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Parallel repair mechanisms in plants and animals
Timothy C. Byatt* and Paul Martin*

ABSTRACT
All organisms have acquired mechanisms for repairing themselves
after accidents or lucky escape from predators, but how analogous
are these mechanisms across phyla? Plants and animals are distant
relatives in the tree of life, but both need to be able to efficiently repair
themselves, or they will perish. Both have an outer epidermal barrier
layer and a circulatory system that they must protect from infection.
However, plant cells are immotile with rigid cell walls, so they cannot
raise an animal-like immune response or move away from the insult,
as animals can. Here, we discuss the parallel strategies and signalling
pathways used by plants and animals to heal their tissues, as well as
key differences. A more comprehensive understanding of these
parallels and differences could highlight potential avenues to
enhance healing of patients’ wounds in the clinic and, in a
reciprocal way, for developing novel alternatives to agricultural
pesticides.

The first step is perceiving the wound
Wounding has a multitude of causes, from a predator’s jaws to a
burn in the home or an experimental laser in the laboratory. Tissues
adjacent to the wound perceive this damage and then must
determine the extent of the danger, for example whether the
wound is infected, in order to respond appropriately (Fig. 1).
In both plants and animals, wound activation begins with a flash

of calcium signalling that radiates from the site of the mechanical
insult. This first signal can be visualised using GCaMP reporter (see
Glossary, Box 1) transgenes, enabling live imaging of the calcium
wave in, almost, real time (Fig. 2A) (Nguyen et al., 2018; Razzell
et al., 2013; Xu and Chisholm, 2011; Toyota et al., 2018). For
example, after wounding an Arabidopsis leaf, a calcium wave is
initiated within 2 s and spreads at a speed of ∼1 cm/min until it
reaches a vein, fromwhere it is systemically transmitted, through the
vascular system, to the distal extremities of the plant (Toyota et al.,
2018). In animal tissues, the calcium flash is even more
instantaneous, but remains more local (Razzell et al., 2013; Xu
and Chisholm, 2011).
Damage-triggered calcium waves are transduced through various

mechanisms in both plants and animals. Extracellular calcium
enters through microtears in the plasma membrane of damaged cells
and, in animals, spreads through gap junctions to neighbouring cells
(Shannon et al., 2017). Presumably, a similar process occurs via the
plasmodesmata channels linking neighbouring plant cells.
However, there are also less direct routes for the calcium wave.
For example, a study inDrosophila revealed how proteases released

from damaged cells cleave and activate extracellular growth-
blocking peptides that are detected by G protein-coupled
receptors (Box 1), such as Methuselah-like 10, on cells
neighbouring the wound edge, leading to calcium release from
their endoplasmic reticulum (O’Connor et al., 2021). In plants, a
parallel signalling cascade exists with glutamate receptor-like
(GLR) channels regulating calcium influx when glutamate leaks
from the ruptured phloem (Box 1) and binds to GLRs on the
xylem contact cells (Box 1) and phloem sieve elements (Box 1)
(Qi et al., 2006; Nguyen et al., 2018; Mousavi et al., 2013; Toyota
et al., 2018). Calcium-dependent proteases then cleave pro-plant
elicitor peptides (PEPs) into active forms that bind neighbouring
cells’ PEP receptors to trigger innate immune responses (Hander
et al., 2019).

Wound signalling cascades in life and death
In animal tissues, the calcium wave initiates release of permissive
immune cell attractants, including reactive oxygen species (ROS),
in particular H2O2, which are produced by NADPH oxidase
enzymes (Bedard and Krause, 2007). In Drosophila, Duox, the
NADPH oxidase enzyme responsible for generating H2O2, is
directly responsive to calcium (Razzell et al., 2013). Similarly, in
plants, transmembrane NAPDH oxidases, called respiratory burst
oxidase homologues (RBOHs), produce H2O2 in response to
wounding, which is regulated by calcium-dependent
phosphorylation or by direct binding of calcium to RBOH
domains (Dubiella et al., 2013; Drerup et al., 2013). Is this
calcium-dependent ROS release conserved from a common plant
and animal ancestor, or the result of convergent evolution? We
presume the former because calcium-regulated NAPDH oxidases
are present in the most ancient organisms (Kawahara et al., 2007),
and all examined so far exhibit a wound activated calcium/ROS axis
(Moon et al., 2022).

