-05$
Blvra	2	15.794	-1.022	-2.030	3.52E-09	$1.41 \mathrm{E}-07$	Prokr2	2	0.760	1.598	3.028	$1.58 \mathrm{E}-06$	$2.37 \mathrm{E}-05$
Romo1	2	75.128	-1.029	-2.041	3.33E-09	$1.34 \mathrm{E}-07$	DIl1	17	1.965	1.164	2.241	$1.23 \mathrm{E}-06$	$1.93 \mathrm{E}-05$
Oaz1	10	406.737	-1.054	-2.077	$3.21 \mathrm{E}-09$	$1.31 \mathrm{E}-07$	Igsf10	3	0.393	1.479	2.788	$1.21 \mathrm{E}-06$	$1.91 \mathrm{E}-05$
Rapgef4	2	252.576	-1.313	-2.484	3.08E-09	$1.26 \mathrm{E}-07$	Dcx	X	3.458	1.514	2.856	$1.15 \mathrm{E}-06$	$1.82 \mathrm{E}-05$
Atox1	11	90.711	-1.058	-2.081	3.05E-09	$1.25 \mathrm{E}-07$	Col3a1	1	1.318	1.415	2.667	$1.05 \mathrm{E}-06$	$1.69 \mathrm{E}-05$
Sertad1	7	14.140	-1.139	-2.203	3.02E-09	$1.24 \mathrm{E}-07$	Adamts19	18	0.221	4.327	20.068	1.03E-06	$1.66 \mathrm{E}-05$
Ndufs6	13	87.805	-1.073	-2.104	$2.88 \mathrm{E}-09$	1.19E-07	Thbs1	2	0.920	1.525	2.877	$1.01 \mathrm{E}-06$	$1.63 \mathrm{E}-05$
Rpl37	15	353.115	-1.167	-2.245	$2.75 \mathrm{E}-09$	$1.14 \mathrm{E}-07$	Thsd7b	1	1.374	1.098	2.141	1.00E-06	$1.62 \mathrm{E}-05$
Cd6	19	1.106	-2.057	-4.163	2.65E-09	$1.11 \mathrm{E}-07$	Cacna1e	1	14.741	1.072	2.102	$9.77 \mathrm{E}-07$	1.60E-05

Pts
1810009A15Rik
Rpl13
Cox14
Tmsb4x
Rpa3
Ramp3
Eif3h
Rps3a1
Rpl14
Timm10
Pigyl
C1d
Sar1b
Ndufs5
B9d1
Atp6v1g1
Uqcrq
Ndufb7
Tsen15
Ndufa2
Nhp2
Rps13
Sec11c
Pard6a
Coa8
Micos13
Rbp4
Rbm7
Atp5j2
Atp6v0b
Avpi1
Ssna1
Gm14326
Rbis
Alkbh7
Mylk3
Coa6
Polr2i
Zfand2b
Hspe1
Kcnmb4
Tmem126a
Gtf2a2
Cox6c
Ndufa11
Rpl2211
Glt8d2
Ppih
Cox17
Rpl37a
Prxl2b
Bbip1
Mrpl46
Trappc2l
Atp6v1f
Use1
Sdhd
Mpc1
S100a1
Cryzl1
Ss1812
Cox7a2
Scg5
Ciao2b
Tomm7
Rpl36al
Mrps28
Rgcc
Commd2
Dctn3
Rpl27a
Rps5
Robo3

9	29.160	-1.084
19	22.685	-1.057
8	740.411	-1.118
15	36.994	-1.017
X	703.242	-1.071
6	12.687	-1.405
11	11.320	-1.358
15	200.270	-1.073
3	582.464	-1.119
9	333.108	-1.115
2	45.085	-1.038
9	43.882	-1.064
11	14.888	-1.003
11	58.194	-1.010
4	183.378	-1.020
11	20.153	-1.112
4	122.462	-1.001
11	113.495	-1.180
8	198.793	-1.034
1	25.144	-1.032
18	180.058	-1.033
11	46.096	-1.025
7	109.339	-1.173
18	92.855	-1.047
8	25.608	-1.083
12	11.408	-1.028
17	104.646	-1.088
19	14.722	-1.063
9	15.390	-1.002
5	175.488	-1.173
4	178.901	-1.053
19	29.822	-1.142
2	44.439	-1.009
2	9.142	-1.038
3	14.385	-1.094
17	25.442	-1.087
8	0.991	-1.678
8	26.874	-1.056
7	26.405	-1.017
1	16.906	-1.046
1	113.915	-1.024
10	44.312	-1.001
7	32.397	-1.064
9	13.177	-1.124
15	193.352	-1.200
17	107.437	-1.031
3	105.688	-1.150
10	7.325	-1.087
4	9.200	-1.073
16	17.833	-1.075
1	371.977	-1.145
4	123.097	-1.062
19	19.872	-1.027
7	35.530	-1.048
8	32.411	-1.039
6	151.743	-1.008
8	69.645	-1.111
9	107.248	-1.031
17	98.007	-1.036
3	146.851	-1.185
16	22.485	-1.026
9	14.158	-1.137
9	353.063	-1.214
2	219.424	-1.090
8	28.616	-1.106
5	74.592	-1.105
12	68.249	-1.092
3	20.234	-1.150
14	33.555	-1.215
3	7.197	-1.114
4	129.191	-1.040
7	359.921	-1.186
7	357.372	-1.202
9	1.638	-1.884

-2.120	2.46E-09	1.03E-07
-2.081	$2.36 \mathrm{E}-09$	9.99E-08
-2.170	$2.34 \mathrm{E}-09$	9.92E-08
-2.024	$2.19 \mathrm{E}-09$	$9.35 \mathrm{E}-08$
-2.100	$2.17 \mathrm{E}-09$	$9.31 \mathrm{E}-08$
-2.647	$1.99 \mathrm{E}-09$	8.62E-08
-2.564	$1.99 \mathrm{E}-09$	8.62E-08
-2.103	1.96E-09	8.53E-08
-2.173	$1.91 \mathrm{E}-09$	$8.38 \mathrm{E}-08$
-2.165	1.89E-09	8.28E-08
-2.054	1.82E-09	$8.01 \mathrm{E}-08$
-2.090	1.82E-09	8.01E-08
-2.005	1.76E-09	7.82E-08
-2.014	$1.76 \mathrm{E}-09$	7.82E-08
-2.028	$1.75 \mathrm{E}-09$	$7.81 \mathrm{E}-08$
-2.161	1.69E-09	$7.56 \mathrm{E}-08$
-2.002	$1.67 \mathrm{E}-09$	7.52E-08
-2.266	$1.67 \mathrm{E}-09$	$7.52 \mathrm{E}-08$
-2.047	1.56E-09	7.09E-08
-2.045	$1.54 \mathrm{E}-09$	7.02E-08
-2.046	$1.55 \mathrm{E}-09$	7.02E-08
-2.035	1.52E-09	6.98E-08
-2.255	$1.48 \mathrm{E}-09$	$6.80 \mathrm{E}-08$
-2.067	$1.43 \mathrm{E}-09$	$6.56 \mathrm{E}-08$
-2.118	1.28E-09	5.95E-08
-2.039	$1.24 \mathrm{E}-09$	5.84E-08
-2.126	1.20E-09	$5.71 \mathrm{E}-08$
-2.089	$1.14 \mathrm{E}-09$	$5.45 \mathrm{E}-08$
-2.003	$1.13 \mathrm{E}-09$	$5.41 \mathrm{E}-08$
-2.255	1.12E-09	5.39E-08
-2.075	$1.04 \mathrm{E}-09$	5.03E-08
-2.207	$9.78 \mathrm{E}-10$	$4.74 \mathrm{E}-08$
-2.013	$9.67 \mathrm{E}-10$	$4.70 \mathrm{E}-08$
-2.054	$9.21 \mathrm{E}-10$	$4.50 \mathrm{E}-08$
-2.135	$9.18 \mathrm{E}-10$	4.49E-08
-2.124	$9.13 \mathrm{E}-10$	$4.48 \mathrm{E}-08$