ROS production in both plants and animals can function directly
as a microbicidal but also as a signalling mechanism to activate
various elements of the defence response at the wound site (Mhamdi
et al., 2010; Chang et al., 2004). Crucial to organism survival, ROS
initiate key mechanisms of the wound repair cascade. One such
mechanism is apoptosis (Box 1), which is critical for driving
proliferation as its inhibition in hydra and Xenopus eliminates their
regenerative response (Tseng et al., 2007; Galliot and Chera, 2010).
H2O2 release at the wound site triggers apoptosis, and inhibition of
ROS-producing enzymes also inhibits regeneration (Love et al.,
2013; Tobiume et al., 2001). Studies in Xenopus and hydra have
shown that ROS-triggered apoptosis, and subsequent proliferation,
is mediated by WNT/β-catenin signalling (Galliot and Chera, 2010;
Love et al., 2013). During fin regeneration in adult zebrafish, it
seems that ROS production leads to a second, later wave of
apoptosis that, in turn, is key to formation of the regenerative
blastema (Box 1) (Gauron et al., 2013). In some animals, successful
regeneration can be potentiated by sacrificing entire stretches of
damaged tissue, involving programmed cell death or autotomy
(Box 1) along pre-defined fracture planes (Box 2).
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There is also an undoubtedly important role for cell death in the
plant wound response. Recent studies in Arabidopsis have shown
that cell death leads to expression of the transcription factor
ethylene-responsive factor 115 (ERF115) in cells neighbouring the
dying epidermal wound-edge cells (Johnson et al., 2018).
Subsequently, ERF115 triggers regenerative cell division
(Heyman et al., 2016), and thus may represent a parallel axis of
regenerative control to the animal WNT/β-catenin pathway because
of its induction by cell death (Zhou et al., 2019; Kong et al., 2018).
Although cell death is clearly an important activator, it is crucial to
limit its spread using ‘dampening’mechanisms to protect the whole
organism (Box 2).

“These adjustments in metabolic
strategies in response to wounding
appear to be essential, across phyla […]
A better understanding of their activation
may lead to development of clinical
therapeutics and agricultural treatments.”

Altering metabolism at the wound site
ROS signalling is also fundamental for wound-induced changes in
metabolism, in both animals (Love et al., 2014) and plants (Jacobo-
Velazquez et al., 2015). The metabolic demands at a site of damage
and repair are hugely increased to drive cell proliferation and other
repair processes. Just as in rapidly growing cancer where the
Warburg effect switches metabolic pathways from the citric acid
cycle and oxidative phosphorylation to anaerobic glycolysis, it
seems that injury and repair can also lead to a metabolic shift in cells
(Sinclair et al., 2021; Scott et al., 2022).

Several decades ago, Thomas Hunt and colleagues revealed high
levels of lactate in healing wounds in rabbits and speculated that
switching to a glycolytic pathway might be key to some elements of
the repair process (Ghani et al., 2003). Gene expression studies in
the regenerating Xenopus tadpole limb show that many genes linked
to glycolytic metabolism are locally induced here too (Love et al.,
2014). More recent single-cell transcriptomic analysis of mouse
skin wounding indicates a dramatic alteration in expression of
metabolism-associated genes (Haensel et al., 2020). In this study,
genes associated with oxidative phosphorylation were
downregulated, and glycolysis-associated genes were upregulated,
in sub-populations of wound-edge cells.