-3.200	$9.04 \mathrm{E}-10$	$4.45 \mathrm{E}-08$
-2.079	9.04E-10	$4.45 \mathrm{E}-08$
-2.024	8.84E-10	4.39E-08
-2.064	8.28E-10	$4.15 \mathrm{E}-08$
-2.034	$8.00 \mathrm{E}-10$	$4.06 \mathrm{E}-08$
-2.001	7.70E-10	3.95E-08
-2.090	7.17E-10	3.72E-08
-2.180	6.87E-10	$3.60 \mathrm{E}-08$
-2.297	$6.85 \mathrm{E}-10$	$3.60 \mathrm{E}-08$
-2.044	6.90E-10	3.60E-08
-2.219	6.46E-10	$3.41 \mathrm{E}-08$
-2.124	6.43E-10	$3.40 \mathrm{E}-08$
-2.103	$5.59 \mathrm{E}-10$	$3.00 \mathrm{E}-08$
-2.106	5.60E-10	3.00E-08
-2.211	$5.51 \mathrm{E}-10$	$2.97 \mathrm{E}-08$
-2.088	$5.45 \mathrm{E}-10$	$2.95 \mathrm{E}-08$
-2.038	$5.47 \mathrm{E}-10$	$2.95 \mathrm{E}-08$
-2.068	$5.35 \mathrm{E}-10$	2.92E-08
-2.054	5.03E-10	$2.76 \mathrm{E}-08$
-2.011	$4.62 \mathrm{E}-10$	2.55E-08
-2.160	$4.59 \mathrm{E}-10$	$2.54 \mathrm{E}-08$
-2.043	$4.41 \mathrm{E}-10$	$2.45 \mathrm{E}-08$
-2.050	4.27E-10	$2.39 \mathrm{E}-08$
-2.273	$4.17 \mathrm{E}-10$	$2.34 \mathrm{E}-08$
-2.037	3.94E-10	2.23E-08
-2.200	$3.41 \mathrm{E}-10$	$1.96 \mathrm{E}-08$
-2.320	3.07E-10	$1.78 \mathrm{E}-08$
-2.129	2.97E-10	$1.73 \mathrm{E}-08$
-2.153	$2.92 \mathrm{E}-10$	$1.71 \mathrm{E}-08$
-2.151	2.86E-10	$1.67 \mathrm{E}-08$
-2.131	2.82E-10	$1.66 \mathrm{E}-08$
-2.219	2.80E-10	$1.65 \mathrm{E}-08$
-2.321	$2.79 \mathrm{E}-10$	$1.65 \mathrm{E}-08$
-2.165	$2.69 \mathrm{E}-10$	$1.60 \mathrm{E}-08$
-2.057	2.63E-10	$1.58 \mathrm{E}-08$
-2.276	$2.47 \mathrm{E}-10$	$1.48 \mathrm{E}-08$
-2.301	$2.18 \mathrm{E}-10$	$1.32 \mathrm{E}-08$
-3.690	2.12E-10	$1.29 \mathrm{E}-08$

Gbx1	5	0.547	2.637	6.221	9.60E-07	$1.57 \mathrm{E}-05$
Tcf7l2	19	1.735	1.285	2.437	$9.43 \mathrm{E}-07$	$1.56 \mathrm{E}-05$
Il17rd	14	0.734	1.155	2.226	9.25E-07	1.53E-05
Epb4114a	18	1.498	1.411	2.659	9.25E-07	$1.53 \mathrm{E}-05$
Crispld2	8	1.531	1.264	2.402	9.18E-07	$1.53 \mathrm{E}-05$
Celsr2	3	21.444	1.097	2.139	9.15E-07	1.52E-05
Cep350	1	3.477	1.009	2.013	9.12E-07	$1.52 \mathrm{E}-05$
Baiap3	17	8.273	1.578	2.986	8.42E-07	$1.42 \mathrm{E}-05$
Vipr2	12	1.853	2.813	7.028	8.28E-07	$1.40 \mathrm{E}-05$
Grin2b	6	13.969	1.327	2.509	8.08E-07	1.37E-05
Prkca	11	25.259	1.009	2.012	7.88E-07	$1.34 \mathrm{E}-05$
Spata13	14	2.168	1.028	2.039	7.65E-07	$1.31 \mathrm{E}-05$
Isl1	13	0.785	2.524	5.751	6.22E-07	$1.11 \mathrm{E}-05$
Dock11	X	1.463	1.123	2.179	5.87E-07	1.05E-05
Frem3	8	0.262	2.441	5.431	$5.78 \mathrm{E}-07$	$1.04 \mathrm{E}-05$
Adra2a	19	6.285	1.035	2.049	$5.01 \mathrm{E}-07$	9.24E-06
Ltbp2	12	0.232	3.372	10.354	$4.91 \mathrm{E}-07$	9.07E-06
Gal	19	1.545	2.975	7.865	4.86E-07	9.00E-06
Impg1	9	0.235	3.080	8.456	4.21E-07	7.97E-06
Col18a1	10	1.211	1.349	2.547	4.07E-07	7.75E-06
Magel2	7	0.867	1.783	3.441	4.04E-07	$7.70 \mathrm{E}-06$
Slc9a4	1	1.264	1.726	3.309	3.96E-07	7.59E-06
Peg3	7	27.883	1.056	2.079	3.80E-07	7.34E-06
Pcdhga4	18	6.345	1.024	2.033	3.71E-07	$7.21 \mathrm{E}-06$
Sdk1	5	0.876	1.052	2.074	3.54E-07	6.91E-06
Hap1	11	65.482	1.095	2.135	3.52E-07	6.89E-06
Gdpd5	7	6.761	1.118	2.170	3.33E-07	$6.58 \mathrm{E}-06$
Glp1r	17	0.405	2.197	4.585	3.13E-07	6.22E-06
Armcx4	X	7.815	1.039	2.055	3.09E-07	6.15E-06
Kirrel	3	1.114	1.216	2.324	2.87E-07	5.79E-06
Alk	17	1.591	1.202	2.301	2.69E-07	5.50E-06
Syt10	15	7.904	1.325	2.505	2.36E-07	4.97E-06
Nhs	X	0.825	1.403	2.645	2.08E-07	$4.42 \mathrm{E}-06$
Tll1	8	0.711	1.806	3.498	2.06E-07	4.40E-06
Ttc28	5	2.423	1.046	2.065	$1.91 \mathrm{E}-07$	4.14E-06
Nav1	1	6.886	1.063	2.089	$1.91 \mathrm{E}-07$	4.14E-06
Arid5b	10	4.654	1.031	2.043	$1.84 \mathrm{E}-07$	4.03E-06
Fstl5	3	7.281	1.391	2.623	$1.78 \mathrm{E}-07$	3.91E-06
Drd3	16	0.472	4.694	25.883	1.68E-07	$3.74 \mathrm{E}-06$
Nrxn3	12	19.094	1.018	2.026	$1.67 \mathrm{E}-07$	3.73E-06
Tbx21	11	1.726	4.190	18.252	$1.46 \mathrm{E}-07$	$3.31 \mathrm{E}-06$
Creb312	6	2.248	1.012	2.017	$1.31 \mathrm{E}-07$	3.01E-06
Stk32b	5	1.611	1.399	2.637	$1.25 \mathrm{E}-07$	2.88E-06
Lonrf2	1	29.059	1.001	2.001	1.18E-07	$2.74 \mathrm{E}-06$
Birc6	17	5.771	1.005	2.007	1.16E-07	2.71E-06
Pcbp3	10	31.059	1.343	2.536	$1.14 \mathrm{E}-07$	$2.65 \mathrm{E}-06$
Tacr1	6	1.880	2.022	4.062	1.08E-07	2.54E-06
Kcnk15	2	0.955	3.949	15.444	1.07E-07	2.54E-06
Tnc	4	1.036	1.282	2.431	1.05E-07	2.48E-06
Ntrk1	3	0.861	2.712	6.551	$1.02 \mathrm{E}-07$	$2.43 \mathrm{E}-06$
Actn2	13	5.874	1.175	2.258	9.02E-08	2.19E-06