The plant wound response also leads to alterations in metabolism.
A recent proteomics study revealed how wounding leads to an
increase in starch and sucrose metabolism, likely providing the
carbon for biosynthesis of amino acids and secondary metabolites
(Guan et al., 2021).

These adjustments in metabolic strategies in response to
wounding appear to be essential, across phyla, to provide the
energy and resources required to repair a wound and prevent
infection at the site of injury. A better understanding of their
activation may lead to development of clinical therapeutics and
agricultural treatments, or potential prognostic indicators of the
‘health’ status of healing tissues.

Mechanisms for combatting infection
In all organisms, a breach in any barrier layer will result in invasion
by pathogens, including bacteria, fungi and viruses. These
pathogens must be rapidly quelled, or they will overcome the
organism.

In all multicellular organisms, these invaders are recognised by
pattern recognition receptors (PRRs), of which the most prominent
in animals are the Toll-like receptors (Qian and Cao, 2013). In most
animal species, there exists some degree of an immune system that
has evolved to recognise and clear pathogens when the barrier layer
becomes damaged and infection occurs. This triggers a wound
inflammatory response, which, at early stages, is largely dependent
on motile innate immune cells, such as neutrophils, monocytes and
macrophages. Only if wounds become chronic and/or very infected,
will the adaptive immune system be enlisted too (Weavers and
Martin, 2020).

Plants have a very different portfolio of PRRs (Noman et al.,
2019) and do not possess motile immune cell lineages. However,
there is a more primitive component to the inflammatory response
that is shared between animals and plants, which involves the
upregulation and release of antimicrobial peptides (AMPs; Box 1;
Fig. 2C). AMPs are crucial to plant immunity. Some AMPs are
constitutively expressed, but others are locally or systemically
upregulated in response to jasmonate (Box 1) synthesis,
downstream of the immediate wound signals (Browse, 2009;
Howe et al., 2018; Lenglet et al., 2017). The largest family of AMPs
in plants are the defensins, with over 300 members identified in

Box 1. Glossary
Antimicrobial peptides (AMPs): small peptides with diverse
mechanisms for host defence, including broad-spectrum antibacterial,
antiparasitic, antifungal and antiviral activities.
Apoptosis: a mechanism of programmed cell death found in
multicellular organisms that is used to clear unwanted or significantly
damaged cells during development and repair.
Autotomy: self-amputation of a limb or tissue to escape danger.
Auxin: a phytohormone class involved in many plant growth and
development processes, as well as the wound response.
Blastema: a mass of dedifferentiated cells that proliferate and
subsequently re-differentiate to repair lost limbs, organs or tissues in
regeneration-competent animals.
Callose: a polysaccharide that creates a barrier in various plant
processes, for example lining the pores of sieve elements, or is
deposited as part of the plant response to infection and wounding.
GCaMP reporter: a fusion protein of green fluorescent protein,
calmodulin and M13 from myosin light-chain kinase. This fusion
protein fluoresces green when calcium is bound, therefore enabling
live imaging of calcium dynamics in transgenic organisms.
G protein-coupled receptors: transmembrane receptors that initiate a
cellular process in response to the binding of a ligand, such as ATP or
epinephrine.
Jasmonate: a phytohormone important for plant signalling, abiotic and
biotic stress in plants. Activation of jasmonate signalling triggers the
transcription of many wound and defence genes.
Phloem: one of the two plant vessels that form the vascular bundle (see
‘xylem’). The phloem is a tubular structure on the outside of the vascular
bundle that transports sugars, amino acids andwater bidirectionally from
areas of high concentration to areas of low concentration.
Sieve element: a specialised cell with only the primary cell wall that
forms part of the phloem. The cells have a sieve-like area with pores
through the cell wall, enabling the conduction of dissolved sugars and
amino acids through the phloem.
Trichome: hair-like structures that protrude from the surface of the
leaves and stem of some plant species. Adapted as a physical deterrent
to herbivores and linked to mechanosensory systems.
Xylem: one of the two plant vessels that form the vascular bundle (see
‘phloem’). The xylem is a tubular structure reinforced by lignin that
transports water and minerals unidirectionally from the roots up the stem
of the plant drawn by the transpiration stream.
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Arabidopsis (Silverstein et al., 2005). Defensins exhibit an
impressive range of functions, from pathogenic cell membrane
disruption to inhibition of predatory digestive enzymes (Kovaleva
et al., 2020). In humans, over 30 beta-defensins have been identified
(Schutte et al., 2002), and these appear to act through similar
mechanisms (Pazgier et al., 2006). Plant and invertebrate defensins
share a characteristic cysteine-stabilised alpha helix, and all
defensins, including mammalian defensins, share a similarly sized
triple-stranded antiparallel beta sheet, suggesting that defensins are
an evolutionarily conserved class of AMPs across kingdoms

(Broekaert et al., 1995). Historically, AMPs have somewhat
slipped under the radar in animal repair studies, but, increasingly,
they are being investigated as important small-molecule candidates
for multiple medical applications associated with tissue repair and
tumour progression (Baindara et al., 2017; Sun et al.; Williams
et al., 2018; Mangoni et al., 2016).

Sealing the wound site with a ‘clot’
One of the most urgent tasks at any site of tissue damage is to rapidly
seal the gap to prevent loss of tissue fluids and influx of infectious
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Fig. 1. See next page for legend.
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agents. When a vertebrate animal is wounded, platelets or their
equivalents leak from ruptured blood vessels adjacent to the wound
site, become activated and degranulate upon exposure to
extravascular factors, including collagen (Ivanciu and Stalker,
2015). Simultaneously, thrombin cleaves fibrin to fibrinogen to
form a cross-linked mesh at the wound site, and the platelets become
embedded in this mesh, forming a clot (Martin, 1997; Jansen and
Hartmann, 2021; Li et al., 2010). In insects, a similar localised
release of vesicular granules and formation of a coagulatory fibrillar
network occurs, although there are no platelet equivalents and few,
if any, molecular parallels to vertebrate clotting (Schmid et al.,
2019).
An analogous process occurs at the site of injury in plants. As

plant vessels are ruptured, sap exudes from their cut ends, and
phloem proteins reversibly form disulphide cross-links to generate a
polymer analogous to the fibrin mesh in a vertebrate animal clot
(Ernst et al., 2012; Kehr, 2006). This initial ‘clot’ can then be
reinforced by callose (Box 1) deposition to prevent pathogen entry.
In plants, this ‘clot’ is a semi-permanent fixture, in contrast to the
temporary protective scab/clot formed in certain animals, which is
subsequently degraded and shed as the epidermis repairs.
In an example of parallel co-evolution, sap-sucking aphids have

evolved to circumvent plant ‘coagulatory’ defences. Much like
mosquitos injecting anticoagulants when sucking blood, aphids
inject proteases, thereby preventing plugging of the sieve element
allowing them to feed for extended periods (Walling, 2000; Furch
et al., 2015). However, interestingly, aphids can also aid plant
healing, as soldier aphids have been observed depositing body

fluids that harden to form protective ‘scabs’ on leaves wherever they
are feeding, in order to prevent their host’s inconvenient early death
(Kutsukake et al., 2009).

The plugging of a clot to seal the wound site, alongside an
immune response in animals and release of AMPs in plants and
animals, provides the time required to restore a barrier layer and
rebuild missing tissues beneath the seal (Fig. 2B).

“We need to be looking to plants – just as
much as to axolotls – to identify the best
epigenetic clues to enable better
regenerative capacity in our own tissues
and organs following damage.”