Slc32a1	2	53.360	1.012	2.016	8.55E-08	2.09E-06
Lancl3	X	1.984	1.651	3.139	7.61E-08	1.87E-06
Sp7	15	1.808	2.927	7.605	7.27E-08	1.80E-06
SIc10a4	5	2.180	2.634	6.206	7.19E-08	1.79E-06
Trdn	10	0.231	3.301	9.855	6.63E-08	$1.67 \mathrm{E}-06$
SIc18a3	14	1.061	2.412	5.323	$6.60 \mathrm{E}-08$	$1.66 \mathrm{E}-06$
Sema3d	5	1.189	1.329	2.512	$6.20 \mathrm{E}-08$	1.57E-06
Scn2a	2	30.058	1.016	2.022	$5.75 \mathrm{E}-08$	1.47E-06
Fry	5	12.431	1.131	2.190	5.72E-08	1.47E-06
Hydin	8	0.167	1.885	3.693	$5.47 \mathrm{E}-08$	$1.41 \mathrm{E}-06$
Inpp4b	8	1.345	1.148	2.216	5.27E-08	$1.36 \mathrm{E}-06$
Pakap_3	4	5.907	1.036	2.050	5.12E-08	1.33E-06
Tox3	8	5.340	1.086	2.124	5.02E-08	1.32E-06
Dscaml1	9	11.138	1.066	2.093	$4.68 \mathrm{E}-08$	1.24E-06
Cntnap3	13	2.634	1.303	2.467	$4.66 \mathrm{E}-08$	$1.24 \mathrm{E}-06$
Chrnb4	9	0.391	4.210	18.505	$4.61 \mathrm{E}-08$	$1.23 \mathrm{E}-06$
Nr2f2	7	7.107	1.149	2.218	$4.58 \mathrm{E}-08$	$1.22 \mathrm{E}-06$
Zfp366	13	1.440	1.277	2.424	$4.45 \mathrm{E}-08$	$1.19 \mathrm{E}-06$
Foxo1	3	4.407	1.061	2.086	$4.37 \mathrm{E}-08$	$1.18 \mathrm{E}-06$
Gbx2	1	0.481	4.489	22.459	$3.80 \mathrm{E}-08$	1.05E-06
Dlx5	6	7.388	1.589	3.009	3.77E-08	$1.04 \mathrm{E}-06$
Igsf1	X	1.713	1.328	2.510	$3.75 \mathrm{E}-08$	$1.04 \mathrm{E}-06$
Fndc1	17	0.949	1.589	3.008	3.56E-08	1.00E-06

Tbca	13	83.059	-1.057	-2.081	2.09E-10	1.28E-08	Ush1g	11	1.029	2.878	7.353	3.46E-08	$9.75 \mathrm{E}-07$
1110065P20Rik	4	40.675	-1.034	-2.048	2.05E-10	$1.26 \mathrm{E}-08$	Fam20c	5	17.038	1.018	2.026	$3.41 \mathrm{E}-08$	$9.65 \mathrm{E}-07$
Dgcr6	16	47.392	-1.106	-2.152	1.94E-10	$1.20 \mathrm{E}-08$	Sall1	8	7.930	1.188	2.279	3.36E-08	9.53E-07
Lamtor5	3	64.624	-1.049	-2.070	1.90E-10	$1.17 \mathrm{E}-08$	Pde3a	6	0.652	1.441	2.715	$3.11 \mathrm{E}-08$	8.93E-07
Mrpl20	4	56.533	-1.039	-2.055	$1.78 \mathrm{E}-10$	$1.11 \mathrm{E}-08$	Nxph4	10	5.932	1.669	3.179	$3.08 \mathrm{E}-08$	8.84E-07
Rps27rt	9	31.475	-1.860	-3.629	$1.76 \mathrm{E}-10$	1.10E-08	Krt9	11	4.107	1.151	2.220	3.06E-08	$8.79 \mathrm{E}-07$
Nop10	2	45.483	-1.042	-2.059	1.70E-10	1.07E-08	Dsg1c	18	0.252	3.704	13.028	2.89E-08	8.38E-07
Pdcd10	3	23.684	-1.087	-2.125	1.59E-10	1.01E-08	Zfp503	14	1.889	1.436	2.706	$2.44 \mathrm{E}-08$	7.23E-07
A430005L14Rik	4	25.514	-1.131	-2.191	1.45E-10	9.33E-09	AW551984	9	3.193	1.526	2.881	$2.38 \mathrm{E}-08$	$7.07 \mathrm{E}-07$
Supt4a	11	66.477	-1.081	-2.116	1.44E-10	9.33E-09	Npr1	3	2.291	2.130	4.378	$2.35 \mathrm{E}-08$	6.99E-07
Rpl10a	17	254.726	-1.187	-2.277	$1.44 \mathrm{E}-10$	9.33E-09	Gaa	11	95.077	1.051	2.072	$2.27 \mathrm{E}-08$	$6.79 \mathrm{E}-07$
Krt12	11	9.553	-1.345	-2.540	$1.41 \mathrm{E}-10$	9.17E-09	Gpr161	1	3.678	1.348	2.546	$2.21 \mathrm{E}-08$	$6.66 \mathrm{E}-07$
Mettl23	11	12.204	-1.126	-2.183	1.40E-10	9.14E-09	Atrx	X	8.169	1.075	2.107	$2.20 \mathrm{E}-08$	$6.64 \mathrm{E}-07$
Lin7b	7	78.436	-1.063	-2.089	$1.26 \mathrm{E}-10$	8.28E-09	Dlx2	2	5.256	1.704	3.259	2.13E-08	6.46E-07
Coa3	11	114.862	-1.007	-2.009	1.22E-10	8.11E-09	Ret	6	1.024	1.518	2.865	$2.06 \mathrm{E}-08$	$6.31 \mathrm{E}-07$
Ptpmt1	2	12.638	-1.107	-2.154	1.17E-10	7.86E-09	Cyp1b1	17	1.151	1.541	2.909	$2.06 \mathrm{E}-08$	$6.31 \mathrm{E}-07$
Rpl35	2	226.640	-1.303	-2.467	1.13E-10	7.62E-09	Aqp1	6	1.808	3.537	11.605	$2.00 \mathrm{E}-08$	6.16E-07
Rps23	13	428.004	-1.249	-2.376	1.07E-10	$7.34 \mathrm{E}-09$	Abca1	4	4.693	1.036	2.051	$1.79 \mathrm{E}-08$	5.53E-07
Serf1	13	11.032	-1.236	-2.356	$1.06 \mathrm{E}-10$	7.24E-09	Dgkg	16	22.447	1.085	2.121	$1.66 \mathrm{E}-08$	5.19E-07
Sft2d1	17	22.450	-1.149	-2.217	$1.01 \mathrm{E}-10$	6.99E-09	Pag1	3	3.001	1.040	2.056	$1.64 \mathrm{E}-08$	5.15E-07
Atpif1	4	449.563	-1.152	-2.222	$9.61 \mathrm{E}-11$	6.64E-09	Sema6a	18	4.452	1.018	2.025	$1.64 \mathrm{E}-08$	5.13E-07
Rpl31	1	292.055	-1.259	-2.393	$9.47 \mathrm{E}-11$	6.60E-09	Sv2a	3	113.223	1.030	2.042	$1.52 \mathrm{E}-08$	4.80E-07
Pop5	5	34.957	-1.152	-2.222	8.78E-11	6.18E-09	Wnt5a	14	1.849	1.241	2.363	1.50E-08	$4.79 \mathrm{E}-07$
Rpl36a	X	299.385	-1.152	-2.222	$8.77 \mathrm{E}-11$	$6.18 \mathrm{E}-09$	St3gal1	15	7.302	1.003	2.004	$1.44 \mathrm{E}-08$	$4.61 \mathrm{E}-07$
Rpl11	4	410.997	-1.244	-2.368	$8.65 \mathrm{E}-11$	6.14E-09	Grik3	4	10.474	1.016	2.022	$1.42 \mathrm{E}-08$	$4.58 \mathrm{E}-07$