Regeneration versus scarring
Among the animal kingdom, there is great disparity in the
regenerative capacity of different species after injury. This ranges
from healing with a scar in adult mammalian tissues (Fig. 2D),
healing without a scar in mammalian embryos (Ferguson and
O’Kane, 2004), and ultimately to being able to regenerate whole
organs in planaria flatworms, and many fish and amphibian species
(Tanaka and Reddien, 2011).

Studies in zebrafish and axolotl show how cells proximal to the
injury site form a regenerative mass of dedifferentiated,
multipotent stem-like cells, collectively called a blastema
(Blum and Begemann, 2012; McCusker et al., 2015). Blastemal
formation is regulated by retinoic acid and growth factor signals,
key amongst these being FGF and WNT/β-catenin signalling,
which drive cell cycle re-entry (Wehner and Weidinger, 2015).
Blastemal cells will then re-differentiate, recapitulating
developmental pathways to replace the missing cells and tissues
of the damaged organ. However, regeneration-competent animals
are limited by cellular memory. Within the blastema of an axolotl
limb, cells remain lineage and tissue specific, and re-differentiate
into their original cell type (Kragl et al., 2009). This means a
tissue cannot be regenerated if it has been entirely lost in the
wound. Plants, by contrast, are much more widely competent at
regenerating their lost tissues. Their equivalent of a blastema is a
callus that exhibits much greater plasticity during regeneration
(Fig. 2E), and their capacity for trans-differentiation enables
regeneration of any tissue after predation, which explains why
plants can be propagated from cuttings (Ikeuchi et al., 2016).
However, although plants have the capacity to regenerate a leaf,
or even a whole plant from a cutting, they tend not to replace small
patches of missing tissue lost – for example, within a wounded
leaf – which is perhaps due to inhibitory feedback from cell wall
biogenesis at the wound site. The mechanisms behind these
different context-dependent responses to wounding are still not
fully understood (Ikeuchi et al., 2013).

Epigenetic modification lies at the heart of regeneration
competency in animals, with histone modifications suppressing
or activating developmental pathways required for regeneration,
alongside retention of lineage identity to prevent aberrant
homeotic transformation (Hayashi et al., 2020). Studies on
zebrafish fin regeneration have revealed rapid changes in histone
modification, in particular loss of polycomb-deposited histone
H3K27me3 repressive marks on the promoters of key growth and
proliferation genes, which are pivotal at early stages in the
regenerative process (Stewart et al., 2009). It seems that, as well
as clearing repressive histone marks, blastemal cells need to

Fig. 1. The shared hallmarks of wound repair mirrored across the plant
and animal kingdoms. Many wound-response processes have parallels
across the animal and plant kingdoms. (A) Here, we present seven
hallmarks [signalling, metabolism, vascularisation, antimicrobial peptides
(AMPs), clotting, regeneration, resilience], that share some degree of
similarity across the phyla. (B,C) The schematic illustrates wounds in a plant
(Arabidopsis thaliana) versus a human, and the higher-magnification views
to the left and right, respectively, show some of the hallmark stages within
the two repair processes. (B) A higher-magnification view of a cross-section
of the damaged leaf at early and later stages of wound healing. In the early
stage of wound healing, the calcium wave (black arrows) permeates from the
wound-edge cells and travels along the vascular bundle, made up of the
xylem and phloem. To prevent pathogen entry, a semi-permanent ‘clot’ is
generated from sap and phloem proteins that reversibly form disulphide
cross-links to generate a polymer. Some antimicrobial peptides are released
by cells in the wound area to protect against infection. In later stages of
wound healing, neighbouring dead wound-edge cells have been reinforced
by lignification (brown) and callose formation (white). More antimicrobial
peptides are also released to further protect against infection. (C) A higher-
magnification view of a cross-section of the human skin wound at early and
later stages of wound healing. In the early stage of wound healing, the
calcium wave (black arrows) rapidly permeates from the wound-edge cells
but remains localised at the wound site. A wound inflammatory response is
also triggered, which includes the release of antimicrobial peptides and the
recruitment of motile innate immune cells, to clear pathogens. Alongside
these processes, a clot is formed of activated platelets to plug the breach in
the damaged epithelial cell layer. In later stages of wound-healing
responses, cells at the wound edge undergo apoptosis (grey) and release
apoptotic bodies. Neighbouring epithelial cells proliferate and collectively
migrate to reform the damaged barrier. Increased levels of antimicrobial
peptides are released alongside a greater number of macrophages that
patrol the wound site, digesting cell and matrix debris and releasing
attractants and signalling molecules. Circulating neutrophils and monocytes
extravasate from vessels and are drawn towards the wound by chemotactic
signalling molecules. New blood vessels sprout towards the wound in
response to growth factors. Furthermore, the temporary clot is reinforced
with a fibrin mesh to fully seal the wound.
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reduce levels of DNA methylation in order to re-express some
developmental genes that enable proliferation and other
regenerative activities (Takayama et al., 2014). To a lesser

degree, some polycomb-mediated epigenetic changes to histone
marks also occur in less regenerative organisms, such as mice.
This enables wound-responsive changes in cell migration and
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Fig. 2. Examples of parallel hallmarks. Examples of the shared wound-response hallmarks across the two phyla. (A) Signalling: a calcium wave [revealed
by GCaMP fluorescent (green) reporters] spreading through the vasculature of Arabidopsis thaliana (left) in response to wounding from a feeding caterpillar
(arrow) (Nguyen et al., 2018). In a Drosophila embryo (right), a similar calcium wave (green) is triggered in response to an experimental laser wound (asterisk
indicates wound centre) (Razzell et al., 2013). (B) Vascularisation: after wounding of an Arabidopsis leaf (left), a new vessel forms (red dotted line),
bypassing the site of the previously damaged vessel (arrowhead) (Radhakrishnan et al., 2021). In a transgenic zebrafish (right), GFP-Fli reveals the flank
square vascular blocks and how these undergo neoangiogenesis after wounding (Gurevich et al., 2018). dpf, days post fertilization; dpi, days post injury.
(C) Antimicrobial peptides (AMPs): Arabidopsis leaves (left) expressing the AMP LTPg5 (blue) in response to infection visualised using a GUS reporter line.
Drosophila (right) fat body cells (red) expressing and delivering the AMP Attacin (green) at the site of a small laser wound (white dashed line circle).
(D) Clotting: a damaged leaf (left) with numerous lignified patches (brown), sealing sites of insect predation damage. Similarly, the bleeding from a scratch
wound to a human finger (right) is stemmed by clotting and subsequently a scab forms to act as a temporary patch over the skin wound until it heals.
(E) Regeneration: pluripotent callus cells (white) proliferating at the margins of a leaf wound (left) (Ikeuchi et al., 2013). Histology of a regenerating zebrafish tail
blastema (right), 3 days after amputation (at the yellow dashed line), with proliferating cells that will go on to replace the missing tissue (Chablais and Jaźwińska,
2010). Image permissions: (A) The Arabidopsis image was reproduced with the authors’ permission from Nguyen et al. (2018) under the terms of the
CC-BY-NC-ND licence. This image is not reproduced under the terms of the CC-BY licence of this article. For permission to reuse, please see Nguyen et al.
(2018). The Drosophila image was reproduced with the authors’ permission from Razzell et al. (2013) under the terms of the CC-BY 3.0 licence. (B) The
Arabidopsis image was reproduced with the authors’ permission from Radhakrishnan et al. (2021). This image is not reproduced under the terms of the CC-BY
licence of this article. For permission to reuse, please see Radhakrishnan et al. (2021). The zebrafish image was reproduced with the authors’ permission from
Gurevich et al. (2018) under the terms of the CC-BY 4.0 licence. (C) The Arabidopsis and Drosophila images were reproduced with the authors’ permission from
Ali et al. (2020) and Franz et al. (2018), respectively, under the terms of the CC-BY 4.0 licence. (D) Stephanie Foster granted us permission to use the images of
her wounded hand. (E) The Arabidopsis image was reproduced with the authors’ permission from Ikeuchi et al. (2013) under the terms of the CC-BY 3.0 licence.
The zebrafish imagewas reproducedwith the authors’ permission fromChablais and Jaźwińska (2010). This image is not published under the terms of the CC-BY
licence of this article. For permission to reuse, please see Chablais and Jaźwińska (2010).
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proliferation, as well as partial epithelial–mesenchymal transition
that is needed to enable wound re-epithelialisation (Shaw and
Martin, 2009).
In plants, cellular identity is, in part, also maintained in