Vcpkmt	12	16.446	-1.167	-2.245	$8.40 \mathrm{E}-11$	5.98E-09	Zfp608	18	4.838	1.186	2.276	$1.42 \mathrm{E}-08$	$4.58 \mathrm{E}-07$
Gng10	4	53.701	-1.138	-2.201	$6.98 \mathrm{E}-11$	4.99E-09	Runx1t1	4	2.654	1.048	2.068	$1.41 \mathrm{E}-08$	$4.57 \mathrm{E}-07$
Rpl36	17	538.114	-1.326	-2.506	$6.97 \mathrm{E}-11$	4.99E-09	Cemip2	19	2.214	1.079	2.113	$1.41 \mathrm{E}-08$	$4.57 \mathrm{E}-07$
Gls2	10	8.821	-1.052	-2.074	$6.77 \mathrm{E}-11$	4.88E-09	Sp9	2	3.199	1.863	3.637	$1.35 \mathrm{E}-08$	$4.42 \mathrm{E}-07$
Tma7	9	110.473	-1.052	-2.073	$6.37 \mathrm{E}-11$	$4.61 \mathrm{E}-09$	Ylpm1	12	14.427	1.151	2.220	$1.35 \mathrm{E}-08$	$4.42 \mathrm{E}-07$
Psmb10	8	36.444	-1.087	-2.124	$6.21 \mathrm{E}-11$	$4.51 \mathrm{E}-09$	Kcnd2	6	17.589	1.100	2.144	$1.32 \mathrm{E}-08$	$4.35 \mathrm{E}-07$
Rack1	11	248.145	-1.215	-2.321	$5.75 \mathrm{E}-11$	$4.19 \mathrm{E}-09$	Foxp2	6	1.287	1.260	2.395	$1.27 \mathrm{E}-08$	$4.20 \mathrm{E}-07$
Rpl38	11	493.499	-1.251	-2.380	$5.72 \mathrm{E}-11$	4.19E-09	Pde11a	2	1.299	1.479	2.787	$1.26 \mathrm{E}-08$	$4.17 \mathrm{E}-07$
Polr2e	10	81.028	-1.008	-2.011	$5.53 \mathrm{E}-11$	4.08E-09	Slc8a1	17	10.306	1.215	2.321	$1.21 \mathrm{E}-08$	$4.01 \mathrm{E}-07$
Arhgdig	17	92.215	-1.030	-2.043	$5.54 \mathrm{E}-11$	$4.08 \mathrm{E}-09$	Prkg1	19	1.700	1.228	2.343	$1.16 \mathrm{E}-08$	3.90E-07
Rnf7	9	85.667	-1.062	-2.088	5.39E-11	4.02E-09	Abl2	1	8.261	1.045	2.064	$1.06 \mathrm{E}-08$	3.57E-07
Acyp2	11	29.454	-1.167	-2.245	$5.01 \mathrm{E}-11$	$3.81 \mathrm{E}-09$	Abi3bp	16	1.797	1.789	3.457	$1.04 \mathrm{E}-08$	$3.51 \mathrm{E}-07$
Mrps33	6	63.453	-1.031	-2.044	$4.10 \mathrm{E}-11$	3.14E-09	Pcdhgb6	18	8.261	1.037	2.052	9.96E-09	$3.39 \mathrm{E}-07$
Mtln	2	41.715	-1.162	-2.238	$3.78 \mathrm{E}-11$	2.93E-09	Nexmif	X	3.948	1.041	2.058	9.18E-09	3.15E-07
Rps8	4	622.285	-1.227	-2.341	$3.76 \mathrm{E}-11$	2.93E-09	Ace	11	5.447	1.209	2.312	9.09E-09	3.13E-07
Pstk	7	13.656	-1.196	-2.291	$3.76 \mathrm{E}-11$	2.93E-09	Pcdhga1	18	2.741	1.067	2.096	8.10E-09	2.82E-07
Rps27a	11	434.982	-1.313	-2.484	3.79E-11	2.93E-09	Pcdhga10	18	5.126	1.066	2.093	7.97E-09	2.79E-07
Dpm1	2	6.420	-1.169	-2.249	3.68E-11	2.90E-09	Atp8a2	14	4.454	1.065	2.092	$7.41 \mathrm{E}-09$	$2.61 \mathrm{E}-07$
Lsm1	8	10.382	-1.104	-2.150	$3.55 \mathrm{E}-11$	2.82E-09	Itga4	2	2.056	1.104	2.150	$7.21 \mathrm{E}-09$	$2.55 \mathrm{E}-07$
Naa38	11	75.298	-1.122	-2.176	$3.39 \mathrm{E}-11$	2.70E-09	Gad1	2	102.059	1.189	2.280	$5.94 \mathrm{E}-09$	$2.15 \mathrm{E}-07$
Nme2	11	59.952	-1.226	-2.339	3.19E-11	$2.56 \mathrm{E}-09$	Kcnb2	1	1.928	1.276	2.422	5.73E-09	$2.08 \mathrm{E}-07$
Arpp19	9	81.280	-1.143	-2.209	3.02E-11	2.46E-09	Brd4	17	12.329	1.028	2.039	5.46E-09	$2.00 \mathrm{E}-07$
Mpc2	1	107.807	-1.081	-2.116	$2.35 \mathrm{E}-11$	1.92E-09	Cracd	5	6.737	1.066	2.094	5.22E-09	$1.93 \mathrm{E}-07$
Ndufb6	4	126.344	-1.118	-2.171	$2.32 \mathrm{E}-11$	1.92E-09	Cntnap5a	1	4.802	1.047	2.066	5.19E-09	$1.93 \mathrm{E}-07$
Bok	1	41.610	-1.117	-2.169	$2.30 \mathrm{E}-11$	$1.90 \mathrm{E}-09$	Atp2b4	1	34.293	1.131	2.190	$5.14 \mathrm{E}-09$	$1.92 \mathrm{E}-07$
Mrpl12	11	87.780	-1.117	-2.170	2.29E-11	$1.90 \mathrm{E}-09$	Tmem255a	X	10.525	1.176	2.260	$4.75 \mathrm{E}-09$	$1.79 \mathrm{E}-07$
Ndufb2	6	23.583	-1.099	-2.142	$2.27 \mathrm{E}-11$	$1.90 \mathrm{E}-09$	Tmem131	1	10.427	1.050	2.071	$4.68 \mathrm{E}-09$	$1.78 \mathrm{E}-07$
S100a6	3	17.280	-1.342	-2.536	2.24E-11	1.89E-09	Ankfn1	11	1.145	1.627	3.089	$4.62 \mathrm{E}-09$	$1.76 \mathrm{E}-07$
Mrpl41	2	74.708	-1.105	-2.151	2.23E-11	1.88E-09	F5	1	0.554	3.393	10.505	$4.35 \mathrm{E}-09$	$1.68 \mathrm{E}-07$
Smim26	2	39.871	-1.199	-2.296	$2.17 \mathrm{E}-11$	1.84E-09	Slco5a1	1	0.449	2.318	4.987	$4.24 \mathrm{E}-09$	$1.64 \mathrm{E}-07$
Bri3	5	50.339	-1.127	-2.184	2.00E-11	$1.71 \mathrm{E}-09$	Slc6a9	4	12.981	1.066	2.093	3.90E-09	$1.53 \mathrm{E}-07$
Bnip3	7	87.361	-1.084	-2.120	1.93E-11	$1.67 \mathrm{E}-09$	Camk2d	3	14.373	1.127	2.184	3.63E-09	$1.44 \mathrm{E}-07$
Serp2	14	132.735	-1.122	-2.177	1.92E-11	$1.67 \mathrm{E}-09$	Glg1	8	36.124	1.161	2.236	$3.64 \mathrm{E}-09$	$1.44 \mathrm{E}-07$
Rps271	9	28.486	-1.268	-2.408	1.70E-11	$1.53 \mathrm{E}-09$	Slc8a3	12	6.143	1.195	2.290	$3.58 \mathrm{E}-09$	$1.42 \mathrm{E}-07$
Rps16	7	297.442	-1.282	-2.432	1.63E-11	1.47E-09	Car12	9	6.261	1.124	2.180	3.40E-09	$1.36 \mathrm{E}-07$