differentiated cells by polycomb-deposited H3K27me3 marks, and
loss of these marks is critical to the dedifferentiation required for callus
formation following wounding (Mozgova et al., 2017; Ikeuchi et al.,
2015). The leaf to callus transition requires repression of leaf regulatory
genes by histone trimethylation, in parallel with the demethylation of
the auxin (Box 1) hormone pathway and root regulatory genes (He
et al., 2012). Another key epigenetic marker of wound-induced
transcriptional activation of plant genes is histone 3 acetylation, as
inhibition of histone acyltransferases abolisheswound callus formation
(Rymen et al., 2019). Interestingly, many rapidly wound-induced
genes are pre-primed for transcription with acetylation marks, poising
them for induction by wound-activated transcriptional regulators
(Rymen et al., 2019). It may be that the plant genome is more
effectively cleansed of inhibitory epigenetic marks upon wounding,
making it more plastic in the regenerative phase. Therefore, we need to
be looking to plants – just as much as to axolotls – to identify the best
epigenetic clues to enable better regenerative capacity in our own
tissues and organs following damage.

“As we better understand these natural
resilience mechanisms, more advanced
treatments might be developed to mimic
or activate these systemic resistance
pathways to improve crop survival, and
some of these strategies may also be
‘borrowed’ for use in the clinic.”

Priming tissue resilience
Although all organisms have developed strategies for repair,
preventing damage in the first place by shielding or protecting
tissue is clearly advantageous and will also have been evolutionarily
selected for wherever the cost is not too great. Permanent examples
of this include camouflage or mimicry, or obnoxious taste, but there
are also more transient resilience mechanisms that prime tissues to
minimise damage. Recent studies in flies and mice have shown a
series of signalling pathways activated by damage itself, and by the
associated inflammatory response, which triggers local
upregulation of enzymes that sequester ROS, as well as
upregulation of DNA and protein repair machineries (Weavers
et al., 2019; Haertel et al., 2014; Telorack et al., 2016). These
mechanisms that transiently enhance tissue repair capability would
be extremely useful to harness in the clinic, for example prior to
elective surgery, and might also be beneficial to activate in crops
prior to times of potential infestation. However, whether plants have
equivalent ‘resilience’ mechanisms remains to be addressed.

Plants clearly have mechanical strategies for detecting impending
attack, utilising their sensory trichomes (Box 1), which, when
disturbed, can lead to upregulation of antipredator toxins before the
first bite (Zhou et al., 2017; Peiffer et al., 2009). Moreover, plants
exhibit priming of defence pathways in response to sequential
stimuli, with damage or even soft mechanical stress leading to
localised disease resistance (Benikhlef et al., 2013; Chassot et al.,
2008). Prior exposure to pathogens has powerful priming effects on
several key defence proteins, leading to systemic acquired resistance
to infection (Conrath et al., 2002). As we better understand these
natural resilience mechanisms, more advanced treatments might be
developed to mimic or activate these systemic resistance pathways to
improve crop survival (Kohler et al., 2002), and some of these
strategies may also be ‘borrowed’ for use in the clinic.

Intersecting lessons
What this brief survey of repair mechanisms in plants and animals
reveals is that there are indeed several strikingly analogous
mechanisms, including ROS and calcium signalling, and
metabolic alterations (Fig. 1). However, we highlight clear gaps in
areas that are well studied in one kingdom but underexplored, and
thus somewhat ‘under the radar’, in the other. For example, much is
known about the role of AMPs in plant repair, but this has been
studied to a much lesser extent in animal models besidesDrosophila
(Hanson and Lemaitre, 2020). The rise of antimicrobial resistance
has created a demand for antimicrobials and pesticides in the clinic
and in agriculture, and the cross-species application of AMPs could
hold potential solutions for this crisis. An example of where cross-
kingdom application is already happening is the plant defensin
NmDef02, which has been recombinantly expressed in Escherichia
coli and was shown to exhibit antimicrobial activity against human
pathogens in vitro, as well as against plant pathogens (Ceballo et al.,

Box 2. Sacrificing cells and tissues for the greater good of
the organism
In the animal world, the most efficient option when faced with a predator
is to flee, which of course is not possible for a plant. A dramatic,
alternative strategy adopted by some animals involves active tissue
sacrifice. This process, termed autotomy, has examples across all phyla,
including crustacea claw shedding and lizards losing their tails, and even
the African spinymouse that appears to have developedmechanisms for
shedding, and subsequently regenerating, without scarring, large
amounts of skin when attacked (Seifert et al., 2012; Maginnis, 2006).

Because many plants lose their leaves seasonally, it would seem that
shedding an injured leaf would be an effective strategy to prevent more
general predation or infection. However, although there are some
notable examples, such as the Bermuda buttercup, the leaves of which
are ‘dropped’ during predation (Shtein et al., 2019), autotomy appears to
be a surprisingly underused defence strategy by plants.

Instead, plants routinely sacrifice wound-edge cells as part of their
damage response. Following injury, a band of cells only a few rows
proximal to the damaged site undergoes programmed cell death,
accompanied by cell wall reinforcement with phenolic compounds,
such as lignin, to generate a barrier against infection (Chezem et al.,
2017; Vance et al., 1980). This lignified barrier is then further reinforced
by the deposition of suberin (a polyester of fatty acids and glycerol) to
provide further resistance to degradation, and protection against
pathogen entry (Fig. 2D) (Serra and Geldner, 2022). This process is
triggered downstream of immediate wound signals, including reactive
oxygen species and abscisic acid, and is tightly regulated to prevent the
domain of death extending back into the healthy tissue. MYB108 is a
jasmonate-inducible transcription factor, which negatively regulates
abscisic acid biosynthesis, and if MYB108 mutant plants are wounded,
then a cascading wave of cell death is triggered that can kill the whole
organism (Cui et al., 2013). Equivalent wound inhibitory signals have
barely been investigated in vertebrate animal models, but a very
informative screen of regulators of wound-activated transcription in
Drosophila has revealed several genes, including Flo2 and Src42a, that
appear to be required to limit the spread of early wound signals (Juarez
et al., 2011). These endogenous ‘dampening’ mechanisms might prove
to be potential therapeutic targets to activate in order to limit the extent of
negative aspects of wound healing, such as fibrosis; or conversely, to
switch off to prolong and extend more positive wound cell behaviours,
such as re-epithelialisation, that will speed up healing.
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2022). Similarly, the analogous resistance and resilience
mechanisms, currently being uncovered in both plants and
animals, can offer insights for research direction in diverse phyla.
For example, ‘dampening’mechanisms that limit cell death in plants
may hold promise for novel therapeutics aiming to limit fibrosis in
patients (Box 2). Now might be an ideal time for more systematic
comparative studies on how plants and animals heal their wounds,
and an opportunity for the two fields to learn from each other in
ways that expand our options for novel treatments to enhance repair
in the clinic and to replace pesticides and other agricultural
treatments in crop production.
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