Coq2	5	46.236	-1.110	-2.158	$1.57 \mathrm{E}-11$	$1.43 \mathrm{E}-09$	Trim62	4	6.919	1.099	2.142	$3.38 \mathrm{E}-09$	$1.36 \mathrm{E}-07$
Chchd6	6	91.373	-1.069	-2.099	1.43E-11	$1.33 \mathrm{E}-09$	Diaph2	X	2.783	1.048	2.068	$3.34 \mathrm{E}-09$	$1.35 \mathrm{E}-07$
Ndufaf5	2	45.218	-1.140	-2.204	$1.41 \mathrm{E}-11$	$1.32 \mathrm{E}-09$	Epha5	5	10.794	1.025	2.035	$3.31 \mathrm{E}-09$	$1.34 \mathrm{E}-07$
Rps10	17	203.467	-1.302	-2.466	1.39E-11	$1.31 \mathrm{E}-09$	Gprin3	6	1.574	1.206	2.307	3.26E-09	$1.32 \mathrm{E}-07$
Ramp1	1	45.692	-1.194	-2.288	$1.27 \mathrm{E}-11$	$1.21 \mathrm{E}-09$	Cep170	1	7.698	1.072	2.103	$3.11 \mathrm{E}-09$	$1.27 \mathrm{E}-07$
Fau	19	456.742	-1.273	-2.417	1.20E-11	1.15E-09	Patj	4	1.161	1.541	2.911	3.08E-09	1.26E-07
Ssr4	X	67.560	-1.129	-2.188	1.17E-11	1.13E-09	Bmp6	13	5.423	1.029	2.041	2.90E-09	$1.20 \mathrm{E}-07$
Polr2k	15	34.655	-1.264	-2.402	1.13E-11	1.10E-09	Pbx3	2	9.370	1.951	3.865	$2.54 \mathrm{E}-09$	$1.06 \mathrm{E}-07$
Rpl39	X	221.883	-1.249	-2.376	1.02E-11	$9.95 \mathrm{E}-10$	Pcdh8	14	15.444	1.130	2.188	$2.50 \mathrm{E}-09$	$1.05 \mathrm{E}-07$
Gm13304	4	27.472	-1.284	-2.436	9.95E-12	$9.74 \mathrm{E}-10$	Slc5a3	16	2.627	1.378	2.599	2.49E-09	$1.05 \mathrm{E}-07$
Tmem42	9	15.537	-1.188	-2.278	$9.87 \mathrm{E}-12$	$9.72 \mathrm{E}-10$	Tacr3	3	1.164	1.712	3.276	$2.44 \mathrm{E}-09$	$1.03 \mathrm{E}-07$
Gpx1	9	135.875	-1.226	-2.339	8.59E-12	$8.51 \mathrm{E}-10$	Csmd3	15	1.777	1.188	2.278	2.20E-09	$9.41 \mathrm{E}-08$
Pradc1	6	14.909	-1.234	-2.353	8.15E-12	$8.11 \mathrm{E}-10$	Smoc1	12	9.338	1.119	2.172	$2.11 \mathrm{E}-09$	$9.09 \mathrm{E}-08$
Rpl19	11	944.560	-1.300	-2.463	8.09E-12	8.10E-10	Zfp462	4	4.285	1.147	2.214	2.02E-09	8.74E-08

Rpl26	11	681.432	-1.341	-2.533	7.60E-12	7.69E-10	Atg2b	12	6.801	1.053	2.074	2.00E-09	8.64E-08
Bud31	5	65.330	-1.125	-2.181	$7.44 \mathrm{E}-12$	$7.61 \mathrm{E}-10$	Inpp5j	11	15.085	1.316	2.489	1.95E-09	$8.52 \mathrm{E}-08$
Tmem208	8	20.091	-1.234	-2.352	$7.37 \mathrm{E}-12$	$7.61 \mathrm{E}-10$	Dgkk	X	0.486	2.037	4.103	$1.77 \mathrm{E}-09$	$7.82 \mathrm{E}-08$
Smim36	11	10.048	-1.164	-2.241	7.43E-12	$7.61 \mathrm{E}-10$	Klhl30	1	0.859	4.112	17.288	1.69E-09	$7.56 \mathrm{E}-08$
Ndufb8	19	126.274	-1.286	-2.439	6.73E-12	$7.05 \mathrm{E}-10$	Hspg2	4	0.971	1.431	2.696	$1.69 \mathrm{E}-09$	$7.56 \mathrm{E}-08$
Vps29	5	51.228	-1.113	-2.163	6.56E-12	6.90E-10	Chd6	2	7.056	1.097	2.139	$1.42 \mathrm{E}-09$	6.53E-08
Rps7	12	430.269	-1.310	-2.480	5.76E-12	$6.14 \mathrm{E}-10$	Slc9a1	4	12.799	1.031	2.043	$1.31 \mathrm{E}-09$	$6.07 \mathrm{E}-08$
Bola2	7	28.810	-1.214	-2.319	$5.68 \mathrm{E}-12$	$6.08 \mathrm{E}-10$	Myh9	15	12.502	1.078	2.111	$1.29 \mathrm{E}-09$	$5.99 \mathrm{E}-08$
Atp5l	9	489.142	-1.213	-2.318	$5.58 \mathrm{E}-12$	$6.04 \mathrm{E}-10$	Amigo2	15	3.777	1.251	2.380	$1.26 \mathrm{E}-09$	5.89E-08
Sirt3	7	51.832	-1.144	-2.210	5.46E-12	$5.95 \mathrm{E}-10$	Shisa3	5	2.134	4.181	18.143	$1.25 \mathrm{E}-09$	$5.86 \mathrm{E}-08$
Rps11	7	537.293	-1.310	-2.479	5.28E-12	5.80E-10	Zfp618	4	0.995	1.331	2.516	1.24E-09	$5.84 \mathrm{E}-08$
Cox4i1	8	1125.198	-1.321	-2.499	5.14E-12	5.68E-10	Pdgfra	5	8.418	1.023	2.032	$1.24 \mathrm{E}-09$	$5.84 \mathrm{E}-08$
Ndufa4	6	589.078	-1.254	-2.384	5.08E-12	5.63E-10	Parm1	5	16.911	1.124	2.179	1.13E-09	$5.39 \mathrm{E}-08$
Mrpl13	15	34.701	-1.188	-2.278	4.82E-12	5.39E-10	Myh10	11	32.158	1.118	2.171	9.30E-10	$4.53 \mathrm{E}-08$
Syt12	7	7.067	-1.149	-2.218	$4.54 \mathrm{E}-12$	5.13E-10	Cachd1	4	3.762	1.115	2.166	8.65E-10	$4.31 \mathrm{E}-08$
Ndufs4	13	41.817	-1.127	-2.183	$4.28 \mathrm{E}-12$	$4.87 \mathrm{E}-10$	Strn	17	8.427	1.020	2.028	8.67E-10	$4.31 \mathrm{E}-08$
Rps15	10	1118.562	-1.361	-2.569	$4.11 \mathrm{E}-12$	$4.71 \mathrm{E}-10$	Chat	14	1.677	2.596	6.047	8.30E-10	$4.15 \mathrm{E}-08$
Nt5c	11	46.877	-1.126	-2.182	4.11E-12	$4.71 \mathrm{E}-10$	Kirrel3	9	13.597	1.029	2.041	8.19E-10	$4.14 \mathrm{E}-08$
Bloc1s2	19	51.503	-1.151	-2.220	4.07E-12	$4.71 \mathrm{E}-10$	Pde10a	17	15.985	1.190	2.281	8.01E-10	$4.06 \mathrm{E}-08$
Rps12	10	409.667	-1.446	-2.725	4.01E-12	$4.70 \mathrm{E}-10$	Cntnap4	8	6.841	1.157	2.230	7.89E-10	$4.03 \mathrm{E}-08$
Fmc1	6	71.237	-1.352	-2.553	3.77E-12	$4.48 \mathrm{E}-10$	Astn1	1	40.418	1.104	2.149	$7.77 \mathrm{E}-10$	3.97E-08
Mrpl28	17	76.515	-1.226	-2.340	3.75E-12	$4.48 \mathrm{E}-10$	Prlr	15	0.353	2.565	5.917	7.42E-10	3.82E-08
Rps19	7	163.352	-1.345	-2.540	3.56E-12	$4.31 \mathrm{E}-10$	Shisa8	15	5.827	2.872	7.322	7.25E-10	$3.75 \mathrm{E}-08$
Dkkl1	7	22.477	-1.228	-2.342	3.18E-12	3.93E-10	Adamtsl1	4	1.104	1.325	2.505	7.07E-10	3.68E-08
Gm21586	4	14.680	-1.977	-3.937	3.06E-12	3.82E-10	Disp2	2	40.987	1.172	2.253	6.88E-10	3.60E-08
Snrpg	6	36.757	-1.275	-2.420	3.03E-12	3.82E-10	Zswim5	4	3.940	1.121	2.175	6.35E-10	3.37E-08
Atp5k	5	409.610	-1.260	-2.395	$2.71 \mathrm{E}-12$	3.45E-10	Dchs2	3	0.396	2.191	4.565	6.04E-10	3.22E-08
Acot13	13	140.840	-1.227	-2.341	2.70E-12	$3.45 \mathrm{E}-10$	Heatr5b	17	8.180	1.090	2.129	5.77E-10	3.08E-08
Atp5md	19	83.141	-1.373	-2.590	2.57E-12	$3.31 \mathrm{E}-10$	Map3k1	13	2.409	1.741	3.342	$5.31 \mathrm{E}-10$	$2.91 \mathrm{E}-08$
Psma7	2	129.006	-1.150	-2.219	2.30E-12	3.03E-10	Calb2	8	52.968	2.099	4.283	$4.41 \mathrm{E}-10$	$2.45 \mathrm{E}-08$
Rpain	11	10.116	-1.399	-2.638	$2.28 \mathrm{E}-12$	3.03E-10	Fmod	1	12.626	1.148	2.217	$4.03 \mathrm{E}-10$	2.27E-08
Snrnp25	11	32.574	-1.251	-2.380	2.18E-12	$2.91 \mathrm{E}-10$	Sp8	12	2.339	3.498	11.298	$4.01 \mathrm{E}-10$	2.27E-08
Cebpzos	17	24.619	-1.222	-2.333	2.08E-12	2.82E-10	Dnm3	1	17.933	1.090	2.128	3.92E-10	$2.23 \mathrm{E}-08$
Ovol2	2	4.309	-1.921	-3.787	2.05E-12	$2.81 \mathrm{E}-10$	Numa1	7	12.523	1.102	2.146	3.80E-10	$2.17 \mathrm{E}-08$
Gm14295	2	8.166	-1.213	-2.318	$2.04 \mathrm{E}-12$	$2.81 \mathrm{E}-10$	Kit	5	12.124	1.124	2.179	3.67E-10	$2.10 \mathrm{E}-08$
Ndufb1	12	82.045	-1.254	-2.385	2.03E-12	2.81E-10	Tpr	1	13.717	1.032	2.044	3.53E-10	$2.03 \mathrm{E}-08$
Rpl5	5	280.651	-1.388	-2.616	1.72E-12	2.47E-10	Notch3	17	2.380	1.070	2.100	3.39E-10	$1.96 \mathrm{E}-08$
Tmem141	2	25.858	-1.221	-2.332	1.53E-12	2.23E-10	Cacng5	11	11.277	2.262	4.796	2.79E-10	$1.65 \mathrm{E}-08$
Rpl9-ps6	19	17.573	-1.960	-3.889	1.26E-12	1.88E-10	Zc3h13	14	9.941	1.219	2.328	2.69E-10	$1.60 \mathrm{E}-08$
1810037I17Rik	3	69.280	-1.270	-2.411	1.17E-12	$1.77 \mathrm{E}-10$	Kctd12	14	19.037	1.068	2.097	2.32E-10	$1.40 \mathrm{E}-08$
Gpx4	10	490.006	-1.344	-2.538	1.15E-12	1.76E-10	Prrc2c	1	13.338	1.276	2.421	2.23E-10	$1.35 \mathrm{E}-08$
Medag	5	8.542	-1.413	-2.663	1.13E-12	$1.74 \mathrm{E}-10$	Rrbp1	2	9.715	1.036	2.050	2.07E-10	$1.27 \mathrm{E}-08$
Rps24	14	339.149	-1.443	-2.720	1.00E-12	$1.56 \mathrm{E}-10$	Sorcs2	5	10.146	1.061	2.086	1.87E-10	$1.16 \mathrm{E}-08$
Immp11	2	26.872	-1.241	-2.363	$9.91 \mathrm{E}-13$	$1.55 \mathrm{E}-10$	Zfp516	18	2.957	1.182	2.268	$1.75 \mathrm{E}-10$	$1.10 \mathrm{E}-08$
Gm2000	1	272.523	-1.309	-2.477	8.82E-13	$1.41 \mathrm{E}-10$	L1cam	X	31.708	1.119	2.172	1.67E-10	$1.06 \mathrm{E}-08$
Rps3	7	333.208	-1.408	-2.654	7.84E-13	$1.26 \mathrm{E}-10$	Gprasp1	X	83.709	1.195	2.290	$1.66 \mathrm{E}-10$	1.05E-08
Chchd1	14	59.108	-1.211	-2.314	7.64E-13	$1.24 \mathrm{E}-10$	Grm4	17	7.086	1.574	2.978	$1.53 \mathrm{E}-10$	9.74E-09
Mrpl14	17	41.175	-1.216	-2.324	7.05E-13	1.16E-10	Scgn	13	2.777	4.115	17.323	1.50E-10	9.63E-09
Tmem242	17	53.182	-1.225	-2.337	6.77E-13	1.13E-10	Tnr	1	15.720	1.241	2.364	1.49E-10	9.56E-09
Ndufb9	15	531.951	-1.379	-2.600	6.62E-13	$1.11 \mathrm{E}-10$	Fras1	5	1.305	1.211	2.316	1.39E-10	9.10E-09
Arhgap15	2	3.968	-1.358	-2.563	6.32E-13	$1.07 \mathrm{E}-10$	Lamb1	12	3.703	1.290	2.446	$1.24 \mathrm{E}-10$	8.19E-09
1110032F04Rik	3	7.229	-1.261	-2.397	6.03E-13	$1.03 \mathrm{E}-10$	Doc2g	19	32.343	4.075	16.856	1.20E-10	8.01E-09
Churc1	12	63.499	-1.206	-2.308	$5.74 \mathrm{E}-13$	$9.93 \mathrm{E}-11$	Pnma8b	7	125.206	1.144	2.210	$1.19 \mathrm{E}-10$	7.96E-09
Pet100	8	21.997	-1.334	-2.522	$5.68 \mathrm{E}-13$	$9.91 \mathrm{E}-11$	Igf2r	17	4.580	1.146	2.213	1.15E-10	$7.72 \mathrm{E}-09$
Timm10b	7	11.252	-1.171	-2.252	$5.51 \mathrm{E}-13$	9.70E-11	Slc7a14	3	15.630	1.245	2.371	1.11E-10	7.52E-09
Cd302	2	18.749	-1.320	-2.497	5.09E-13	9.13E-11	Pcdhga2	18	4.896	1.187	2.277	1.10E-10	7.51E-09
Atp5mpl	12	162.351	-1.242	-2.365	$4.88 \mathrm{E}-13$	8.85E-11	Hectd1	12	14.164	1.183	2.271	$9.57 \mathrm{E}-11$	6.64E-09
Ndufaf2	13	8.459	-1.301	-2.465	4.59E-13	$8.59 \mathrm{E}-11$	Ackr1	1	19.072	1.066	2.093	$9.46 \mathrm{E}-11$	6.60E-09
Rpl32	6	331.435	-1.415	-2.667	3.20E-13	6.10E-11	Sox1	8	5.342	1.141	2.205	9.10E-11	$6.38 \mathrm{E}-09$
Camk2n1	4	865.622	-1.389	-2.619	3.15E-13	6.06E-11	Col25a1	3	6.523	1.328	2.510	$5.51 \mathrm{E}-11$	4.08E-09
gene:ENSMUSG00000115423	2	27.714	-1.248	-2.375	$2.52 \mathrm{E}-13$	$4.97 \mathrm{E}-11$	Plce1	19	1.959	1.117	2.168	5.38E-11	4.02E-09
Guk1	11	154.448	-1.277	-2.424	2.45E-13	$4.88 \mathrm{E}-11$	Dpysl3	18	10.024	1.088	2.126	5.26E-11	3.95E-09
Car8	4	5.822	-1.493	-2.815	2.11E-13	$4.25 \mathrm{E}-11$	Slc5a7	17	1.223	2.377	5.194	$5.08 \mathrm{E}-11$	3.83E-09
Rpl13a	7	798.360	-1.481	-2.792	2.10E-13	$4.25 \mathrm{E}-11$	Unc5c	3	3.596	1.209	2.311	$5.05 \mathrm{E}-11$	3.82E-09
Dctpp1	7	24.670	-1.354	-2.557	1.92E-13	3.94E-11	Nynrin	14	2.230	1.202	2.300	$4.15 \mathrm{E}-11$	3.17E-09
Rpl41	10	1279.109	-1.450	-2.732	1.85E-13	3.85E-11	Cpd	11	13.941	1.084	2.120	4.07E-11	3.13E-09
Cd34	1	34.742	-1.162	-2.238	$1.71 \mathrm{E}-13$	3.59E-11	Srgap1	10	2.737	1.207	2.309	3.78E-11	2.93E-09
Rpl34	3	121.667	-1.544	-2.916	$1.57 \mathrm{E}-13$	$3.34 \mathrm{E}-11$	Thsd7a	6	4.024	1.384	2.610	3.27E-11	2.62E-09
Rpl35a	16	399.006	-1.491	-2.810	1.43E-13	3.11E-11	Pcdhgb5	18	2.857	1.281	2.429	3.13E-11	2.53E-09
Bbln	2	70.642	-1.338	-2.529	1.20E-13	2.65E-11	Scn3a	2	4.356	1.228	2.343	3.06E-11	2.48E-09
Rps18	17	488.375	-1.436	-2.705	1.19E-13	$2.65 \mathrm{E}-11$	Aebp1	11	9.651	1.268	2.409	$2.34 \mathrm{E}-11$	1.92E-09
Uqcrh	4	646.578	-1.430	-2.695	1.08E-13	2.45E-11	Ankrd63	2	11.012	1.294	2.452	$2.06 \mathrm{E}-11$	1.76E-09
Elof1	9	43.907	-1.235	-2.354	9.17E-14	$2.14 \mathrm{E}-11$	Nectin1	9	12.922	1.189	2.280	1.96E-11	1.69E-09
Cep20	16	46.584	-1.279	-2.427	$4.74 \mathrm{E}-14$	1.13E-11	Raver1	9	7.821	1.349	2.548	$1.89 \mathrm{E}-11$	1.65E-09

Mien1	11	139.140	-1.195	-2.289	4.53E-14	$1.11 \mathrm{E}-11$	Lamc1	1	5.222	1.209	2.312	$1.81 \mathrm{E}-11$	1.59E-09
Mrpl33	5	15.113	-1.428	-2.691	4.18E-14	$1.04 \mathrm{E}-11$	Cdh4	2	7.614	1.255	2.387	1.79E-11	$1.57 \mathrm{E}-09$
Cox7b	X	298.286	-1.385	-2.612	3.50E-14	8.90E-12	Th	7	8.572	3.884	14.764	$1.75 \mathrm{E}-11$	1.54E-09
Rps21	2	901.784	-1.534	-2.895	$2.90 \mathrm{E}-14$	7.92E-12	Map1b	13	70.502	1.411	2.660	$1.73 \mathrm{E}-11$	1.54E-09
Rps25	9	288.305	-1.451	-2.734	$2.34 \mathrm{E}-14$	6.59E-12	Syt6	3	6.522	2.039	4.109	$1.71 \mathrm{E}-11$	1.53E-09
Uqcr10	11	399.904	-1.335	-2.523	2.32E-14	$6.59 \mathrm{E}-12$	Wfs1	5	54.162	1.268	2.407	1.63E-11	$1.47 \mathrm{E}-09$
Rps27	3	554.984	-1.515	-2.857	$1.54 \mathrm{E}-14$	$4.77 \mathrm{E}-12$	Cacna1c	6	5.791	1.320	2.496	$1.56 \mathrm{E}-11$	1.43E-09
Vip	10	37.569	-1.281	-2.429	$1.56 \mathrm{E}-14$	$4.77 \mathrm{E}-12$	Slc29a4	5	8.308	1.176	2.259	$1.46 \mathrm{E}-11$	$1.35 \mathrm{E}-09$
Pfdn5	15	228.147	-1.487	-2.803	1.29E-14	$4.21 \mathrm{E}-12$	Clic6	16	2.452	2.505	5.677	1.45E-11	1.34E-09
Rpl9	5	304.025	-1.553	-2.935	9.22E-15	3.25E-12	Pcdhga5	18	5.840	1.150	2.219	$1.42 \mathrm{E}-11$	1.33E-09
Ndufa7	17	294.099	-1.359	-2.565	6.87E-15	$2.52 \mathrm{E}-12$	Zswim6	13	5.284	1.208	2.311	$1.31 \mathrm{E}-11$	1.24E-09
Ift20	11	57.388	-1.334	-2.520	6.56E-15	2.45E-12	Fat1	8	4.625	1.386	2.614	8.07E-12	8.10E-10
Rpl12	2	382.798	-1.534	-2.895	5.33E-15	2.07E-12	Frmd7	X	3.510	3.994	15.938	7.52E-12	7.65E-10
Gm20878	4	9.870	-1.981	-3.949	4.79E-15	$2.04 \mathrm{E}-12$	Cacna2d2	9	8.884	1.139	2.202	$7.00 \mathrm{E}-12$	$7.29 \mathrm{E}-10$
Cst6	19	2.805	-1.570	-2.970	$4.43 \mathrm{E}-15$	1.93E-12	Ntn1	11	2.991	1.308	2.476	$5.98 \mathrm{E}-12$	6.33E-10
Lsm7	10	37.524	-1.291	-2.447	4.19E-15	1.87E-12	Lamc3	2	1.754	1.403	2.645	$5.61 \mathrm{E}-12$	$6.05 \mathrm{E}-10$
Ccl21d	4	7.138	-3.266	-9.618	3.29E-15	$1.51 \mathrm{E}-12$	Slit3	11	9.393	1.399	2.637	$4.77 \mathrm{E}-12$	5.36E-10
Rpl17	18	549.320	-1.584	-2.997	$2.77 \mathrm{E}-15$	1.30E-12	Otof	5	4.388	1.430	2.694	$4.10 \mathrm{E}-12$	$4.71 \mathrm{E}-10$
Al413582	17	56.494	-1.400	-2.639	1.49E-15	7.17E-13	Col1a2	6	5.163	1.177	2.262	3.87E-12	$4.58 \mathrm{E}-10$
Rps14	18	414.518	-1.605	-3.043	7.52E-16	3.94E-13	Sez6	11	64.844	1.267	2.407	3.60E-12	$4.34 \mathrm{E}-10$
Cops9	1	106.297	-1.396	-2.631	$7.20 \mathrm{E}-16$	3.92E-13	Shisa9	16	16.460	1.201	2.299	3.47E-12	4.23E-10
Sec61g	11	33.549	-1.415	-2.667	$7.28 \mathrm{E}-16$	3.92E-13	Gad2	2	42.753	1.415	2.667	3.42E-12	$4.21 \mathrm{E}-10$
Atp5e	2	453.391	-1.485	-2.800	6.28E-16	3.60E-13	Insyn2b	11	1.165	2.632	6.198	3.06E-12	3.82E-10
Cpne9	6	14.920	-1.451	-2.735	1.88E-16	1.23E-13	Dchs1	7	2.185	1.274	2.419	$2.54 \mathrm{E}-12$	3.30E-10
Ndufb4	16	180.611	-1.433	-2.700	$1.71 \mathrm{E}-16$	$1.16 \mathrm{E}-13$	Strip2	6	6.451	1.268	2.408	2.43E-12	3.18E-10
Uqcc2	17	267.408	-1.501	-2.830	8.67E-17	6.62E-14	Pgap1	1	3.317	1.388	2.618	2.12E-12	$2.86 \mathrm{E}-10$
Gng13	17	89.320	-1.521	-2.870	8.14E-17	6.48E-14	Kcna5	6	3.759	1.802	3.488	$2.00 \mathrm{E}-12$	2.79E-10
Mrpl53	6	62.839	-1.383	-2.608	3.87E-17	3.38E-14	Ndnf	6	3.652	1.670	3.181	1.89E-12	$2.67 \mathrm{E}-10$
Tmem256	11	124.314	-1.525	-2.879	3.59E-17	3.38E-14	Erich3	3	2.812	1.300	2.463	$1.76 \mathrm{E}-12$	$2.50 \mathrm{E}-10$
Timm8b	9	262.456	-1.442	-2.716	2.20E-17	2.28E-14	Dhx9	1	22.554	1.174	2.256	$1.61 \mathrm{E}-12$	2.32E-10
Igfbp6	15	53.281	-1.411	-2.660	2.24E-17	$2.28 \mathrm{E}-14$	C4b	17	7.788	1.307	2.475	$1.41 \mathrm{E}-12$	2.06E-10
Acyp1	12	19.279	-1.507	-2.842	1.05E-17	1.20E-14	Bgn	X	11.680	1.265	2.404	$1.29 \mathrm{E}-12$	1.90E-10
Tomm5	4	71.549	-1.515	-2.858	7.02E-18	8.57E-15	Zic1	9	4.162	1.595	3.021	$1.25 \mathrm{E}-12$	$1.88 \mathrm{E}-10$
Znhit3	11	40.763	-1.554	-2.937	2.27E-18	3.19E-15	Tenm4	7	8.792	1.291	2.446	9.17E-13	1.45E-10
Rspo1	4	6.578	-2.173	-4.509	$1.78 \mathrm{E}-18$	$2.72 \mathrm{E}-15$	Grin3a	4	9.822	1.299	2.460	7.53E-13	$1.23 \mathrm{E}-10$
Gm13306	4	12.675	-2.616	-6.129	6.50E-22	1.70E-18	Cdhr1	14	20.545	3.488	11.219	5.26E-13	9.36E-11
Pvalb	15	74.155	-1.995	-3.987	$9.23 \mathrm{E}-25$	5.52E-21	Soga1	2	4.763	1.427	2.689	$4.85 \mathrm{E}-13$	8.85E-11
Myl4	11	16.799	-1.928	-3.807	2.23E-28	2.04E-24	Dpysl5	5	7.088	1.239	2.360	$4.79 \mathrm{E}-13$	8.85E-11
Ccl27a	4	70.635	-1.850	-3.604	5.75E-32	1.05E-27	Epha6	16	8.139	1.452	2.736	3.72E-13	7.03E-11
							Crybg3	16	1.179	1.499	2.827	$2.84 \mathrm{E}-13$	5.53E-11
							Nid1	13	2.403	1.519	2.866	1.49E-13	$3.21 \mathrm{E}-11$
							Zfp804a	2	5.302	1.294	2.453	$9.41 \mathrm{E}-14$	2.16E-11
							Pcdhga9	18	5.344	1.422	2.679	$9.22 \mathrm{E}-14$	$2.14 \mathrm{E}-11$
							Gpr149	3	1.051	2.466	5.524	4.65E-14	$1.12 \mathrm{E}-11$
							Myo16	8	10.397	1.933	3.818	3.80E-14	9.54E-12
							Kcnd3	3	12.461	1.416	2.669	3.48E-14	8.90E-12
							Pappa2	1	0.885	2.219	4.656	3.32E-14	8.80E-12
							Ms4a15	19	6.186	7.645	200.113	3.36E-14	8.80E-12
							Ntng1	3	7.106	1.371	2.587	$3.00 \mathrm{E}-14$	8.07E-12
							Hen4	9	2.366	1.943	3.845	$2.46 \mathrm{E}-14$	6.83E-12
							Dcc	18	2.530	1.484	2.797	$2.21 \mathrm{E}-14$	$6.42 \mathrm{E}-12$
							Tenm1	X	4.118	1.343	2.537	1.86E-14	$5.51 \mathrm{E}-12$
							Slc13a4	6	7.873	1.319	2.496	$1.82 \mathrm{E}-14$	5.45E-12
							Akap9	5	4.898	1.404	2.647	$1.56 \mathrm{E}-14$	$4.77 \mathrm{E}-12$
							Fn1	1	11.058	1.373	2.589	$1.31 \mathrm{E}-14$	$4.22 \mathrm{E}-12$
							Tenm3	8	10.203	1.490	2.808	$1.20 \mathrm{E}-14$	3.99E-12
							Myh11	16	2.926	1.585	2.999	$1.11 \mathrm{E}-14$	3.75E-12
							Tiam1	16	17.904	1.360	2.568	9.69E-15	3.35E-12
							Mdga1	17	7.328	1.633	3.101	8.06E-15	2.89E-12
							Ndst4	3	3.882	1.432	2.699	5.37E-15	2.07E-12
							Lgr5	10	2.097	3.629	12.372	$5.34 \mathrm{E}-15$	2.07E-12
							Col1a1	11	2.961	1.429	2.693	$5.41 \mathrm{E}-15$	$2.07 \mathrm{E}-12$
							Polr2a	11	15.921	1.361	2.568	$4.94 \mathrm{E}-15$	2.06E-12
							Igsf3	3	3.939	1.555	2.937	$1.21 \mathrm{E}-15$	5.97E-13
							Cspg4	9	3.433	1.324	2.503	8.14E-16	4.14E-13
							Scn5a	9	1.666	2.201	4.597	6.13E-16	3.60E-13
							Grm1	10	8.766	1.460	2.751	3.09E-16	$1.88 \mathrm{E}-13$
							Robo1	16	7.520	1.383	2.608	2.28E-16	$1.44 \mathrm{E}-13$
							Ngfr	11	2.361	2.550	5.857	$1.54 \mathrm{E}-16$	1.09E-13
							Ptpro	6	19.547	2.258	4.784	9.89E-17	7.24E-14
							Ptpn14	1	2.768	1.535	2.899	$5.61 \mathrm{E}-17$	$4.67 \mathrm{E}-14$
							Dlk1	12	3.946	1.864	3.641	3.73E-17	3.38E-14
							Eomes	9	3.592	7.127	139.807	3.78E-18	4.94E-15
							Filip1	9	6.238	1.633	3.102	$3.00 \mathrm{E}-19$	4.99E-16

							Vwf		6	3.821	1.816	3.520	2.24E-19	4.10E-16
							Nos1		5	11.660	1.634	3.104	2.09E-20	4.24E-17
							Nrp2		1	7.671	1.622	3.078	1.41E-20	3.23E-17
							Reln		5	10.356	1.876	3.670	6.63E-23	2.02E-19
							Gm28635		2	0.991	5.864	58.258	1.51E-24	5.52E-21
							Sv2c		13	6.719	2.018	4.051	1.44E-24	5.52E-21

